AT20P.800 7

UNI Graz-UTP 12/79
Septenmber 1927¢

Classical Solutiocns of Nonlinear g-Models

by

o st gl v A s

H., Mitter and F. Widder
Institut fi{izr Theoretische Physik

Universitdt Graz

Abstract

Nonlirear U(N) and O(N) o-models are studied without
imposing a cocnstraint on the mcdulus of the field vector.
Exact solutions in four-dimensional Minkowski space are ;
| ' presented, which have the form of plane resp. spherical
waves. The singularities of the solutions as well as those
of the Lagrangian density and the energy-momentum tensor are
discussed., All results hold under the assumption, that space-
time and internal symmetry c¢f freedom are not mixed.
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1. Introduction

This paper continues a previous investigation [Hitter, Widder
1979, referred to as [1]] on classical solutions of nonlinear
field theories with quartic self-coupling in the Lagrangian.
The analysis of the previous paper [1], which dealt with one
complex scalar field, shall be extended here to a multiplet
of N complex fields, whereby the theory has the internal
symmetry group U(N). The special case of N real fields with
0(N) symmetry is always contained. The quantum counterpart
for N = 4 has been investigated in the past as a model for
chiral symmetry (see e.g. Lee 1972], whereby the four real
fields are identified with the pion and a o-Meson, which has
provided the narm2 for the model. More recently the interest
has shifted to classical solutions, which could eventually
be of interest in connection with the confinement problem.

In particular sclutions of the instanton- resp. meron-type

l.ave been established and investigated for o-models, whereby

the real field multiplet is regquired to form an unit vector
in O(N,-space [I'2 Alfaro, Fubini, Furlan 1978]. In another

interesting class of models the field multiplet is regquired

to form a complex unit vector |Eichenherr 1978, D'Adda et. al,

1978). we shall not impose such a constraint, but shall start,

as in [1}, from simple symmetry requirements in coordinate
space, which allow for relatively large classes of exact
solutions,

In some cases solutions with a constant value of the U(N) - or

cr e
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O(N)- modulus of the field vector will be contained in these
classes. For the coordinates we shall consider the four-
dimensional Minkowski space. We shall pay particular
attention to the Lagrangian and *he energy-momentum tensor

as computed with these solutions.

2. Field equations and physical quantities

The field is described by a set of N complex functions

¢, (x) h=1---N

with arguments xV in Minkowski space. The l.agrangian density

is
A » 2 » 8
m L= 3_["1’. %G, + -;_(‘fu%)]
where repeated latin indices have to be summed from 1 to N.

The canonical formalism provides the field equation

(2) Og, - 29, (9:9) =0

As a conseguence of the invariance of L under U(N) rotations
of the field we obtain continuity equations for the N2

vectors

. »
m ML= L (anorq, - 1, 20,)
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The canonical energy-momentum tensor is
wa TH = $[9 Vg, « Vg7 rg] -qrL

We shall also consider the improved tensor | (Callan et al.,

1970}
wpy OF = TH - '2"(3’.2"']"'3) ‘l’:?u

which gives the same global generators of translations and
A 4
Lorentz transfcrmations. -Both T*’ and o” fulfill

continuity equations.

¥ie shall write the field in the form

(5) ¢, (X) = r(x) e, (x)

where Ch transformr as an unit vector under y(N) rotations
»
rar®, e e,=1, € dle, + e =p
6) exOley +6 Dey = -2 (*¢') (anes)

Then M® takes the form

m Mhe = ML = trife e, - ¢, "))




et al.,

ns and

rotations

The field egquation becomes
e, (Or-2¢%) +2 (Wr)(dee,) + rOe =0

By simple manipulation we obtain two equations: one of them

is again the continuity equation for M

® ML =0

whereas the other one can be written in the form
s ™

(9) Or Ar’ - pr =0

where we have used the abbreviation

ao M = r (3,,8:)(‘0&.) = %";,uc H’,:t - %ﬂ;,uu mr

The Lagrangian density becomes

1
(11) = —[('0,-r)(3rr) + T Arh, ':..J

and the energy-momentum tensors reac

a2 TH=(2M)(0%7) =4 9P far)()+ 2 +—r]

+ -'5'_' [(b"t.'.' )(@%,) + (3"2:)(af‘e.)]




ek
"l

ek s

foe

i I a T TR '

- 3
[, S RN

My

TR ’t"
e M

. &P

e

- < v - aTo P
Lot - A,

sty i

RS
)

A T
Vi ;

U

7e.

é;
¥

L S

—rnar

O I T ¥ XY PRE ST

orY - i— (o)) -—-;- rofd'r - %Q" [(D;r)(fr) +

(12b)

+rO-32r] + C[0rE)(0%,) + (00) (W)

From the last formula one may easily check, that the
trace of 0 vanishes, as it must be, In addition it is
evident, that the two tensors are identical for all

solutions with constant r.

In order to find solutions of the continuity equation (8)

we shall start from an ansatz for M of the form

(13 M';Q, =2 iq" th

»
with constant lht = ’Lth and

(14) ’b’. ql =0

This is the sinplest

possibility and means, that there 18 no mixing of space-

time- and internal symmetry degrees of freedom. For M2

we have

(15) M2 = qr q"./\,2

with the const.ant




| (16) .A.i = = L'ul-lu‘ %L:l. Lu 20

( 2

If we start from an appropriate ansatz for qu fulfilling
equ. (14), we can solve the problem in two steps: first
we have to solve equ. (9) with (15) for r and then we have

to determine ey from equ. (7) and (13), viz.

» » qr
(17 & brcc - ecarck = -':Lu

It is even possible to compute L, ™Y and 0%Y without knowing
ey . In order to demonstrate this we have to ohserve, that

one may show by algebraic mainpulations of equ. (17) the
relations

v ¢ 4
th = Ctht C: , LHCLN! + LﬁhLCL = “Zl'h Lll(l'hse'n

With these we obtain form equ. (17)
’ rl{(v ') 'av v_ ¥ 3" ql‘q' 1
(g 7 LOTG)Ie) + (e, ) ¢u\] = —;;A

and all terms in L, TP and @F" depend only on r and its
derivatives.

I1f we have N real fields (l.e. the O(N) o-model)the
corresponding formulae are obtained by omitting the factor
1 in equs. (3), (7) and (13) and omitting the asterisk
everywhere. Since the diagonal elements L, vanish in this

case, we have N(N-1)/2 instead of N2 conserved quantities (3).




3. Plane waves

Here we shall start from the simplest possible choice: we
assume, that qf 1s proportional to a constant vector pp
(whizh is not light-like; the case pz,- 0 is considered in
Section 6). 1n order to obtain plane wave solutions, we

shall furthermore 1ssume, that r depends on x only via p-x:

a9y rx)=RE@ , 7= yﬁa?r’,.x(‘, g:’/Ps

From relations (17), (18) we observe, that also 'k should

depend only on T

200 €, =€ ()

Denoting the derivative with respect to v by a dot and

choosing

an gl = Yigl pr
we obtain from equ.(17)
1 * . '
(22) R (eh C¢ - ec e:) = LhC

which we shall use in section 5 to determine ek. The

equation for R is »btained from (9) and reads

e —n
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@y R= ER- A‘/R’ =0

where € 1s the sign of g. All solutions of this equation have
been given in [1), section 3 (see formulae (1)-1I1)) in terms
of Jacobian elliptic functions. The only difference is the
relation {1,21]) between the constants appearing in the

solutions and the initial values, which has to be replaced by
2 1 - _‘.' b - 23 - A‘
(24) D = llA p C= 2 Rg Ro /R:'

The physical densities take the form

259 L = —2_— (R'-€C)
26y 1M = ',?‘;; [ Cprp*-p*ar)R® -~ £C(2prp"- 4™ P))
a8 = - [5| ¢ (erer-par)

The results (25) and (26a) agree with the expressions given

in [1,19]). Thus the positivity properties of 1°° are the same
as in [1). In contrast 8°° is positive for C < d, irrespective
of the sign of A or pz. The improved tensor 9'" does not

depend on the explicit form of the solution RI
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Now we shall briefly discuss the various solutions for R.

The degenerate solution [1,32]

R = J2' R (R,T+ !

is obtained only fcr

1°° turns out positive, but the improved tensor vanishes.

The most reasonable solutions (if one wants to give a
physical interpretation to plane waves at all) seem to be
those of ctype 11I: since for them Rz is bounded, L is

finite, 0°° is positive and the integrated quantities

diverge only for an infinite volume. For the usual (negative)
sign of X these solutions correspond to timelike p* . The
solution with constant R is contained in this set, cf.[1,27].
For the opposite sign of pz or A we have solutions of type 1
or 11, which assume infinite values at infinitely many points.
The improved tensor is cbviously not affected by these
singularities. 1In spite of the fact, that they are present

in the first term of the Laygrangian (25), they are not

interesting for the action: if we change 1. by a divergence

Lot = L= 40090,

we obtain

1) = -XeC/6

independent of R,




negative)
. The
t.[1,27).
f type 1
ny points.
'se

resent

ot

1o

4. Spherical waves

For gpherical waves the only relevant direction should be x.

Then equ. (14) can only be satisfiéd, 1f we take

(o
qr ~ x/x"
The scalar r should depend only on x2 in order to obtain a

spherical wave. 1f we use the variables [1,35]

21y s=1al |X’.XI‘I P T:Euf;, gzo?n) agm XX
and write
A Xk
Xx) = — R(7 r —_—
28) r(x) = (t), ql'=en <
we see from equs. (17), (18)
(29) ¢, = ¢, (T)

and obtain again equ. (22) for the determination of €, - The

field equation for R becomes

(30) R-R-¢RO-A2/R3I=0 .

This equation has been solved in (1), section 4 and the
solutions are again of the types (I)~-(I1I) of [1],

section 3. Instead of [1,40) we have now to use
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(31) 0% = ap?, ¢ - %R; s Rg - R(Z) -Az/ag )

The physical densities read

g L= = [RY +£(2R*- 2RR ()]

22 x4
(33) 17 v=2;x‘ [ rx?-xtqr IR+ (2ra™ x'qr) (2R™-2RR-C)]
C
iy O = = ———— (RxrxY- x2qrY
CIAL ixpxt)? ( 9*)

Formulae (32) and (33a) agree with [1,39). As for plane
waves we observe, taat 0°° is positive for any C < O
irrespective of the sign of ) or x2. The total energy
diverges logarithmi-:ally (as for meron solutions) due to

the x"‘ behaviour o7 the energy-density. Since the field
eguation (2) is invariant under translations and conformal
transformations (cf.[1,9}, [1,10]), any transformed solution
is a solution as well, This fact can be used to shift the
singularity. If we apply a tramnslation by a constant vector
-c” followed by a conformal transformation [1,9) with

L~ = -—c"/2c2, we obtain solutions of the form

4et
AXpX?

Y,
(14) (an ) = ' ‘ " R@) €(@) mnctiy

where

D he

N e e e e e == e
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(35) X, = X*C zﬂlnc}

| The Langrangian density and the improved tensor read

(36) L(9)= [(R" eC)al + R (o, +a*)- ‘)_RRaa]

kK-0)]
2cC
32x) x!

an 0%(g) = - (4ata’ ‘Jrva‘)

Here the argument of R is t' and we have

; x2 Y »
(38) Qy = x* (..t.-) * X,

sV,

* s,

0 4
d f
al E Since g
' L ! 2 1 ?
ution | a, = 4x ; Q. =4c* , a;a_ = 4cx
j 4
he i :
g it is obvious, that the singularities are now located at :
ctor i #
|
|

Finally we shall discuss the various possible solutions

AR a8

for R(T). 1t is evident, that there are no soiutions

S R I

with r = const., fulfilling our bhasic ansatz (28). This
is evident already from equ. (9), since constant r 5

implies constant Mz, which cannot be fulfilled with qu from i

equ. (28).

—am———— R e
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Th.e degonerate solation [1,55])

a

r= 5
a T
1- & Ax

wiih constant a is obtained only for/\2 = C = 0 and corresponds

2

a vanishing imp -oved tensor. For the remaining set of
solutions we have rto observe that we cannot restrict the
dircussion to solutions with bounded R here. 1f we start
withh given values {or the parnmeters;ﬁ?, \ and C, the two
possible values of the siyn g correspond to spacelike resp.
time:like regions o, x2 and we have to consider the solutions
in both domains. Thus, if we take e.qg. C € 0 (so that o °°
is positive) and chouose the values of C and A’ appropriately
(cf£.11,441), R is of type (IT1) and therefore bounded for
€~ -1 (i.e. spacelike x2 for the usual negative sign of )),
Imt the corresponding solution in the other sector g = +1
(i.e. timelike xz) is of type (H) or (1) end diverges for
infinitely many values of T . The simplest example for this
fact (which is hard to discover in euclidean x-space) is the
solution with constant R, which is contained in type (III)
hoth for A2 7 0 (¢F.11,47)) and N = 0 (cf.11,56)) and
corresponds to £ = -1, For £ = +1 the corresponding solution
is 11,461 which contains the cotangent and displays the
infiniries as mentioned above. The precise nature of the
sinqularity at the light cone might dif fer from the one
obtained by our formulae by distributions concentrated at

xz = 0, since we have nol pald attention to these terms

when differentiating s,

PSR . .
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As for plane waves the other singularities of the solutions
of type (I) or (I1) do not affect the action. Changing again
I, by a divergence

’ 1 .
L+ L' = L - a)r[ar(v_q.)_qrc]

we arrive at

L' = - ec/(6ax?)

if we take P, o
G= sq’q, - jq:q.cls = K’-ZIR'dt

The last term could be expressed in terms of elliptic
integrals with R2 in the argument, so that G can be given

as an explicit function of ,k,if necessary.

5. Determination of e, for plane and spherical waves

Both for plane and spherical waves we have to determine e,

from
R1. (e: é‘ bad C¢ é.:) = Lh(-
" 5 %
(39) ¢, &, =~6 ¢ = L“"/LR‘

é:Léu = -AC)/Rf

By elementary steps we obtain a linear system of first
order equations, which reads in matrix notation
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In the complex cas: the solution is obtained by standard
methods. The components of e are linear combinations of

oxponentials

1
/ dx

o k% (x)

£8P ikl

where jk, are the cingenvalues of K and the coefficients

are determined up to some phase factors from

.'

ole =1, rfe’é = spk, r%Té = 4% = 1 sp k'k + § spr spi’

N -

In this fashion we¢ obtain e.g. for N=1 the result of [1,18]
T

=17 —{?L-- R LW
o R7(x)

ig

(a1) 7y = e

- B,

For N2 the matrix K 15 traceless and the eigenvalues turn

out to be

we shall neithex write down the coefficients of the exponentials
in this case nor coasider higher values of N, since the

results are not of particular interest., Instead we shall
consider the real case (O(N) model). Then Lhe matrix L is

real and antisymmetric and it is better to solve the equations
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(39) directly by representing the components of the real
unit vector e in terms of appropriate angular variables.
These are easy to understand, if we construct a mechanical
analog by interpreting R as radial coordinate of a moving
point in N-dimensional space and 1 as the time. Then

C is a multiple of the energy and Lkl are related to the
angular momenta (The "real-field"” solutions of ref. [1]
correspond to zero angular momenta). We shall consider
the lowest few values of N.

For ©(2) we have

e, = cos @, e, = sin ¢

and obtain for @ the same result as in the U(1) case.
For D(3) we have three constants, which form an axial
vector under rotations

- 2 _ 2
(42) 1:= (Lyys Lygs L A =1

12)'
with the unit vector

(43) n = (qe,e;) = (sinfcosd, B8indsing,cosf)
the equation for n reads

(44)Ex3='—2f,

x

By a rotation we can always obtain
L = (0,0,1)

so that the orbital plane of the mechanical analog is
the 12-plane. Then we have
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(45) 60, @ =%, ¢ =

R Pl Ses ol azgzﬁgm«fpmwj et

é with the same solution as for N = 2,

: For N = 4 the six constants can be combined into two

£

¥ 3-vectors

;

s’ > - 2 22 ‘2
i (46) 1 = (Lo, Lyp)s F oo Lyl byg), AS = 1% 4 F
€ i N

4

&

i (like in the Kep.ler problem, where ¥ is the Lenz vector).
%

¥

Writing

i

(47) (01,g3,e3) =n siny,e 4 = cos X

with the same unit vector as for N=3, we have

v . s .3
H £48) 17 L= (nx ﬁ)sinzx, 17 F = ~ﬁx~n sinycosy
4 R™ R”
% and we inferx, tiat
-y >
(49) L.F = 0
1 By rotation we can always arrange for the choice
L = (0,0,1), F= (£,0,0).

Then we obtain again

(50} 0= 0, 0 = 1/2

The remaining ecuations for ¢,i can be readily solved. After

some ¢lementary steps we obtain
1

tang - % lalf ~2%— 4+ arc tan (a tan 8,)]
(51) 0 RY(x)
tang = ——t——, & = 14(£/1)2
f siny

For higher valurs of N one may proceed in similar fashion.




N d
e

18

6. Lightlike plane waves

The field equation (2) does not allow for plane wave solutions
(19), (20) with lightlike p™ . we shall now show, that there
are plane wave solutions with liahtlike propacation character,

18] :
. if we allow for propagation in opposite directions. Let p/

be a fixed, lightlike vector (p2 = 0). We introduce a tetraad

E X

‘ctor) . Py P - A - . ’
{52) P’: P nl = -{%(411"), ﬂ”: f.i—z.(""m)’ e!‘: (0’ e‘-) s:4,2

where 3iﬁ5 are three orthooonal unit vecters in 3-space.

For the tetrad vectors we have then

A A A
(53 mM=Nn'z me; =Me¢ =0 , nn=1, e;.cﬁ-g‘,a.

Any vector af can then be represented by its lightlike

components

y )
A
sey alf =mfa, +nra, + 7 ela;

#
T‘
Y]
2
7
i

We shall reserve the special notation

Ved. After . A
(55) X.pz NXx=u, X, ,s>nX

f
<

for the coordinate vector.

fashion.

. )
R R T R IR TR A 15 5V ST T ———
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For o piane wave of the type mentioned above the only essential

directicns should Le n and n. Therefore we shall require

. A
oy Q= nfg + mrq, = ql(w,v)

and

%,
-~

A o d
-
te

r(“’lv) / Cu = e‘ (u, v)

“ive field equations (9) resp. (14) amount to

: kS
20,9, r - Ar® - ?'-f——‘i‘;'ﬂ! =0
r

9'\1 é‘w + ")u “17 =0

We shall be interert:d only in a separable solution, for

which

oy () = By () Ryu(v)

The ficld equation for r is separable, if the last term is a

mnltiple of thce second tertm. Therefore we put

(60) 4.9 = -k (R1RL)‘,

with a vonstant k., The solution becomes

e o A e o . . bl 7 . < -4 ooy WA
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6o Rys [2KG@r)] T Ry = [2k(ban)] %

where a,b are related to the initial values, K is the

separation constant and
/ 2
(62) 1KK = R"Zh_A_
The continuity equation for g is solved by

o’
4(A-1kAN")

(63) (qu/%) = ((m-a)(vﬂ:)).z (17+'b, -(wm))

where
( 2k )"Iz (h )‘/z
(64) ’)(v 2 ﬂ—?.hA.‘ - KKI

The constants have to be chosen in such a way, that 9,7 9,

and r are real. This leads to the restrictions
1Al > 2kl A

(65)

ym A = R = Mgn(u,ra-)('v.yb)

The last condition shows, that we have a solutio; only in
two opposite quadrante of the (u,v) plane, which have only
the point u + a = v+d = 0 in common. The solution r is
singular at this point and at the houndaries of the

quadrants.,

)
!

o minn -
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The physical densities read

ves L= (3R- 8hAY) F(wv)

1

- A g/
wn 1T =-2 F(H,V) [nl‘ n s’ - (3- —5\-—-) 2 C;PC:

1 97 ]

- [ V’l’-l'b nr"v "nl"d]
tnfn wia - inin v+d

2
wey M = '—(’J\ 2kA*) Fwv) [‘nf"ﬁ" srn’ 2 2 ere-

(1]

A u+a
-~ 2nr’ -"i-:-% ~2mrnY =2

wvhiere

oy F9) = [i@-mA) o)) = L [RIRG]

The positivity properties can be read off directly. For A<o

both 0°° and the gererator denmsity [Rohrlich 1971]

N ,‘v
(7¢2) Owu = 'T\r’nv 6

of uw~displacements can be made positive Ly an appropriate
choice of k. For X » O this remains true for G)uv, but not

(ole}
always for © .

The unit vectors ¢, can be determined in a similar fashion as
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riate

ut not
"ashion as

- i il L

in section 5. The only difference is, that we obtain now

two partial differential equations instead of one. In

the complex case we have now instead of equ. (40)

2 2
(711) r Jue = q K.e, r°d,e = g K.e

with the same matrix K as before (correspondingly for
the real case). For the U(1) or 0(2) model the solution
is again of the form (41) with

(712) ¢ - ¢ = %1 1n (%{%)

For higher N we obtain linear combinations of exponentials
with arguments of similar structure. As a result the
components of e exhibit infinitely rapid oscillations at
the singular lines u+a=0 resp. vib = G.

The solutions obtained here can be slightly generalired,
if one assumes, that the last term in the field oquation
(58) for r is a linear combination of the first and the
second term. Then one has two constants instead of k. The
bagic fact, that there is a solution only in the two opposite

quadrants of the u, v-plane is, however, not changed.

Finally it has to be observed, that there are also
solutions with constant r and lightlike propagaticn character.
Jf r is constant, we must have

2

(73) a,4, 24

The simplest solutions of the second equation (58) are ob-
tained for constant 9, and 9, i.e.

_ .3 . _ax, 1/2 R DD S V7
UM bt AT VL S v &
- . e
—————— ————— ’
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with constant o. The sign of a has to be chosen opposite
of that of X to render q,r 9, real. The physical quantities
read
L=~ Ar4/4
(75)
“V.AB_V v 2%u’v

2
= - % r‘[nun +n'n +2 } eze:-zanun -=n"n’]
=1 *

The equations (71) for e, can ke solved as indicated above.
For the U(1} - or 0(2) model the phase reads

LY

(76) ¢ = ¢ (- %ﬁ)1/2(u+a+(v+b)/a1

Another colution for q,, q, is obtained by replacinga by
-(v+b)/u+a ir. the expressions (74)and (75), whereby the
sign of this ratjio has to be chosen equal to that

of A. It turrs out, however, that the equations for e
have no solutions in this case (except for vanishing
eigenvaluves *1"

All solutions obtained in this section can be e~
understood also as solutions of the model 1+1 dimensions.
In this case one takes the unit vector m paréllel to the
z~direction and 1n£erprets u= (x?—z)/f'and v = (x%+2)/7
as transformed coordinates.

7. Conclusiorn

Exact soluticns qk of the field equations of the (unconstrained)
U(N)-and O(N)-o~model have been obtained, which correspond

to plane and spherical waves. For plane waves the constant
vector p" orthogonal to the wave fronts may be timelike,
spacelike or lightlike., In the first two cases the

solutions (which depend only on one variable p.x) may contain
singularities. The Lagrangian and the energy-momentum-tensor

can be made finite by subtracting appropriate derivative

terms (which 4o not affect global quantities). The integrated
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densities diverge for an infinite volume. For light-like waves
the solutions depend on two variakles corresponding to
propagation in opposite directions. The solutions and the
densities may contain singularities. These solutions may

be understood also as solutions to the model in 1+1 dimensions.

For spherical waves the solutions (except ir some degenerate
case) have meron-like singularities at the light cone and

infinitely many additional singularities, located either inside

or outside of the light cone, dej vnding on the sign of the
coupling constant. The latter sﬁigularities, which are perhagps
not expected from analysis in yﬁclidean x-space, can be made
to disappear in the Lagrangiah and che enerxgy-momontum tensor

by adding derivative terms, so thal these densitiers contain only the

meron-like singularity. For th¢ energy-momentum tensor this
amounts to using the improved f.fasor found in arother context
[Callan et al., 1970] both for plane and spherical waves.

The tensor has the structure postulated from general requirements

j:g,.t-‘nis context [Butera et al. 1979},

. All solutions found in this paper are based on a
fundanental ansatz (13), which expresses the postulate, that
internal symmetry and space-time structures are not mixed. If
this is assumed, the internal symmetry qroup affects the
physical densities only via a constant Az. Solutioi.s with
constant U(N)- or O(N)-modulus of the field are then only
possible for plane, but not for spherical waves.,
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