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Abstract 

Nonlinear U(N) and 0(N) a-models are studied without 
imposing a constraint on the modulus of the field vector. 
Exact solutions in four-dimensional Minkowski space are 
presented, which have the form of plane resp. spherical 
waves. The singularities of the solutions as well as those 
of the Lagrangian density and the energy-momentum tensor are 
discussed. All results hold under the assumption/ that space-
time and internal symmetry of freedom are not mixed. 
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1. Introduction 

This paper contiaues a previous investigation [Mitter, Widder 
1979, referred to as [1 )) on classical solutions of nonlinear 
field theories with quartic self-coupling in the Lagrangian. 
The analysis of the previous paper (1), which dealt with one 
complex scalar field, shall be extended here to a multiplet 
of N complex fields, whereby the theory has the internal 
symmetry group l'(N). The special case of N real fields with 
U(N) symmetry is always contained. Thu quantum counterpart 
for N = 4 has been investigated In the past as a model for 
chiral symmetry {see e.g. Lee 1972J, whereby the four real 
fields are identified with the pion and a o-Meson, which has 
provided the nam--? for the model. More recently the Interest 
has shifted to classical solutions, which could eventually 
be of interest in connection with the confinement problem. 
In particular solutions of the instanton- resp. meron-type 
have been established and investigated for o-modeIs, whereby 
the real field nultlplet is required to form an unit vector 
in 0(N/-space I Da Alfaro, Fubinl, Furlan 1978]. In another 
Interesting class of models the field multiplet is required 
to fotm a complex unit vector iBichenherr 1978, D'Adda et. al. 
1978). We shall not impose such a constraint, but shall start, 
as in [1J, from simple symmetry requirements in coordinate 
space, which allow for relatively large classes of exact 
solutions. 
In some cases solutions with a constant value of the U(N) - or 
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O(N)- modulus of the field vector will be contained in these 
classes. For the coordinates we shall consider the four-
dimensional Minkowski space. We shall pay particular 
attention to the Lagranglan and *:he energy-momentum tensor 
as computed with these solutions. 

2. Field equations and physical quantities 

The field is described by a set of N complex functions 

<PK(x) k * V - W 
with arguments x w in Minkowski space. The J.agrangian density 
is 

where repeated latin indices have to be summed from 1 to N. 
The canonical formalism provides the field equation 

(2) Df f c - *<f*(?*?e) «0 

As a consequence of the invariance of L under U(N) rotations 
of the field we obtain continuity equations for the N 2 

vectors 

»> Mr = i C < » r t . - t , » p < ) 
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The canonical energy-momentum tensor Is 

Ko shall alto consider the Improved tensor |(Callan et al., 
1970J 

(4M V * ^-^{VV-cfU)^ 

which gives the same global generators of translations and 
Lorentz transformations. -Both T r and " fulfill 
continuity equations. 

Wo- shall write the field in the form 

(5) fk (x) * r<x)eK(x) 

where £h transform* as an unit vector under u(N) rotations 

Then M'* takes the form 

<7» M& - «?„"- i « - W V e , t f < ) 

• 
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The field equation becomes 

By simple manipulation we obtain two equations: one of them 
is again the continuity equation for H 

(8) »y M£e * o 
whereas the other one can be written in the form 

m Or-»r»--£*0 

where we have used the abbreviat ion 

The Lagrangian d e n s i t y becomes 

and the energy-momentum tensors read 

n>.) V". (Vr) (*) - i %f p>f){,\). £ , i r«J • 

* If l « ) < » \ ) • WW) 
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(12b) 

From the last formula one may easily check, that the 
trace of 0 vanishes, as it must be. In addition it is 
evident, that the two tensors are identical for all 
solutions with constant r. 

In order to find solutions of the continuity equation (8) 
we shall start from an ansatz for M of the form 

(ID M£e « i(f L„ 

with constant ] ^ « "^gu and 

(14) $ rqr sO 

This is the simplest 
possibility and means, that there is no mixing of space-
time- and internal symmetry degrees of freedom. For M 
we have 

(15) M2 « q q f A 2 

r 
with the constant 
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<"> A 1 - iL"„L M - fUL t t >o 

If we start from an appropriate ansatz for q fulfilling 
equ. (14), we can solve the problem in two steps: first 
we have to solve equ. (9) with (15) for r and then we have 
to determine e^ from equ» (7) and (13), viz. 

(i7) iiwtt-'t**:* £ u 
U V UV 

It is even possible to compute L, T and 0 without knowing 
e^. In order to demonstrate this we have to observe, that 
one may show by algebraic mainpulations of equ. (17) the 
relations 
L k H » «fcLwC* , L^L",., + L W k L * c = - 2 e K L h t L « M < 
With these we obtain form equ. (17) 

and all terms in L, T^' and $?* depend only on r and its 
derivatives. 

If we have N real fields (i.e. the 0(N) o-model)the 
corresponding formulae are obtained by omitting the factor 
i in equn. (3) , (7) and (13) and omitting the asterisk 
everywhere. Since the diagonal elements L^k vanish in this 
case, we have N(N-1)/2 instead of N 2 conserved quantities (3). 
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3. Plane waves 

Here we shall start from the simplest possible choice: we 
assume, that qf is proportional to a constant vector p/» 

2 
(whijl, is not light-like; the case p ,« 0 is considered in 
Section 6). In order to obtain plane wave solutions, we 
shall furthermore issume, that r depends on x only via p*xt 

cw, r(x) = R(r) , r./jjp^r, 1=Vp* 

From relations (17) , (18) we observe, that also 9y should 
depend only on V 

(20) c h a eA(r) 

Denoting the derivative with respect to x by a dot and 
choosing 

(2D qr = /T{\ pr 

we obtain from equ.(17) 

(22, R x ( C e e - * c c ; ) = l M 

which we shall use in section 5 to determine 6.y. The 
equation for R is obtained from (9) and reads 
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(23) R - £ R ' - A > R ' = 0 

where € is the sign of g. All solutions of this equation have 
been given in (1), section 3 (see formulae (I)-III)) in terms 
of Jacob!an elliptic functions. The only difference is the 
relation (1,21) between the constants appearing in the 
solutions and the initial values, which has to be replaced by 

,2«) D* -- 4Aa , C = f «C - R.' - % 

The physical densities take the form 

( 2 5 ) L - \ (R*-eC) 

«2«., T" * ~ t (P- P'- PV) R* - « C ( W - '̂P")] 

(26b) e r v * - l ^ | f ( 4 p f p v " p , , } r ) 

The results (25) and (26a) agree with the expressions given 
in 11,19J. Thus the positivity properties of T°° are the same 
as in HJ. In contrast© 0 0 is positive for C < 0, irrespective 
of the sign of ^ or p . The improved tensor 0 does not 
depend on the explicit form of the solution Rl 
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Now we shall briefly discuss the various solutions for R. 
The degenerate solution [l,32] 

-1 R - fP R Q (R oT4 ft) 

is obtained only icr 

t= +1 , C = A 2 * 0 

T turns out positive, but the improved tensor vanishes. 
The most reasonable solutions (if one wants to give a 
physical interpretation to plane waves at all) seem to be 

2 those of type III: since for them R is bounded, L is 
finite, 0°° is positive and the integrated quantities 
diverge only for an infinite volume. For the usual (negative) 
sign of A these solutions correspond to timelike p* . The 
solution with constant R is contained in this set, cf.[l,27j. 
For the opposite sign of p or X we have solutions of type I 
or II, which assume infinite values at infinitely many points. 
The improved tensor is obviously not affected by these 
singularities. In spite of the fact, that they are present 
in the first term of the Lagrangian (25), they are not 
interesting for the action: if we change 1. by a divergence 

L-H,' = L - £ D(^;<fJ 
we obtain 
J,' » -\e C/6 

independent of R» 
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4. Spherical waves 

For spherical waves the only relevant direction should be x. 
Then equ.(14) can only be satisfied, if we take 

qr ^ *r/xs 
2 The scalar r should depend only on x in order to obtain a 

spherical wave. I f we use the variables 11,35] 

(27) S« |A| |XrX/*| , T * £ n / ? , £ = *%& 43»X/»xr 

and write 

<28) r M a ^ R W , q r 3 £ 9 i ^ 

we see from equs. (17) , (18) 

(29) eK s C K ( T ) 

and obtain again equ.(22) for the determination of e k- The 

field equation for R becomes 

(30) F - R - |R 3 - A 2 / R 3 » 0 . 

This equation has been solved in M l , section 4 and the 

solutions are again of the types ( I ) - ( I I I ) of 111, 

section 3. Instead of M,40j we have now to use 
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(3D D 2 = 4 A 2 , C-= f RQ • R* - *2

0-A2/K2

0 

The physical densities read 

(33a) 

(J3b) 

T / .* 3 _L. [ (xrxv-xy9R*+6(2xrxv-xV,)(2R-2RR-c)] 

e*" » - — - Üx^xy-x*qr) 

Formulae (32) and (33a) agree with [1,39). As for plane 
waves we observe, t»at 6 is positive for any C < 0 
irrespective of the sign of \ or x . The total energy 
diverges logarithmically (as for meron solutions) due to 

-4 the x behaviour o' the energy-density. Since the field 
equation (2) is invariant under translations and conformal 
transformations (cf.[1,9], [1,10]), any transformed solution 
is a rolution as well. This fact can be used to shift the 
singularity. If we apply a translation by a constant vector 
~c r followed by a conformal transformation 11,9] with 
h* - -c^/2c , we obtain solutions of the form 

CM) 

where 

< (x) 3 ~ : j/l R(v) ccr) *pc\l 
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(35) X j s J I i C , t'* l n | ^ c » i i r 4 

The Langrangian density and the improved tensor read 

4X+ X_ 

<"» e'V)--g^(^arar-^) 
Here the argument of R is T' and we have 

(38) •/ • < (f)" * < (If 
Since 

it is obvious, that the singularities are now located at 

*c w. 

Finally we shall discuss the various possible solutions 
for R(T). It is evident, that there are no solutions 
with r «= const, fulfilling our basic ansatz (28). This 
is evident already from equ. (9), since constant r 
implies constant M , which cannot be fulfilled with q front 
equ. (28). 
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The d e g e n e r a t e s o l u t i o n [ 1 , 55 J 

ai 

* A2 

with csjtistant a is obtained only for/V = C = O and corresponds 
,i vanishing improved tensor. For the remaining set of 

:u>ilit ions vie have »o observe that we cannot restrict the 
Hi:•\-uRsion to solutions with bounded R here. If we start 
with oiven valuer Cor the parameters^. , A and C, the two 
forcible values of the sign £ correspond to spacelike resp. 

2 timelike regions o. x' and we have to consider the solutions 
in both domains. Thus, if we take e.g. C < O (so that 0 
i r. positive) and choose the values of C and A appropriately 
(cf.I 1,44 1), R is of type (III) and therefore bounded for 
£ - -1 (i.e. sparelike x for the usual negative sign of X ) , 
but the corresponding solution in the other sector g = +1 
(i.e. timelike x") is of type (H) or (1) end diverges for 
infinitely many values of T . The simplest example for this 
fact: (which is hard to discover in euclidean x-space) is the 
solution witli constant R, which is contained in type (III) 
both for A 2 / 0 (cF.11,47)) and A? = 0 (cf.|1,56)) and 
corresponds to £ ~ -1. For £ - +1 the corresponding solution 
is |1,4f.| which contains the cotangent and dJreplays the 
infinities an mentioned above. The precise nature of the 
singularity at thr light; cone might differ from the one 
obtained by our formulae by distributions concentrated at 

2 x" - 0, since we hive not paid attention to these terms 
when differentiating s. 

file://�/-uRsion
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As for plane waves the other singularities of the solutions 
of type (I) or (II) do not affect the action. Changing again 
L by a divergence 

we arrive at 

1/ = - eC/(6Ax4) 

if we take s r 

The last term could be expressed in terms of elliptic 
2 integrals with R in the argument, so that G can be given 

as an explicit function of ̂ k»if necessary. 

5. Determination of e. for plane and spherical waves 

Both for plane and spherical waves we have to determine e. 
from 

(39) C C e* " ~ CK eK s LHh/l.Rx 

By elementary steps we obtain a linear system of first 
order equations, which reads in matrix notation 
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(40) ire - K.e 

with 

I T 1 K - -K = L - j Sj»L 

In the complex case the solution is obtained by standard 
methods. The components of e are linear combinations of 
exponentials 

t 
.•sp ik, / dx 

1 ° R2(X) 

where ik, are the eigenvalues of K and the coefficients 
are determined up to some phase factors from 

oie - 1, F2c+e* = SpK, R 4e +e = A 2 = j Sp K +K + | SpK SpK+ 

In this fashion v/c obtain e.g. for N=1 the result of [1,181 
T 

,,n) <> = e 1 0 0 - 0 = 1 / -I*-- ,1 = - if /2 

Kor N--2 the matrix K ia traceless and the eigenvalues turn 
out to be 

kj - -k 2 - A 

Wo shall neither write down the coefficients of the exponentials 
in this case nor consider higher values of N, since the 
results are not. of particular interest. Instead we shall 
consider the real case (O(N) model). Then the matrix L is 
real and antisymmetric and it is better to solve the equations 
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(39) directly by representing the components of the real 
unit vector e in terms of appropriate angular variables. 
These are easy to understand, if we construct a mechanical 
analog by interpreting P as radial coordinate of a moving 
point in N-dimensional space and T as the time. Than 
C is a multiple of the energy and L. . are related to the 
angular momenta (The "real-field" solutions of ref. [11 
correspond to zero angular momenta). We shall consider 
the lowest few values of N. 

For 0(2) we have 

e 1 = cos 0, e_ = sin 0 

and obtain for 0 the same result as in the U(1) case. 
For 0(3) we have three constants, which form an axial 
vector under rotations 

(42) tt = (L 2 3, L 3 1 f L 1 2 ) , A 2 = t 2 

With the unit vector 

(43) n = ( Q ^ 2 ^ 3 ) « (sin0cos0, sinOsln0,cosß) 

the equation for n reads 

-*••*• 1 -t 
(44) n x n = — r l 

IT 
By a rotation we can always obtain 
L = (0,0,1) 
so that the orbital plane of the mechanical analog is 
the 12-plane. Then we have 



17 

1 (45) 0 O, 0 - ~, 0 = 
R2 

with 1 lie same solution as for N *= 2. 
Tor N = 4 the six constants can be combined into two 
7-vectors 
(46) L - (l.2z,u2y,\^2), F - ( L 1 4 , L 2 4 , L 3 4 ) , A 2 = L 2 + t'2 

(like in the Keller problem, where F is the Lenz vector). 
Writing 

(47) (e1,t;/,e3) = n sinx » e 4 = cos X 
with the same unit vector as for N=3, we have 

i -• > • ' ? 1 -*• -*•• \ 
(48) — L ~ (n x n ) s i n x» —^ F = -nx~n s inxcosx 

W' VT 
and wo i n f e r , ti a t 

(49) L.F = O 

By rotation we c an always arrange for the choice 

L - (o,o, 1) , F = (f,0,0). 

Then we obtain «gain 

(r.o) 0« O, ü - n/2 
The remaining equations for 0,x can be readily solved. After 
some elementary steps we obtain 

1 1 dx tan0 - lal/ - * 5 — • arc tan (a tan 6_) I 
(51) °"<*> 

t a n X ' — - , a 2 = 1 + < f / l ) 2 

f s inx 

For higher values of N one may proceed in similar fashion. 
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6. Lightlike plane waves 

The field equation (2) does not allow for plane wave solutions 
(19), (20) with lightlike p** . We shall now show, that there 
are plane wave solutions with licihtlike propaoation character, 
if we allow for propagation in opposite directions. Let p/* 

2 be a fixed, lightlike vector (p = 0 ) . We introduce a tetrad 

»21 P'-- P'*r - f <"/"), «'-- £<V«), ef * (o, e;) i-i, 

where e.r»n» are three orthogonal unit vectors in 3-space. 
For the tetrad vectors we have then 

(53) n% r|lr ne; 2^*0 , ™ = 1, e^-*-£-

Any vector a^ can then be represented by its lightlike 
components 

(54) a/* * vraH +Y\I'QV • 2. tf&i 
»«1 

We shall reserve the special notation 

,55) XfS'n-XsM,, X H»H'l(sV 

for the coordinate vector. 
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For J pi.me wave of Lhe type mentioned above the only essential 
Ijrtctioi.s should be n and n. Therefore we shall require 

and 

(57) f - r(*,v) ( \^t%(*,v) 

iho fiold equations (9) resp. (14) amount to 

l ^ \ t - Ar3- ^ M ? s 0 r» 
(c,y) 

Wc sh . i l l be Lnterert »d only in a s e p a r a b l e s o l u t i o n , for 

which 

(fVJ) r(*,v) : i;n(*) RiO) 

The field equation for r is separable, if the last term is a 
multiple of the secoiid trtm. Therefore we put 

(CO) 1.1» = -k(R1Ri.y' 

wi th d c o n s t a n t k. The s o l u t i o n becomes 

»-&••&#,%& *i&*#**i* tgfgf^^^g^^^ggg^^ 
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(61) R«, s [ZKCa*u,)]"% , ^^[iK'Cl^v)]* 3 4 

where a,b are related to the initial values, K is the 
separation constant and 

(62) 2KK' * /1-ZfeA* 

The continuity equation for q r i s solved by 

v-2 
(63) («U/^v) z— - ( M X V A ) ) (v+b,-(u*a)) 

where 

(64) X,* V^-XfeA*/ * NKK'/ 

The constants have to be chosen in such a way, that q , q v 

and r are real. This leads to the restrictions 

m > i iMA* 

The last condition shows, that we have a solution only in 
two opposite quadrantc of the (u,v) plane, which have only 
the point u + a « v+h ~ 0 in common. The solution r is 
singular at. this point and at the boundaries of the 
quadrants. 
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The i-hypicvil d e n s i t i e s read 

(f'6J L ^ (*a- ju i 1 ) FC*/*) 

u, 7 ) r ' v = - A F(H.V) [*/• «* + <frti y - ( 3 - M ) Z e f c? 

x 

!..«) 0»" = £ I* "feJU1) F M l'*"""y *•n'"^ + ̂ 7 t ; l ' ? ' ' " 

vnicrp 

Tin» positivity properties can be read off directly. For A < 0 

both 0°° and the generator density iPohrlich 1971] 

( 7 ( » ) e^ = *>% 0 / r t 

of u-dißplar;pinei)t.s can be made p o s i t i v e by an appropr ia te 

c h o i r e of k. Vor \ > O t h i s remains t r u e for 0 , but not 

always for b> 

Tho uni t v e c t o r s c. can be determined i n a s i m i l a r fash ion as 
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in section 5. The only difference is, that we obtain now 
two partial differential equations instead of one. In 
the complex case we have now instead of equ. (40) 

(71) r 2P ue = q uK.e, r ^ e - qyK.e 

with the same matrix K as before (correspondingly for 
the real case). For the U(1) or 0(2) model the solution 
is again of the form (41) with 

(72) rf - 0 » |i 1„ (Sig) 

For higher N we obtain linear combinations of exponentials 
with arguments of similar structure. As a result the 
components of e exhibit infinitely rapid oscillations at 
the singular lines u+a=0 resp. v ^ - G. 

The solutions obtained here can be slightly generalized, 
if one assumes, that the last term in the field equation 
(58) for r is a linear combination of the first and the 
second term. Then one has two constants instead of k. The 
basic fact, that there is a solution only in the two opposite 
quadrants of the u, v-plane is, however, not changed. 

Finally it has to be observed, that there arc also 
solutions with constant r and lightlike propagation character. 
If r is constant, we must have 

«»> %% - - xi 
The simplest solutions of the second equation ir)8) are ob­
tained for constant q and q , i.e. 

/•m „ . , 3 , «A, 1/2 ^ ,3 f A .1/2 
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with constant a. The sign of a has to be chosen opposite 
of tY 
read 
of that of X to render q , q real. The physical quantities 

(75) 
L = - Xr4/4 

2 
4 it,! 1 

The equations (71) for e. can be solved as indicated above. 
For the U(1) - or 0(2) model the phase reads 

(76) «4 = r (- ip)1/2lu+a+(v+b)/a] 
Another solution for q , q y is obtained by replacingi% by 
-(v+b)/u+a in the expressions (74)and (75), whereby the 
sign of this ratio has to be chosen equal to that 
of A. It turrs out, however, that the equations for e 
have no solutions in this case (except for vanishing 
eigenvalues Y^). 

All solutions obtained in this section can be *~* '*' 
understood also as solutions of the model 1+1 dimensions. 
In this case one takes the unit vector m parallel to the 
z-direction find interprets u= (x°-z)/5"and v = (x°+z)/7 
as transformed coordinates. 

7. Conclusior 

Exact solutions tfk of the field equations of the (unconstrained) 
U(N)-and 0(N)-a-roodel have been obtained, which correspond 
to plane and spherical waves. For plane waves the constant 
vector p^ orthogonal to the wave fronts may be timelike, 
spacelike or lightlike. In the first two cases the 
solutions (which depend only on one variable p.x) may contain 
singularities. The Lagrangian and the energy-momentum-tensor 
can be made finite by subtracting appropriate derivative 
terms (which do not affect global quantities). Tho integrated 
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densities diverge for an infinite volume. For light-like waves 
the solutions depend on two variables corresponding to 
propagation in opposite directions. The solutions and the 
densities may contain singularities. These solutions may 
be understood also as solutions to the model in 1+1 dimensions. 
For spherical waves the solutions (except in some degenerate 
case) have meron-like singularities at the light cone and 
infinitely many additional singularities, located either inside 
or outside of the light cone, dejending on the sign of the 
coupling constant. The latter sdigularities, which are perhaps 
not expected from analysis in tÄclideün x-space, can be made 
to disappear in the Lagrangian and che energy-moir.ontum tensor 
by adding derivative terms, so thot these densitier contain only the 
meron-like singularity. For tho energy-momentum tensor this 
amounts to using the improved tvTnsoi: found in another context 
ICallan et al., 19701 both for plane and spherical waves. 
The tensor has the structure postulated from general requirements 
in,^Vils context [Butera et al. 1979I. 

All solutions found in this paper are based on a 
fundamental ansatz (13), which expresses the postulate, that 
internal symmetry and space-time structures are not mixed. If 
this is assumed, the Internal symmetry group affects the 

2 physical densities only via a constant A . Solution with 
constant U(N)- or 0(N)-modulus of the field are then only 
possible for plane, but not for spherical waves. 
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