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ABSTRACT 

A high velocity lithium droplet cloud traversing the magnetic field 
of a fusion reactor may be useful for collecting plasma ions and their 
energy. In this report, the forces associated with such motion in 
nonuniform magnetic fields are derived. 

v 



INTRODUCTION 

Fusion reactors may require magnetic divertors to carry off plasma 
impurities. A magnetic divertor consists o£ conductors properly arrayed 
to distort flux lines in the edge of the plasma into a configuration 
where they are more or less removed from the plasma region. This edge 
plasma will follow the diverted flux and can, in principle, be collected. 
This provides a mechanism to prevent impurities from the wall from 
reaching the bulk of the plasma and also to divert impurities away from 
the wall as they leave the plasma. 

Collection of both the incident ions and the associated heat flux 
promises to be a technological challenge. In the former case, the ion 
collection load is estimated to be of the order of 10''"/sec and the 
attendant surface heat flux is expected to be in excess of 100 MW. The 
particle collection load is largely D and T ions. Proposals for accom-
plishing these tasks have involved the use of solid hydride formers ar.d 
the use of liquid lithium, also a hydride former. In the case of the 
solid, the feasibility of the requisite number of load-unload cycles 
('i-lO5) while maintaining good structural and heat transfer properties is 
doubtful. Also, the process for ion removal may involve excessive fre-
quency and temperatures. 

Proposals for the use of liquid lithium have entailed gravity-
driven flow in strong magnetic field and also in contact, with a solid 
metal boundary. This situation leads to excessive resistance to flow 
and to insufficient velocity. This is because of magnetohydrodynamic 
(MHD) effects associated with current that flows through the stationary 
return path. 

It has been proposed1 that droplets of lithium formed from high 
velocity jets be utilized to accomplish these two functions. The jets 
would be formed by nozzles away from the large magnetic fields. In a 
short distance the jets are expected to break up. The drops would 
traverse the strong magnetic field region and then be collected in a 
region removed from the magnetic field. The essential difference com-
pared with the earlier proposals is that moving, electrically conductive 
liquid is not in contact with a stationary current return path while 
traversing the strong magnetic field. 

1 
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This report presents the theory to t eat the motion of droplets 
making this journey. The first author derived the theory and the second 
author provided the context for this work. 
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1. CEOMETRY, ASSUMPTIONS, AND GOVERNING EQUATIONS 

The spherical drop of liquid metal has a radius a and is moving in 
the z direction with velocity V, as indicated in Fig. 1. The coordinate 
system is fixed in space, and the center of the sphere is located at the 
origin of the coordinate system at the instant of analysis. There is a 
transverse magnetic field in the y direction which varies in strength in 
the z direci-ion, B^(z). We can write a Taylor series for this field 
about z = 0, 

3B 1 B2B 
B (z) = B (0) + z — ^ (0) +•- z2 — ( 0 ) + . . . . 
y y 3z 2 3z2 
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If the distance over which the magnetic field strength changes is much 
larger than the radius of the spherical drop, then 

3B 1 32B 
B (0) > a — £ (0) > - a 2 2L (0) . . . . 
y 3z 2 3z2 

We therefore retain only the first two terms in this Taylor series, 
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B (z) = B0 + z 
3 B 0 

where BQ = B^(0) , 3BQ/3Z = SB^/3z(0), and the second term is much 
smaller than the first. 

The governing equations for incompressible fluid are 

3V 
+ (V • V)V = -Vp + .j x B + nV2V , (la) at 

7 • V = 0 , (lb) 

V • j = 0 , (lc) 
WA WA 

j - a(-v<f> + V x B) , ( Id) 
W V* w, 

where V, p, j, B, and <p are the fluid velocity, pressure, electric 
w . w , 

current density, magnetic field, and electric potential, respectively, 
and p, n, and o are the fluid's density, viscosity, and electrical 
conductivity, respectively. These equations assume that the magnetic 
Reynolds number R = yaVa ^ 1, where y is the fluid's magnetic perme-m 
ability, and that the magnetic field is steady, rather than a function 
of time. 

We write 

V = Vk + V' , M » * 

where V is the drop velocity, which is the same at every point in the 
drop, and k is a unit vector in the z direction, The body forces obtained 
under the assumption that the drop moves as a rigid body, i.e., V' = 0, 
cannot in fact be balanced entirely by a pressure gradient. Therefore, 
there must be some internal motion relative to the rigid body motion. 
However, we will show that the velocity in this relative motion is 
comparable to the change in drop velocity resulting from the drag force 
on the drop, and this is much smaller than the initial drop velocity. 



5 

Therefore we assume that jv'| < V and neglect V', and we also assume 
that 3V/3t is negligible. Therefore Eq. (la) becomes 

VA 

Vp = j x B . (2) 



2. CURRENT PATHS AND VALUES 

To describe current paths, we recognize that B = Bgj, much smaller ^ ^ VA 
terms being neglected, where j is a unit vector in the y direction. 

VM 
Introducing this into Eq. (2) and taking the curl of this equation gives 

3j 
*0 ° 

because V x V p = 0 , V x - ( j x j ) = (3j/3y) - (V • j)j, and V • j = 0. 
Consider a cylindrical coordinate system (r,9,y) with base vectors 
/N ^ /*- ^ X, 

e , e Q, and e , as illustrated in Fig. 2. Note that e = i. The "top" 
and "bottom" surfaces of the drop as seen by the magnetic field are 
given by 

= ± (a2 - r 2) 1/ 2 . 
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X 

A 
e r I 

B 0 

® y - AXIS A N D M A G N E T I C 
F I E L D POINT INTO 
T H E P L A N E . 

"TOP" 
y = ( a 2 - r 2 ) , / 2 

B, 

-BOTTOM" 

y = - ( a 2 - r 2 ) , / 2 

Fig. 2. Cylindrical coordinate system for describing current paths. 

Because the surrounding vacuum carries no electric current, the boundary 
condition on the electric current in the liquid is 

j • n = 0 
r . m* 

6 
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at the surface, where n is an outward unit normal on the surface. The 
unit normal can be found with the following procedure. A scalar function 
is defined by 

F(r,6,y) = ±y - (a2 - r 2) 1/ 2 . 

i, 
This function equals zero on the drop surface, so this\v£urface is a 
surface of constant value for this function. The gradient of any scalar 
function is perpendicular to the function's constant value surfaces, so 

VF = r(a2 - r 2 ) _ 1 / 2 e ± e <*>r v* J) 

is perpendicular to the drop surface. Normalizing to get unit length,a 

we obtain 

n = a - 1 re ± a - 1 (a2 - r 2) x/ 2e at y == ±(a2 - r 2) 1/ 2 . . 

The boundary condition on the electric current is 
U 

i1 
a _ 1rj ± a - 1 (a2 -jlr2)1'2! = 0 at y = ±(a2 - r 2) 1/ 2 . 

Since 3j/3y = 0, j , j., and j are functions of r and 0 alone,.soothe' ** , r o y r. * -
boundary conditions become 

a _ 1rj r(r,0) + a " ] ( a 2 - r 2) l / zjy(r,9) = 0 , 

a"1rjr(r,0) - a"1 (a2 - r 2 ^ 2 j y ( r , 0 ) « 0 : 

A 
When these equations are addeiX, they give j r (r, 6) = 0, , and when they arejl 
subtracted, they give j (r,6) Thereforei j Q(r,0) is. the only.. .j 

» y ; 0 T . \ n ^ w m 
nonzero curr_ent. Equation (1c) \\e comes ajQ/30,= 0, so j "is a functions® 
of r alone arid j =• j Q(r)e Q. <Mt O <»»0 
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nonuniform field effects on the shape of the characteristic surlaces and 
oil variation of c.urrenL density around these surfaces will be iick 1 ec Led . 
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B 2 > B 1 

Fig. 3. Pattern of electric flow current (a) without and (b) with 
nonuniformity of field. 
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lo impute the value et j._(r) on one u\ the cylinders of radius r 
(beu ! A), wu consider the • componen' of Ohm's law, Eq. (Id). The 
velucitv of the fluid is the drop velocity', so that V - Vk, where V is a 

»» v-» 

cor.sLant; k = cos -*e - sin ye.; and V = V cos "e - V sin 'u . I"he «»» »» r * * » > »• r «»•; 
magnetic f i e l d is in the y direction, so that 

B = B + 2 : j = Br + r cos 
3 Br 

because z = r cos •• and j e_r. Therefore the ' component of Kq . (id) is 

; jB 0 

j. (r) = ! r~1 + V cos •• ( Br + r cos 0 d': \ <17. 

When tills equation is integrated from 
divided by 2, it gives 

0 to 2r and the result is 

1 u Br 
j , ( r ) = - ^ cVr - a T 

because $(>J = 0) = $(0 = 2u) . 

ORNL-DWG 79-2010 FED 

Fig. 4. Model for computing jQ(r) 



3. BODY FORCE AND DRAG FORCE 

The Lorentz body force per unit volume is 

. / , 
y f = i x B = - — cVr 7 e x \ Br, + r cos rJ — - I e « « 2 dz \ ,J

 - jz 

1 t) Bq / dB0 
= - — aVr — - [ En + r cos r) 7 I e 2 rjz y - j z y ~ r 

This is illustrated in Fig. 5. First we are interested in the net force 
on the drop in the z direction because this is the drag force on the drop 
due to MHD effects. We calculate 

dF = f • k d¥ , 

sin (Je„ and d-V-= dr(r dG) dy. To integrate over 
integrate from 0 == 0 ' to 0 = 2it , from y = -(a7 -
r 2) 1/ 2, and from r = 0 to r = a, so that 

where k = cos Oe v* r 
the entire drop, we 
rP) 1/2 t o y = (a2 -

ORNL-DWG 79-2011 FED 

Fig. 5. Lorentz body force per unit volume. 

10 
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a (a2-r:)''/2 • 

A ^ - ( a 2 - r 2 W 2 I 

1 dB0 / bB0 
-- cVr — I Bj + r cos 6 
2 3 Z * JZ 

cos Or dO dy dr . 

If the integrations with respect to y and " are carried out, the result 
is 

SH0 
F = -TTOV " . z \ 'JZ r < ? \ 1 / < > a' - r'-) J' -r - dr . 

'lhe result of integrating is 

F = - 7 7 iraboV z 15 
SBC 

3z" 

Because the field gradient appears squared, the force is opposed to 
the motion whether the field is increasing or decreasing in the direction 
of the motion. The magnetic field strength is given by a graph like the 
one in Fig. 6. It seems reasonable to assume that B^ is given by 

By = j Bu[l - cos (irz/L) ] 
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By 
" N O N U N I F O R M 

FIELD REGION 

L 

.By = B u IN UNIFORM FIELD REGION 

N O N U N I F O R M FIELD 
REGiON 

U N I F O R M FIELD 
REGION 

DROP MOTION 

M A G N E T I C FIELD S T R E N G T H 

Fig. 6. Magnetic field strength. 
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Cor 0 < L, so that 

b]i TTli 
T-X- = s L n ( t j z / L ) dz ZL, 

Recaube F - m uV/ut, where rr. - (/i/U)"a'r. is »_t->e mass of the drop, and z 
because V = dz/dt, we have 

V^ 2 /diiQ\? 4 dV/dt 
\f = ~ 15 TTa"a V iV'j = 3 7,1a 1,0 dz/dt 

or 

dV aa? / 3 B 0 \ ? 

dz lOp" \ 9 z / 

Introducing the expression assumed for the field gradient where the drop 
enters the field, wo obtain an expression for the change in drop velocity 
during the entry, 

ua2 /JIB \ 2
 F L 

AV = - W tar] J0
 s i n f W L ) dz 

or 

av = -7 t 2a 2oB 2/80pL . 

This is the change in the drop's velocity during its motion from outside 
the magnetic field to the region of uniform magnetic field. An equal 
decrease in velocity results during the drop's motion from the uniform 
field region to a point outside the field, so that the total change in 
velocity of a drop moving across the field region is 

AV = -7r2a2aB2/40pL . 



4. PRESSURE AND DROP DEFORMATION 

Equation (2), together with the result for the Lorentz body force, 
gives 

3p 1 3B0 ( 9Br) \ 
— = - - oVr t IBn + r cos 6 T — 3r 2 az \ u 3z / 

The second term in the parentheses is much smaller than the first, and we 
will neglect it. We should note, however, that it is the second term 
that accounts for the drag force, because the first produces a symmetric 
force field with no net resultant. Therefore we are neglecting forces 
comparable to the drag force F^ when we neglect this term. The neglected 
term implies that p depends on 0, but because the electromagnetic or 
Lorentz body force is radial, it cannot balance the pressure force 
r - 1 3p/36, and Eq. (la) implies that V is not equal to the constant value 
of the drop's velocity. However, this unbalanced pressure force is also 
comparable to the drag force, and the deviations from the rigid body 
velocity are comparable to the AV just computed. If the change in the 
drop's velocity due to entering and leaving the field, namely AV, is 
much smaller than the drop's velocity V, then the motion in the drop 
relative to the drop's velocity, namely V', is also much smaller than 
the drop's velocity V. This justifies the assumption (made xn Sect. 1) 
that IV'I < V. 

Neglecting the second term inside the parentheses, we integrate the 
equation to obtain the pressure, 

1 8B0 

P = P0 " 4 o V r 2 Bo > 

where pg is the (unknown) pressure at r = 0. 

In the absence of any MHD effects, i.e., outside the field or in 
the uniform field region, the pressure in the drop is constant. If s is 
the surface tension force per unit length, then ira2p = 2iras, or d = s s 

13 
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as shown .schematically in Fig. 7(a). With mhiJ effects present, 
Lhe pressure is a function of radial distance from the diameter parallel 
Lu the field, as shown in Fig. 7(b). In the figure we introduce the 
Lerm pj [= p (r = a;]. Then pi • Po for CiB-J w.) 0 and p; -' p^ for 
(•,<!!r/jz) • 0. Becau.su locally the pressure is related to the surface 
tension through the surface curvature, r p s or r s/p. This relation-
ship Is shown in Fig. '6. Where the pressure is larger, the radius of 
curvaLure is smaller, and vice versa. For (;jBrj/;jz) 0, pi pr , and 
for (jBrj/oz) • 0, Pi -• p(J. The resulting deformations for these cases 
ai (; shown in Fig. . Because it is the difference in pressure which 
causes the deformation, a coefficient to estimate the deformation is the 

O R N L - D W G 7 9 - 2 0 1 3 F E D 

(O) s 

P. s 

yP (r= a) = P, 

B 

Fig. 7. (a) Constant pressure in the drop, no MHD effects present, 
(b) Pressure as a function of radial distance from the diameter parallel 
to the field, MHD effects present. 
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Fig. 8. Relation of pressure to surface tension. 
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a, 

0 

id) P1 > P 0 

0 
B. 

Fig. 9. Deiormation of the drop (c) when pi < Po and (b) when 
Pi > PO-
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ratio of the maximum pressure difference inside the drop, neglecting the 
deformation, to Lhe pressure in a drop due to surface tension alone, 

is, 

1 bhrj 

Lp = p(r = 0) - p(r = a) = - oVa2B0 — , 

so 

Ap aJ dBf-j 

This 
drop 
drop 

is a dimensionless coefficient that should reflect the degree of 
deformation. It should be much less than 1 to indicate negligible 
du format i.on. 



5. SIDEWARD DISPLACEMENT 

A nonuniform magnetic fielc! always implies curvature to the field 
lines. We can see this from -'iiTipere's law, which for R < 1 is r. 

7 ^ B = 0 . 

For B = B (y,z)j + B (y,z)k, i.e., a plane magnetic: field with no y w. z ** 
x component and no x dependence, this equation becomes 

L-B 
•-> v oZ 

Because 'cB /'-z ^ 0, R ^ 0- 'I'hu f i.eld line curvature is illustrated y z 
in Fig. 10. The effect of the magnetic field line curvature can be seen 
in Fig. 31- The characteris tic surfaces tilt with the field lines, and 
the force previously computed as r acts perpendicular to the charac-
teristic surfaces and field lines. This force has a component perpendi-

ORNL-DWG 79-2016 FED 

P L A N E OF S Y M M E T R Y (y = 0) 

F 
LI 

ELD 
N E S 

Fig. 10. Field line curvature. 
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C H A R A C T E R I S T I C 
S U R F A C E 

V 

Fig. 11. Effect of field line curvature on a drop. 

cuiar to the velocity as well as parallel to it. !f F is the F z 0 z 
computed before for li = 0, then 

F = F cos u ^ F 
Zq ZQ 

= F sin u F tan u F (B /B ) , z 0 z 0 z 0 z y 

assuming tliat ct is small. 
Since B^ = 0 at the plane of symmetry, taken here as the y 

plane, we can deLermine from 
= 0 

-y 3B 
(y,z) = / (y*,z) d y* . 

In the drop blanket of thickness T shown in Fig. 12, the largest effect 
will be felt by the drop at the edge of the drop blanket. If we note 
that SB /3z is the same as 3BQ/3Z, then we can estimate B at the edge y z 
of the blanket as 

1 3 B 

B = ^ T z 2 3z 
0 
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y = T / 2 y = 0 y = - T / 2 

o o o o o o 
1 O O O I o o o I 
1 O O O I O O O I 
l . l . l —: 1 i I i 

v V 

Fig. 12. Drop blanket of thickness T. 

As a typical B , we choose B^/2, where B^ is the field strength in the 
uniform field region. Therefore, 

where Ay is the displacement of a drop at the edge of the blanket away 
from the other drops and T is the time spent in the nonuniform field 
region. Because 

T = L/v , 

where L is the length of the nonuniform field region, as before, and 
expressions for m and F have been given, we obtain zo 

integration gives 

Ay = a2L2To / 20pVBu 



20 

As a drop enters the magnetic field, it will move away from the plane of 
symmetry by this displacement, and as it leaves the magnetic field, it 
returns to its original distance from the plane of symmetry. This is 
shown schematically in Fig. 13. 
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B O U N D A R I E S O F D R O P B L A N K E T 

TRAJECTORY 
OF DROP 

NONUNIFORM 
V FIELD 
REGION 

UNIFORM 
FIELD 
REGION 

NONUNIFORM 
y FIELD 
REGION 

Fig. 13. Displacement of a drop as it moves through a region of 
uniform magnetic field. 
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