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ABSTRACT

A high velocity lithium droplet cloud traversing the magnetic field
of a fusion reactor may be useful for collecting plasma ions and their
energy. In this report, the forces associated with such motion in

nonuniform magnetic fields are derived.



[NTRODUCTION

Fusion rcactors may require magnetic divertors to carry off plasma
impurities. A magnetic divertor consists of conductors properly arrayed
to distort flux lines in the edge of the plasma into a configuration
where they are more or less removed from the plasma region. This edge
plasma will fcllow the diverted {lux and can, in principle. be collected.
This provides a mechanism to prevent impurities from the wall from
reaching the bulk of the plasma and also to divert impurities away from
the wall as they leave the plasma.

Collection of both the incident ions and the associated heat f{lux
promises to be a technological challenge. In the former case, the ion
collection load is estimated to be of the order of 107 %/sec and the
attendant surface heat flux is expected to be in excess of 100 MW. The
particle collection load is largely D and T ions. Proposals for accom-
plishing these tasks have involved the use of solid hydride formers aund
the use of liquid lithium, alse a hydride former. In the case of the
solid, the feasibility of the requisite number of load-unload cycles
(v10%) while maintaining good structural and heat transfer properties is
doubtful. Also, the process for ion removal may involve excessive fre-
quency and temperatures.

Proposals for the use of liquid lithium have entailed gravity-
driven flow in strong magnetic field and also in contact with a solid
metal boundary. This situation leads to excessive resistance to flow
and to insufficient velocity. This is because of magnetohydrodynamic
(MHD) effects associated with current that flows through the stationary
return path.

It has been proposedl that droplets of lithium formed from high
velocity jets be utilized to accomplish these two functions. The jets
would be formed by nozzles awar from the large magnetic fields. 1In a
short distance the jets are expected to break up. The drops would
traverse the strong magnetic field region and then be collected in a
region removed from the magnetic field. The essential difference com-
pared with the earlier proposals is that moving, electrically conductive
liquid is not in contact with a stationary current return path while

traversing the strong magnetic field.
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This report presents the theory to t eat the motion of droplets
making this journey. The first author derived the theory and the second

author provided the context for this work.



1. CEOMETRY, ASSUMPTIONS, AND GOVERNING EQUATIONS

The spherical drop of liquid metal has a radius a and is moving in
the z direction with velocity V, as indicated in Fig. 1. The coordinate
system is fixed in space, and the center of the sphere ig located at the
origin of the coordinate system at the instant of analysis. There is a
transverse magnetic field in the y direction which varies in strength in
the z direction, By(z). We can write a Taylor series for this field

about z = 0,

3B L 32B
B (z) = B_(0) + z —% (0) +4— 22 —L (0) + .
v y 2z 2 3z
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Fig. 1. Spherical drop of liquid metal.

1f the distance over which the magnetic field strength changes is much

larger than the radius of the spherical drop, thea

5B 1 32B
B >»a—-2L(@>»—a2—L @0 ... .
y 9z 2 3z2

We therefore retain only the first two terms in this Taylor series,



B (z) = By + 2 —
y o]

where By = By(O), dBgp/sz = aBy/az(O), and the second term is much
smaller than the first.

The governing equations for incompressible fluid are

o -z%-k(\i-‘]‘)x = -Up + 3 x B+ 9%y , (1a)
z . & =0 , (1bv)
Z . i =0, (1c¢)
i = U(—z¢ + Y ox E) ’ (1d)

where X, P, éﬁ g, and ¢ are the fluid velocity, pressure, electric
current density, magpnetic field, and electric potential, respectively,
and p, N, and ¢ are the fiuid's density, viscosity, and electrical
conductivity, respectively. These equations assume that the magnetic
Reynolds number Pm = uoVa € 1, where p is the fluid's magnetic perme-

ability, and that the magnetic field is steady, rather than a function

of time.

We write
V=Vk+ V',
A YA W

where V is the drop velocity, which is the same at every point in the
drop, and & is a unit vector in the z direction, The body forces obtained
under the assumption that the drop moves as a rigid body, i.e., V' = 0,
cannot in fact be balanced entirely by a pressure gradient. Therefore,
there must be some internal motion relative to the rigid body motion.
However, we will show that the velocity in this relative motion is
comparable to the change in drop velocity resulting from the drag force

on the drop, and this is much smaller than the initial drop wvelocity.



Therefore we assume that |V'| € V and neglect V', and we also assume
ws

that 3V/9t is negligible. Therefore Eq. (la) becomes

Vp=jx§- (2)



2. CURRENT PATHS AND VALUES

To describe current paths, we recognize that B = Boj, much smaller

terms being neglected, where J is a unit vector in the y direction.

Introducing this into Eq. {2) and taking the curl of this equation gives

9.9.
Bg By = Q0

because V x Yp = 0, V x.(j x j) = (ajlay) - (7 j)j, and v « j=0.

A

Consider a cyllndrlcal coordlnate system (r,0,y) with base vectors

~

&> ee, and ey, as illustrated in Fig. 2. Note that ey = 5. The "top'

A

and "bottom" surfaces of the drop as seen by the magnetic field are

given by

y = +(a2 - r2)1/2
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Fig. 2. Cylindrical coordinate system for describing current paths.

Because the surrounding vacuum carries no electric current, the boundary

condition on the electric current in the liquid is

;-j‘.&=0



at the surface, where é is an outward unit normal on the surface. The
unit normal can be found with the following procedure. A scalar function

is defined by

)

F(r,0,y) = ty ~ (a? - r2)1/2

'

I
This functicn equals zero on the drop surface, so thisysurface is a
surface of conétant value for this function. The gradient of any scalar

|
function is perpendicular to the function's constant value surfaces,ﬁso

VF = r(a® - r2)’1/2$ * ; )
wa ey w\y

,1 / b ,
is perpendicular to the drop surface. Normalizing to get unit length,,

we obtain '

P

Iy

=0

= a~1,4 -1¢a2 _ »2y1/25 = 2 - 2y1/2 ,
a”‘re * a (a <) \Sy at y = +{(a r<) .

The boundary condition on the electric current is

" f
.
.

/ ¢
a‘lrjr + a~l(a? 7ér2)1/2jy =0 aty=#(a? - r2)1/2
P i)

-
A

Since 3j/dy = 0, jr’ je, and jy are functions of r and 6 al%ne, 30¢tﬁe
wa . ”

[Py

boundary conditions become

NN

a-lrjr(r,e) + 3~} (a2 - r2)1/2jy(r’e>

n
o

[
o

a—lrjr(r,e) - a"1(a? - rZSu/ij(r,S) =

i 4] V4 ‘T'A._ : (ﬁ;;’?_f
When ‘these equations are adde N they glve i, (r, 6) O,Jand wben they areﬂ

RN

subtracted, they give j (r,8) —XJI Theraforer d (r’e) ig the only
nonzero current. Equation (1¢) necomas 336/89 O, SO‘Je “ig-a’ fypc wgﬁ@%
of r alone and 3 = j (r);



MoOlvLorIly e soaviniiocrna U b b e Ui e i T oo e
Lo tire conctunion taat L vlectric current flows aronard o slonaer ol
AYeo concentric woln b cwiaterler poaraliel vt nogenetio el and
thal the carrenl on o oue 0! Cheos oo linders i conatant, an Dllaut rated
tco by sCay.s I we o wvere Lo odinclade thie nonunifornity of the ticld) the
cttect wonld bhe to «drLtore the cvlinders wlightlvo wWhere the §eld
slivupglh 1o stronyer, the characteristic surface mast oo lonper and
paratlel to \L’:, and vice veruas Ghus, I 2 i~ Increasing in the 2 direction,
the surtace mipght ook like the digpram in Fipg. 3(h) . lHote that the total
current flowing around a4 surtace i connstant, o thuat where the maygnetic
ficld in <tronp and the arface io loay, the current density will I
small, and where the field P4 weak and the surface is short, the
currcnt density will be larpe.  Because the body fource is equial to the
product of current density and field strength, and because where the field
is large the current is small and viee versa, the forces are comewhat
insensitive to nonuniform tield effcets. Because adBo/ oz 2B, all

nonuniform ficld effcets on the shape of the characteristic surfaces and

on variation of current density around these surfaces will be neplected.

ORNL - DWG 79-2009 FED

B, >B,

()

Fig. 3. Pattern of electric flow current (a) without and (b) with
nonuniformity of field.



io cumpute the value ¢f j (r) on one of the cvlinders of radius r
(sev Milp. 41, we consider the © component of Ohm's law, Eq., (1d). The

velocity of the fluid is the drop velocity, so that V = Vk, where V is a
L aal wA

constant; k = cos e - sin ve.; and V = V cos e - V s5in ¢ . I'he
wa wa T WA A wa " YA

mapnetic ficld is in the v Jdirection, so that

sk 3B,
B=18 +2z—--]]= (Br +r ocos v o ——Je
- ’ P S ' z ey

because z = r cos o and j = ¢ . Therefore the © component of Erg. (1d) is
I (S04 53¢) b}

jo(r) = = 7t -4+ ¥ ocou o Br + r cos 4 —— .

5 | i - 23

When this equation is integrated from @ = 0 to = 2% and the result is

diviged by 27, it gives

1 o By,
Je(r) == 5 oVr s,
because ¢(& = 0) = ¢(6 = 27).

ORNL-DWG 79-2040 FED
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Fig. 4. Model for computing je(r).



3. BODY FOURCE AND DRAG FORCE

The Lorentz body force per unit volume is

1 4Bg

. 9By
&y \Bg + r cos i I

M

1 BBO ;JBO ,
-5 0oVr = - | Byt rcos & — 1| ¢

2 9z 12 ] T
This is illustrated in Fig. 5. First we are interested in the net force
on the drop in the z direction because this is the drag force on the drop
due to MHD effects. We calculate

~

dF = { + k a¥ ,

YA w
where k = cos Oér - sin Oée and d¥ = dr(r d6) dy. To integrate over
A Y VA
the entire drop, we integrate from ¢ = 0 to § = 2m, from y = -(a’ -

r2)1/2 toy = (a% - r2)1/2, and from r = 0 to r = a, so that

ORNL-DWG 79-2044 FED

Fig. 5. Lorentz body force per unit volume.
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~

J2

1 9By 5By
- - cVr ( By + r cos & - )

cos Sr d¢ dyv dr

1f the integrations with respect to v and ‘ are carried out, the result

is

BBO 2 a
Pl (':7;‘) J e e
g 0

The result of integrating is

2 . <8B0 2
K, = =15 "V \ 52

Because the field gradient appears squared, the force is opposed to
the motion whether the field is increasing or decreasing in the direction
of the motion. The magnetic field strength is given by a graph like the

one in Fig. 6. It seems reasonable to assume that By is given by
B = l-B [1 - cos (mz/L)]
y 2 u
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Fig. 6. Magnetic field strength.
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for 0 " z < L, so that

9B mB
u .
S;Z’= 5L sin (nz/L)
Because FZ - m G¥/di, where m ~— (A)3)ma%c is the mass of the drop. and
because V = dz/dt, we have
F 2 auo>? 4 dv/dt
A LR P 3R gz /de
or
av oa’ <9Bo>?
dz =~ 10p 9z

Introducing the expression assumoed for the {ield gradient vwhere the drop
enters the ficld, we obtain an expression for the change in drop velocity

during the entry,

va? ’nBu>2 L
Vs oo |2 i d
A Top kZL J; sin (nz/L) dz
or
AV = —ﬂzazoBﬁ/BOpL

This is the change in the drop's velocity during its motion from outside
the magnetic field to the region of uniform magnetic field. An equal
decrease in velocity results during the drop's motion from the uniform
field region to a point outside the field, so that the total change in

velocity of a drop moving across the field region is

AV = —wzazoni/40pL .



4. PRESSURE AND DROP DEFORMATION

Equation (2), together with the result for the Lorentz body rorce,

gives

3p 1 3Bg 3By \
— = - = gV N+ &

3T 5 oVr ~Z \B T cOs 7 /

The second term in the parentheses is much smaller than the first, and we
will neglect it. We should note, however, that it is the second term
that accounts for the drag force, because the first produces a symmetric
force field with no net resultant. Therefore we are neglecting forces
comparable to the drag force Fz when we neglect this term. The neglected
term implies that p depends on G, but because the electromagnetic or
Lorentz body force is radial, it cannot balance the pressure force
r-1 3p/36, and Eq. (la) implies that X is not equal to the constant value
of the drop's velocity. However, this unbalanced pressure force is also
comparable to the drag force, and the deviations from the rigid body
velocity are comparable to the AV just computed. If the change in the
drop's velocity due to entering and leaving the field, namely AV, is
much smaller than the drop's velocity V, then the motion in the drop
relative to the drop's velocity, namely X’, is also much smaller than
the drop's velocity V. This justifies the assumption (made in Sect. 1)
that |V'| < V.

Neglecting the second term inside the parentheses, we integrate the

equation to obtain the pressure,

where py is the (unknown) pressure at r = O.

In the absence of any MHD effects, i.e., outside the field or in
the uniform field region, the pressure in the drop is constant. If s is

the surface fension force per unit length, then 1Ta2ps = 2mas, or Py =

13



L4

25/a, as shown schematically in Fig. 7(a). With MHL effects present,

the pressure s a function ol radial distance from the diameter parnllel

to the ficeld, as shown in Fig., 7(b). In the fipure we introduce the

term py (= plr = a)l. Then py - pr, for (B /hz) - O aud py < pr, for

(sl /52y - 0. Because locally the pressure is related to the surface
tension through the surface curvature, rC;,'a s or r s/p.  This relation-

ship 1s shown in Fig. 8. Where the pressare is larger, the radius of

curvature is smaller, and vice versa. For (s3Br/9z) - 0, py - pr, and
for (bBg/s2z) - O, py -~ py. The resulting deformations for these rases

a1¢ oshewn iu Flg. 9. Because it is the difference in pressure which

causes the deformation, a coefficienL to estimate the deformation is the

ORNL-DWG 79-2013 FED

(b)

Fig. 7. (a) Constant pressure in the drop, no MHD effects present.
(b) Pressure as a function of radial distauce from the diameter parallel
to the field, MHD effects present.
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Fig. 8. Relation of pressurc to surface tension.
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Fig. 9. Deiormation of the drop (&) when pj; < pg and (b) when
P1 ” PO-
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ratio of the maziwmum pressure difference inside the drop, neglecting the

deformation, to the pressure in a drop due to surface tension alone.

: is,

1 By
tp = p(r = 0) - p(r = a) = sVaiby -~ ,
50
sp  a’ 4By
- = —- gVRB, .
P, gs 7700 3z

This is a dimensicnless cocefficient that should reflect the degree of
drop deformation. It should be much less than 1 to indicate negligible

drop deformat ion.



5. SIDEWARD DISPLACEMENT

A nonuniform magnetic field alwavs implies curvature to the field
lines. Wwe can see this from “mpere's law, which for R <€ 1 is

T

N ﬁ =0 .

7
A

For B By(y,z)j + Bz(y,z)&, i.e., a plane magnetic f{ield with no

x component and no x dependence, this equation becomes

SR 9B

z v
—% . 2
oy 92

Because aBy/ﬁz # 0, By # 0. ‘the field line curvature is illustrated

in Fig., 10. The effect of the magnetic field line curvature can be secen
in Fip. 11. The characteristic surfaces tilt with the field linesg, and
the force previously computed as Fz acts perpendicular to the charac-

teristic surfaces and field lines. This force has a component perpendi-

ORNL-DWG 79-20146 FED
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Fig. 10. Field line curvature.
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CHARACTERISTIC
SURFACE

Fig. 11. FEftcet of lietd lince curvature ou a drop.

cular to the velocity as well as parallel to it. If Fz is the Fz
0

computed before for BZ = (0, then

o= F cos «w = F
4 ZO ZO

=
i

¥ sin «w = F tan n =~ ¥ (B /B ) ,
M Zn Zp Z3 yA v

assuming that « is small.

Since B7 = 0 at the plane of symmetry, taken here as the y = 0

plane, we can de.ermine Bz from

y 3B
= % *
B,(v,2) fo =L %) 4y

In the drop blanket of thickness T shown in Fig. 12, the largest effect
will be felt by the drop at the edge of the drop blanket., 1f we note
that BBy/Bz is the same as 3By3/dz, then we can estimate BZ at the edge
of the blanket as

1 3B
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Fig. 12. Drop blanket of thickness T.

As a typical By’ we choose Bu/2, where Bu is the field strength in the

uniform field region. Therefore,

9By d?y
I e N
y ZO az u dtZ

Integration gives

3By

v = -2 —
Ly T FZOT Y / 2mBu .

where Ay is the displacement of a drop at the edge of the blanket away
from the other drops and T is the time spent in the nonuniform field

region. Because
T = L/iv ,

where L is the length of the nonuniform field region, as before, and

expressions for m and FZ have been given, we obtain
0

) (aao>3 /
= a2 R .
Ay = a“L“To 7 20pVBu

A



20

As a drop enters the magnetic field, it will move away from the plane of
symmetry by this displacement, and as it leaves the magnetic tield, it
returns to its original distance from the plane of symmetry. This is

shown schematically in Fig. 13.

ORNL -DWG  79-2049 FED
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Flg 13. Displacement of a drop as it moves through a region of
uniform magnetic field.
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