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Fallacies In Some Theories of The Renormalized Dielectric 

John A. Krommes 
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ABSTRACT 

Several popular theories of the renormalized dielectric are 
examined and shown to be logically flawed. A recent conclusion 
that the "weak-coupling" approximation to the "renormalized 
quasilinear dielectric" is divergent is shown to be misleading 
because of an improper definition of the dielectric. The usual 
"resonance-broadened" dielectric is shown to be in error because 
the approximation neglects subtle correlations of the same order 
and physical importance as the terms retained. The problem is 
traced specifically to an erroneous application of statistical 
averaging and to the often-ignored difference between the infin­
itesimal response function and the single particle propagator. 
The procedure of "resonance-broadening the non-adiabatic response" 
is discussed, but no justification for the usual form of this 
approximation is found. 
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I. INTRODUCTION 
In essentially every nonlinear theory of plasma turbulence, 

some quantity arises which is identified with tne nonlinear 
dielectric function f: . Because this identification has generally 
been based more on intuition rather than on rigor, many different, 
often inconsistent approximations have appeared in the literature. 
In view of the considerable complexity of the problem, the more 

1 2 mathematical of the early renormalized theories ' can perhaps 
be excused for overlooking various nonlinear terms of potential 
importance. However, in recent years certain aspects of those 
theories .seem to have been distilled and codified into a "physically 
intuitive" prescription which yields a certain canonical approxi­
mation [Eg. (8)] to the dielectric — the implication being that, 
although the recipe is perhaps non-rigorous in some ill-specified 
way, the final result is "clearly" essentially correct. Intuition 
notwithstanding, this conclusion 'mist be wrong since the form in 
question disagrees with modern, systematic rcnormalizations as 
well as with perturbation theory. Nevertheless, the "physical" 
arguments can be very compelling. One purpose of this paper is to 
identify the logical flaws in the usual 'physical" arguments and, 
to a lesser extent, to argue for the modern approach. 

Although the usual forms of the dielectric are incomplete, it 
is important to understand their consequences, as they are often 
used for f-ractical computations. A second purpose of the paper is 
to discuss some startling conclusions which have been drawn recently 
frcm an approximation superficially very similar to Eq. (8). In 

3 particular, Misguich concluded that a certain "weak coupling" 
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approximation to the "renormalized quasilinear dielectric" is 
divergent. He then argued that more subtle physics, such as non­
linear frequency shifts or non-Markovian effects, must be included 
to provide a sensible, convergent dielectric. In fact, however, we 
will show that the divergence results from an improper definition 
of the dielectric. Both the correct dielectric [Eq. (44)] as well 
as the approximate form (8) appear to be convergent even in the 
simplest Gaussian-Markov approximation with constant diffusion 
coefficient. 

A third purpose of the paper is to clarify the approximations 
needed to obtain the recipe of "resonance-broadening the non-

4 adiabatic response" as conventionally employed. It appears that 
the approximations are severe; to date, they have not been 
justified. 

The remainder of the paper is organized as follows. In 
Sec. II we present our version of the "physical" derivation of the 
dielectric. In Sec. Ill we relate this approximation to the recent 

4 3 
work of Catto and Misguich, showing in detail how Misguich 
was incorrectly led to a divergence. In Sec. IV we discuss the 
flaws in the physical derivation. We discuss the non-adiabatic 
response in Sec. V, where we also summarize the major points of 
the paper. 
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II. A POPULAR "PHYSICAL,: DERIVAT TON Of the DIELECTRIC 

It is surprisingly difficult to give a single reference to 

all aspects of the physical argument which leads to Eq. (3), 

whi^h seem to be so much a part of the lore that some authors 

assume them to be self-evident. As we understand it, one version 

of the argument proceeds as follows. Consider for simplicity 

a one-dimensional, spatially homogeneous, temporally stationary, 

turbulent Vlasov plasma in the electrostatic approximation. The 

governing equations are 

(3 +vV + E3)f = 0 , (la) 

E = -V<f> , V % = -4fr£nq dv f . (lb,c) 

Here V = 9/3x , 3 5 (q/m)9/3v , and the sum is over species. We 

shall often write the solution of Eqs. (lb,c) as E = £ f , thus 

defining the operator Z • We may assume that the averaged field 

<E> vanishes. In this case, the plasma fluctuations obey 

O t + vV)6f + <5E9<f> = -(6ED6f - <5E36f> . (2) 

Because of spatial hc/oiogeneity, the mean of any quantity dependent 

on only a single space point x must be independent of x, or have 

only the k = Q Fouj/ier component as non-vanishing. Conversely, 

<5f is noYivanishin« only for k ^ 0. It is then argued that the 

k = 0 term <6E6f/ in Eq. (2) does not contribute to Sf and can 

be ignored in the equation for 6f. One then finds 
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(3^ + vV + <5E3) 6f = -6E3<f> , (3) 

where we have chosen to treat the term in <f> as a source term. 
This is particularly appropriate for the stationary case, in which 
<f> is time-independent and can Be assumed to be a known 
function. (6E is, of course, unknown at this point.) The 
characteristics of the operator in parentheses in Eq. (3) are the 
actual orbits of a test particle in the turbulence. It is thus 
convenient to introduce a propagator U which is the stochastic 
Green's function for the operator in question : 

O t + W + <SE3)U(x,v,t; x',v',f) = 6 (t - f ) 6 (x - x') <5 (v - v') , (4a) 

VU,v,t;x' ,V' ,t') = 5[x(f ;x,v,t) - x'](5[v(f;x,v,t) - v'] . (4b) 

Here x and v are the actual time-reversed orbits which pass through 
x and v, respectively, at time t= t' . In terms of U , Eq. (3) 
can be "solved" to give, in a compressed notation which omits 
integrations over phase space coordinates. 

Sf(t) = -f1 dt'U(t;f) 6E(t')3'<f> , (5) 
i—00 

where we followed standard practice by ignoring initial conditions. 
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A self-consistency condition for the field then follows upon 
integrating Eq. (5) appropriately over velocity: 

6E(t) = -f dt'^U(tftM 3"<f> SE(t') . (6) 
J—CO 

Upon a"eraging Eq. (6) over the turbulent particle motions, one 
then replaces U by <U> = U . This quantity is translationally 
invariant in space-time, so Fourier analysis is appropriate. We 
finally arrive at 

e(k,u) <5Ek>u)= 0 , (7) 

where the "dielectric" is defined as 

w 2 i — — a — 
e(k,u) E 1- i J-Ej- dvdvU. , (v;v)k— <f (v)> (8) 

2 g (ID E 47rnq /m) . This is the canonical result in question. We 
c 

placed the word dielectric in quotes because we have not shown 
(and, indeed, will be unable to show, that the quantity in question 
satisfies the defining relations for a dielectric function. 

A further common approximation is the Gaussian-Markov 
hypothesis with velocity-independent diffusion coefficient. D , 
for which case 

ICO .00 

dx d t e x p [ ~ i ( k x - UT) ] r ( x , v , T ; X , V ) , (9) 
-00 J O 
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P being a jointly normal distribution in x and v with means 
— — — 2 9 / 3 

<x> = x + vx , <v> = v , and dispersions <6x > = '3 DT , 
2 2 

<5 x<5v> = DT , <6v > = 2Dx . For completeness, we note that 
when velocity dispersion is inconsistently ignored so that 
U, (v;v) = 6(v-v) , the well-known form 

J.co dT exp [i (OJ - kv) T -V,k2 D / ] <5 (v - v) (10) 

emerges. We shall not make use of this form, but shall consider 
in the next section some consequences of the approximation (9). 

III. INCONSISTENCIES in SOME RECENT DISCUSSIONS of the 
RENORMALIZED DIELECTRIC 
The form (8) is an approximation, as we discuss in more 

detail in the next section. However, it does describe some of 
the physics contained in the more complete theories. Recently, 
some confusing discussions of this resonance-broadening approxi­
mation have appeared which we wish to clarify. The problems are 
concerned with the proper action of the mean propagator U on the 
velocity derivative of the mean distribution — that is, they are 
concerned with the velocity dependence of U. 

The velocity dependence of the mean propagator was already 
7 4 stressed by Benford and Thomson. Catto returned to this point 

and argued (in somewhat different language) that the proper velocity 
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dependence was essential in order that the "adiabatic" response 
be treated correctly. [For a Maxwellian, for which k3<f>/3v 

2 

= -kv^f>/v , Catto would say that one must propagate the factor 
kv as well as the usual factor exp(ikx).] Misguich argued, in 
effect, that Catto's form was divergent, and that a more intricate 
renormalizatiorv was required for a sensible theory. in fact, 
thre are misconceptions and inconsistencies in both works. 

We first determine the correct simplification of Eq. (8) in 
the Gaussian-Markov approximation with constant D and Maxwellian 
<£> . We have 

e(k,o.O =1 + 1 — ^ - = - dvdvU, (v;v)ikv <f(v)> , (11) 
(kA J 2 J k ' W 

where J 1 / 2 3 — 2 

dr expli(o) - kv)x - '3 k DT ]P„(V - v -ikDT ,T) , 
° (12) 

P (Z,T) = (2TT|av

2(T) |) / 2 e x p [ - z / 2 a v

2 ( i ) j , (13) 

a 2 ( T ) = 2DT , < 1 4 ) 

and A 2 = T/47rnq2 . (The important term in ikDT arises from the 
cross-correlation between position and velocity.) To evaluate 
(11) and (12), it is convenient to change variables from (v,vj to 



(u = v - v - ikDx 2 ,v) : 

oo r o o 

I = dv dv exp(-ikVT)P (v - v - ikDT )ikv <f (v)> 
'—oo J—co 

ico _ _ _ _ 
dv exp ( - i kvx ) ikv <f (v) 

-oo 

°°- ik 2 DT 
, du exp ( - iku i )P (u) (15) 

' _ o o _ i k D T V 

A standard application of Cauchy's theorem enables one to shift 
the u contour upwards onto the real axis, so we have 

foo 
-, 2 2 du exp( -ikui) P (u) = expt-^ka T) 

-00 

= exp( - k2Di3) . (16) 

This factor cancels with the first term in Eq. (15), whereupon 

r _ _ 
I = dv exp( -ikvi) ikv <f (v) > 

~ | dv exp(-ikvr) <f(v)> . (17) 

Because <f> is Maxwellian, the remaining velocity integral can 
be performed if desired. However, for comparison with standard 
forms in the literature, we find it more convenient to retain the 
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form (17). Then, upon using (17) in (11), we find 

e(k,ii>) =1 + 1 | d t exp(iu)i - l/-k Dx ) 
(kA D ) 2 Jo 

x ( - -~ ) [ dv e x p ( - i k v x ) <f(v)> 

1 + I — L + 2 — i y Uv<f(v): 
( k X D ) 2 (kXD) I 

f °° 
. dx(iw - kW) exp[i(ou - k v l T - ^ k D t ] , (18) 

where in obtaining the l a s t l i n e we in tegra ted by p a r t s in x . 

Catto makes subsidiary approximations to be discussed l a t e r , 
2 2 

which lead him to neglect the k Dx term. The resulting 
approximation, 

e - 1 + I ~^—2+ F i ( ° 2 \dv<f(v)> 
(kAD) (kAD) J 

.00 

x dx exp[i (to - kv) x - "^^Dx3] , (19) 
'o 

is often further approximated by 

e - 1 + I r- + I — ^ ~ - dv <f (v)> dx exp[i(w-kv')x-x/xJj 
(kA_) fkA ) > U a (kAD) ( kA D)' 

(20a) 
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where 

and 

T z { l / 3 k 2 Df 1 / 3 (21) 

Z(z) : - ^ - du 2 — _ (lmz<0) . (22) 

In the form (20b), OJ is not replaced everywhere by u> + if , 
However, with the same approximation for the propagator, 
Eq. (18) can be reduced to 

, i(w + ix , - 1) ( , i /ai + iT,-l> 
E = 1 + I -^- + I f - -^- z *-

(kXD) (kAD) l/2 kvfc^ l /2 kv t J 

(23) 

which is the usual approximation of resonance-broadening theory, 
in which w is replaced everywhere by u + it , _ 1 . We shall return 
to this point. 

Misguich also obtained the result (19). [His Eq.(12) is 
readily reduced ;o (19) upon integration by parts in T . ] 
However, he also considered an alternative form, obtained by an 
integration by parts in velocity space, which was obviously 
divergent yet, according to Misguich, equivalent to Eq. (19) to 
dominant order in D . Since Eq. (19) is convergent, Misguich n 
arguments are logically inconsistent. In fact, in arriving at 
the form (19), Misguich made two compensating errors. 
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The first problem lies with Misguich's form [his Eq. (5)] 
for the dielectric, which is incorrect. In an attempt to be more 
precise and include non-Markovian corrections, Misguich and 
Balescu8 argued that Eq. (8) should be replaced by 

ID 2 rc° 

E(k,u>;t) = l-il - V d T e l U T 

k Jo 

x (dvdvU. (V,T;V) ̂  <f (v,t-T)> . (24) 
J K av 

They write 

<F(v,t-x)> = j dv' Uk=0(v,-T;v')<f (v',t)> (25) 

and then take <f> to be stationary, it is, however, unclear why 
<f(t-x)> Is any less stationary than <f(t)> . Apparently Misguich 
and Balescu ignore the point that the dielectric describes the 
result of probing the system after the turbulent state is set up. 
Both they and we assume stationarity, so <f> is unchanging 
before the probe is applied and (25) is incorrect. 

Though (24) with (25) is in error, it is instructive to under­
stand its consequences, in view of the startling conclusions drawn 
by Misguich. We have 

U k = Q(v,-T;v) = P v(v -v, -c) 

Misguich (in a separate, also inconsistent approximation) passes 
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this through the 3/3v operator, after which it partially cancels 
— 2 _ 2 

with P (v-v-ikDx ) in such a way that P (v-v-ikDx ) is effectively 
replaced in (12) by A(v-v-ikDT ) , where A(z) is the Dirac delta 
function analytically continued from real to complex values of 
z: e.g., 

A(z) = lim (2ia ) 'i exp(-z /2a) . (27) 
a-*0+ 

The manipula-.ions leading up to (16) still hold; however, because 
of the delta function approximation to P , (16) is replaced by 

2 3 
unity, the term exp(kDx ) in (15) is not cancelled, and in (12) a 

? 2 3 

net factor of exp(V3k DT ) remains. The resulting time integral 
is divergent, as Misguich noted. 

In an attempt to circumvent the divergence and obtain 
Catto's result, Misguich returned to the form (11) (with P still 
replaced by A) and integrated over v: 

e = 1 + I V d v d T ^ P l 1 (w-kv) T -1/ k DT] 
(kXD) 

x (ikv + k2DT2)<f (v -ikDx2) > , (28) 

where this result can be justified by Cauchy's theorem. This 
form is obviously still equivalent to the divergent result dis-

_ 2 
cussed above, as a change of variables to v' = v-ikDi reveals. 
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However, Misguich now neglects the factor of -ikDx inside (but 
not outside) <f> , arguing inconsistently that the action of the 
propagator on <f> results in "higher order contributions" in D. 
The result, 

E = 1 + I — — r j dv<f (V)> (kXD) 

dT exp[i((u-kv)T - !/ k2DT] (ikv+kW) 
(29) 

is convergent. It is equivalent to Catto's result and, upon 
integration by parts in T , to (19). 

It should already be clear that the derivation of a consistent 
nonlinear dielectric is somewhat tricky, being sensitive to the 
precise point at which nonlinear terms are neglected. Consider, 
for example, the difference between Eq. (18) and Catto's result 

2 2 

(19). The neglect of the term -k DT is apparently made by 
Catto at the point where he retains "only the leading F and 
G contributions to g". Indeed, one might be tempted to argue that 

2 2 

the term in k DT in Eq. (18) is higher-order in D and can hence 
be neglected. However, this approximation neglects a term of the 
same order as that of those retained, as a comparison of 
Esq. (20b) and (23) clearly reveals; it is not justifiable a priori. 

That (23) emerges without approximation from Eq. (11) 
vitiates the logic of Catto's conclusion: namely, that when one 
correctly propagates the factor kv, only the non-adiabatic part 
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of the distribution is resonance-broadened. In fact, the approxi­
mation leading to the latter conclusion is separate from the 
propagation question and is, within Catto's formalism, essentially 
ad hoc. However, the question remains whether a more systematic 
renormalization might nevertheless justify a form similar to (19). 
To address this point, we must discuss to what extent Eq. (8) is 
an adequate approximation. We do this in the next section, where 
we show that Eq. (8) is asystematic because it neglects terms of 
the same order as that of those recained. 

IV. PROBLEMS WITH the PHYSICAL DERIVATION 
Two related features of formula (8) suggest that all is not 

well. First, (8) cannot be reduced to weak turbulence theory 
(except in the trivial limit of linear theory). Second, U is 
described in terms of test particle quantities only, and shows 
no evidence of the physically-expected shielding effect which 
should arise from polarization of the medium by the test particles. 
It is worth emphasizing that these severe problems are not 
consequences of either the Gaussian hypothesis, Markovian approxi­
mation, or the neglect of velocity dispersion, but are more 
fundamental. -Both can be traced to a misconceived notio: of the 
statistical averaging process. Let us discuss this in detail. 

Consider first the somewhat imprecise sentence immediately 
following Eq. (6). How can it be that the particle propagator is 
averaged while 6E remains unscathed? As we understand the lore, 
this is often justified by an argument based on the stochastic 
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instability of the particle orbits. Because stochastic instability 
develops exponentially rapidly, it is argued that the "waves" 
'E(t) are essentially static on the time scale of U, so that a 
:;wo-time-scale procedure can be used to justify averaging U only, 
on the fast time scale. Physically as well as mathematically, 
however, it is clear that SE describes not only coherent, wave­
like oscillations but also the microscopic fluctuations associated 
with the stochastic evolution of phase space elements. The time 
scale of these fluctuations is clearly the same as that of the 
velocity integral of U, as can be seen by writing 

£u(t;tQ) = £nqj || exp[ikx (tQ;t)] , (30a) 

SE(t) f dk || 6Ek(t) exp[ikx(to;t)] . (30b) 

Hence, the average of u 6E does not obviously factor. (It is 
irrelevant that U(t;t') and E(t'), required in Eq. (6), seem to 
involve different time intervals t > t' and t < t' , since the 
motion of a single particle for t > t" is rigidly (deterministically) 
correlated to its motion for t < t' .) Furthermore, upon rigorously 
averaging Eg. (6) and recalling the definition of <$E, one finds 

0 = 
t 
df <£u(t;t') 3'<f> 6E(t')> . (31) 

Instead of finding a consistency relations for fiE, we find a 
statement, about the correlations between £u and SE . 
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Equation (31) states (surprisingly, in view of our previous 
arguments) that £u and &E are uncorrelated. Unfortunately, 
Eq. (31) is incorrect. 

The error arises in cavalierly neglecting the term <:6E6f> 
in passing from Eq. (2) to Eq. (3), while retaining all of the 
term <5E6f, which, of course, also has a component <6E6f> . 
Returning to Eq. (2), we have rigorously 

O t + vV + 6E3) 6f= -6E 3<f> + <<5E3Sf> , 

or 

6f(t) = J dt1 U(t;t')[-SE(t')3'<f> + <6E(t')3'6f(t')>} . 
J—oo 

(32) 

Upon averaging this equation, we find 

0 = [ dt* [ -<U(t;t,),SE(t,)> 3*<f> + U(t;t') <6E(t') 3'6f (t')>] . 
(33) 

Inasmuch as <Sf = 0(6E) , Eq. (33) shows that the correlations 
between U and 6E do not vanish but are of order <<5E > — the 
same order as that of the terms which were previously retained. 
Jn fact, one can show that it is precisely the new correlations 
which describe polarization effects and permit the successful 
reduction to weak turbulence theory. 
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The proper definition of the dielectric has been discussed 
in Refs. 9-11; it is the proportionality factor in the relation 
between the mean response of the nonlinear, turbulent plasma to 
an infinitesimal external perturbing field E : 

E. + < £ ( « ! =n)te = e-lE„ . (34) e ^ " l <5E e E =0 e e e 

We have in schematic notation (for d e t a i l s , see Ref. 10) 

O t + W ) ( | § - ) + £< | f - H f + E3( |f—> = - 3f • (35) 
e e e 

Equation (35) can be solved by introducing the stochastic 
infinitesimal response function R, defined by 

R = 6f/6fl|fi=0 

where n is a non-random source added to the right-hand side of 
Eq. (la). In fact, R is a stochastic Green's function for the 
left-hand side of Eq. (35), so that 

5E = " R 3 f • (36) 
e 

The quantity R is distinct from the stochastic propagator U. 
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We can determine the relat.: jn between them by noting that R obeys 

O t + W + E3)R = 1-af^R , (37) 

whereupon, noting Eq. (4a), 

R = 0 - U 3f £ R 

= G- U 3f (1 +gudfr1g U . (38) 

One than arrives at the form (8) by ch.e following approximations. 
First, one ignores the correlations between R and f in Eg. (36) 
so that 

<R3f> = R 3<f> ( 3 g ) 

and, from (34), 

e-1 = 1 -£R 3<f > . (40) 

Next, one replaces all quantities in formula (38) by their means: 

R = U - U 3<f > e-i^U , (41) 

where 

e = l+£u3<f> (42) 
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The formula (42) is compatible with (40) beacuse of the identity 

gR = e-l£u , 

and also identical to Eq. (8). 
Of course, it is inconsistent to neglect the correlations 

between R and f; ;just as <U<5E> = 0(E ) , it readi \y follows that 
<R6£- = 0(E2) . Since we are retaining terms of 0(E ) in the 
renormalization, these correlations cannot be ignored. Fuvther-
more, there is no obvious justification for the approximation 
(41). Even if we were to adopt the often-used but seldom 

2 justified procedure of expanding U about its mean, so that 
U = U in lowest order, a further approximation would still have 
to be made because of the highly nonlinear way in which the 
stochastic distribution enters Eq. (39) that is. 

O f ( 1 + £u 3f) - 1> ? 3<f> ( 1 +^U3<-C>)"1 - (43) 

The correction terms which are required to make (43) an identity 
2 

are again of 0(E ) and must be retained in a consistent 
renormalization. 

Systematic techniques for approximating the average <RSf> , 
required in Eq. (34), are discussed in Refs. 10 and 11. It is 
not within the scope of the present article to discuss the 
details. However, we may record that the proper dielectric is 
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of the form 

e(k,w> = 1 -i I -Pj- dvdvg. ,.(v;v) k -^-f. (v) . (44) 

Here 

g k j [ 0(v;v) = [-i(w-kv)6(v-v) + E k (v,v) ] _ 1 , (45a) 

Z = T.(d) + £ ( p ) , (45b) 

f = <f> + <5f ( d ) + 6f ( p ) , (45c) 

where z} is the non-Markovian version of the usual -DS/3v 
operator of resonance-broadening theory, and where £ p , 6f ̂  , 
and Sf p are additional 0(E ) terms arising from the correlations 
neglected in the usual arguments and describing polarization 
effects [ z and 6ftp^] , back-reaction of the test particles on 
the medium [6f '] , etc. The similarity in form between Eqs. (44) 
and (3) may be noted. However, the difference in physical content 
between the two forms is profound. [In Ref. 12 we introduced a 
function similar in form to both Eqs. (8) and (44) , but differing 
from both. However, we were careful to stress that the function 
was not a dielectric as defined by Eq. (34).] 

V. DISCUSSION and SUMMARY 
With the form (44) in hand, one may now ask to what extent 

the approximation (19) can be justified. The obvious way to 
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proceed is to write 

. i k J_ f (v) = i^-<£ (v)> -ik-^ «f 3v v t Sv (46) 

and to add and subtract -iw+2 so that 

• l k^» , 7 ,-;T dv' g"1 (v;v')<f(v')> 

-[-io)S(v-v') + MZ k ( t o(v /v r)]<f (v,)>-ikvt
2 -^<5fkfWJ 

(47) 

whereupon 

e = 1 + I L ^ + l _ L ^ f dvdvg ,(v;v) 
(kXD)2 (kAD) 

dv' l-iuiS(v-i') - Z, (v,v')]<f (v')>+ kv.2 -^-6f, (v) 

(48) 

A result of the general form (20a) would emerge from the result 
(48) if the term in 6fT would cancel the explicit term in I , 
Upon appealing to the explicit forms for 1 and 5f as given, for 
example, in Ref. 11, it becomes clear that the cancellation is 
not exact. Although an approximate cancellation may in principle 
occur for certain classes of turbulence, we tend to doubt it, 
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particularly for the generalization of (48) to such interesting 
modes as the universal instability. Clearly, much further work 
is called for. 

[Part of the problem with assessing (48) arises because we 
have not explicitly included the generalization of adiabatic 
response to the nonlinear regime (e.g., the effective shielding 
length is modified nonlinearly). However, such a generalization, 
which merely amounts to a certain rearrangement of Eq. (48), 
would not in itself answer the question of the importance of the 
additional nonlinear terms.] 

We must also emphasize that a theory of the nonlinear 
dielectric is not synonymous with a theory of strong (or weak!) 
turbulence, as seems sometimes to be assumed. A complete theory 
requires analysis of the so-called incoherent noise source F, 
defined and discussed in Refs. 11 and 13. For many practical 
problems, it would seem that this term is of equal importance to 
the nonlinear- terms in the dielectric. 

In conclusion, let us summarize the main points we have 
discussed. 

(1): The definition of Misguich and Balescu of e includes 
a spurious "non-Markovian correction". The divergence they find 
in the "renormalized weak-coupling quasilinear" approximation is 
therefore non-physical and irrelevant. 

(2): Propagating the factor kv is not sufficient to justify 
"resonance-broadening of only the non-adiabatic response." 

(3): The explicit term <SE<5f> in Eq. (2) cannot be ignored. 
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(4): U and 6E have similar time scales and are correlated; 
stochastic instability is not a sufficient reason for ignoring 
those correlations. 

(5): The dielectric is defined as the mean response of the 
plasma to an infinitesimal external perturbation; self-consistency 
conditions for fluv. mating fields are meaningless in a turbulent 
plasn.a. 

(6): The mean response function R, in terms of which the 
dielectric is rigorously defined, differs from the mean propagator 
U by the presence of additional terms which describe polarization 
effects and other correlations. These effects are not obviously 
negligible. 
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