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The need for theoretical previsions concerning anomalous transport in 
large Tokomaks, as well as the recent results of PLT, ask the question of the 
process responsible for non-linear saturation of trapped-ion instabilities. This 
in turn necessitates the knowledge of the linear behaviour of these waves at 
large frequencies and large radial wcvenumbers. 

We study the linear dispersion relation of these modes, in the radially 
local approximation, but including a term due to a new physical effect, combining 
finite banana-width and bounce resonances. Limiting ourselves presently to the 
first harmonic expansion of the bounce motion of trapped ions, we show that the 
effect of finite banana-width on the usual trapped-ion mode is complex and quite 
different from what is generally expected. 

In addition we show, analytically and numerically, the appearance of 
a nex branch of this instability. Essertially due to this new effect, it involves 
large frequencies (u *v wjj) and is destabilized by large radial wavelengths 
(kjj A 'v 1, where A is the typical banana-width). We discuss the nature of this 
new mode and its potential relevance of the experiments. 
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I - INTRODUCTION 

Trapped-ions instabilities [1] have long been predicted to exist in 
large Tokomaks, where ligh temperatures and low collisionality allow for the 
presence of a significant fraction of ions trapped in the toroidal magnetic 
field. They could be responsible for a large anomalous loss of particles and 
energy, but the question of their non-linear saturation, and thus of the induced 
anomalous diffusion, remains to be solved. 

Recently, coherent a»de coupling has been proposed as a mechanism for 
non-linear saturation. It would give low saturation levels but the theoretical 
analysis, in the model used, cannot solve the problem of stability of the 
predicted non-linear equilibrium. It could be unstable to the generation of 
modes with large radial wavenumbers [2]. 

The term responsible for the generation of these modes had been used 
formerly by Kadomtsev [3] to predict non-linear isotropization of trapped-ion 
turbulence, and to derive a much higher anomalous diffusion. 

More recently, the results of PLT, with discharges in the expected 
regime of instability of these waves, indicate the presence of modes with 
large wavenumbers (kl where A is the typical banana width). 

To study more precisely this non-linear mode coupling, we have already 
developped a kinetic model, taking into account all important kinetic effects 
14]. It has since then been extended to include the radial structure of the waves, 
but needs to be fed with their linear characteristics. Then we have developped 
a numerical code to study the linear spectrum, including the effects of finite 
banana-width and trapped-ion bounce resonances. 

II - In order to establish the linear dispersion relation, we begin with 

the usual equation for the perturbed distribution functions of trapped particles : 

t i(w - up • iv)- v„ ~ ] g • -i(w - oS ) -y- P 0 *(r, s) 

where : * - ê(r, s) « l 1 ( * " * 6 ) - i m t 
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s is the coordinate along the field lines 
<fi and 6 the angles respectively the long way and the short way around 

the torus. 
up is the magnetic curvature end gradient drifts frequency, which we 

take proportional to u (the particle energy), thus neglecting its dépendance on 
the particle's turning points. 

Hé expand g and + in harmonics of the bounce frequency : 

r<e) 
*«-< J 7ï=xsm\ j f /i-AB(e') 

* 
where . A - ^ 

/-•(e) r 

*(•>• - B » X - ( - * 
I _ds_ _ _2w 

and r'(e') is determined by the second adiabatic invariant 

r'Ce') - r0(r,6) + o6' /l-XB(e') 

r0(r,e) » r - 06 /l-AB(e) 

*.±| « „ _ -f-/-

r 

To complete the calculations we take as a realistic longitudinal 
dépendance of • : 

•Ir, s(e)]- a cos k r |cos -|-| 
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The calculation is then straight forward, though lengthy. Writing 
as usual the quasi-neutrality equation, and operating on both sides with 
fit 
I —7T- * * to get a quadratic form, yields : 

"° p2i /•- p2ir -1/B 

</ 0 *b ^ 0 t/l/Bmax 

* f * «,/2«"u < ; r ^ r S o ( k A /u) 2ir — - cos 2k r /2e 

• <»-»*><»-«P» iv>) S l (k A /u)} 
(u - « D + i v + ) - uj, 

where Be « T6-?;— 

The first and second terms in the brackets cone respectively from the 
*0 *°d * 4 j terms in the harmonic expansion, eq. (2). We neglect here terms of 
higher orders. S2 has been checked to be smaller than Si, for not toe small, 
values of k A. SQ and S\ are respectively defined as : 

f 
S0(x) - I dt jjfa J§ (x /t) 

1.00.2 1 dt « ^ W O 
2 <(t) 

0 
- ir/2 

and Y(x/t) - — I dy cos [ * Ffr / c? ] sin (x /t cos y) 
M 2 K(t) 
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K and F are the complete and incomplete elliptic integrals of the 
second kind, JQ is the Bessel Function. 

Performing the remaining integrals in Eq. (3), and providing for 
circulating ions Landau damping or growth, we get the final dispersion relation 

» » du u , / 2e-« { " " ? * T 0 (k A /u) 
7e 7» / U - U D + I V +

 u 

+ " - " ? T0(O) «""De* 1 -

+ ( » - » , ? < " - ^ t %>*) T l (k A /u)} 
(u - wn+iv*) - w. 

2 w z {K [Z(Z) - Z(z /e)J + z (l.-/e) + <z 2 - -y) Z(z) 

-<ez 2- -y-> Z(«^0> 

• ..•#„_ 3 . .> dLnN where : u » u_ (u - -=- + K) K -T * 2 ' dLnT 

lq T dLnT >v n. y Vx 
r eT" - E S T ™D " "D U «b * "b / u v* " "ifr u 

(4) 

z - . " i and Z is the plasma dispersion function. 

T 0 - S 0 /2 T X - Si /2 

To solve numericaly the dispersion relation, we approximate T 0 and 
Tj by : 

T 0(x) - a • b a" c x Ti • dx" + e x 2 e " f x 2 
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e • .1881 b - .9662 c - .2913 d « 2.66.10"* e - .306 

f - .1649 

These ere precise within 1Z up to x * 5.5, which is largely enough 
for our purpose. 

Ill - We have solved eq.(4) nuaericaly in two cases, corresponding to PLT 
parameters ; they are defined by : 

T£ » 4 keV T e - 2 keV B - 3T q - 2 e - .1 R - 135 cm 

and respectively : 

dUTt . _dLnT,_ 1 dLnN . , ^ c a g e , 
dLnr dLnr 3 ' dLnr 

dLnTi . dLnTe, . ̂  dLnN . > 5 f o r c „ e 2 

dLnr dLnr ' dLnr 

• v ~v V» .3212 V- 155 «n_ rt,rtor» 1 giving in both cases : • —:— • —s- -"-• .07090 1 u- 1 UQ 1 uib 

v # - ̂ ±- - .02277 "b 
The figures show resulting values of u and y as functions of 1, the 

toroidal node number. 1 *v 15 gives un * «b *od the limit of validity of our 
calculations. 

The results are quite unexpected. They first show that the effect of 
finite banana-width on a and y is quite different from the usual, (1 - k 2A 2) 
assumption. 
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Second, they show the appearance of a new branch of the instability, 
due to a combined finite banana-width and bounce resonance effect. This is due 
to the fact that, neglecting ion collisions, the denominator of the third term 
in the brackets, in Eq. (4), is a 2nd-order polynomial. This gives two poles, 
which coalesce for y - 0, *%" » — .25. This term is then infinite, or may be 

arbitrarily large as u tends towards this value. This gives the possibility of 
a new branch, close to u ?"— , Y • 0 ; this is the exact result for J - 0, 

and the mode is more unstable as J grows. What it becomes ueyond J * 1 remains 
however to be studied, retaining more terms in the harmonic expansion, eq. (2). 

The general features of the results are as follows : 

. In case 1, with low VT, we jet -^— * 0 (phase velocity with electron 
U)J) 

drifts), and — > 0 in case 2, as expected [5]. 

. Circulating ions Landau effect is stabilizing at high 1 values in 
case 1, destabilizing in case 2. 

. Even without banana-width effects, the dispersion relation is 
dispersive (-"— is not constant), which enhances again the need of 
large J to be abble to couple modes. 

. The "usual" branch is strongly dampid in both cases, around 1 * 6-8 

(-20- <v .5), as the poles come to the domain where their residue is 
"b 

maximum. 

. The new branch behaves differently in the two cases. In case 2 (the 
most relevant to PLT discharges), it is weakly unstable around 
1 t 4-6. for J % 1, whereas the old branch is strongly damped, even 
for moderate values of J. 

The results seem to indicate that it might be even more unstable for 
higher J values. 
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(0 MJJ WJJ 
In case 1, the condition j - - -.25 shows that, for «v .5, we get 

u *v un and the two branches cross, leading to a strong interaction between them. 
A singular peint occurs for J # .5, where —rr- becomes infinite, as the 
id-derivative of the dispersion relation passes through 0 (writing the dispersion 
relation as D(l, ) • 0, we have : -JJ- - - a D / a M ) . Above J - .5, the crossing 
point in u vanishes and a crossing point in y appears, as shown on the figures. 

In conclusion, we have shown that proper inclusion of finite banana-
width and ion bounce resonance effects considerably affects the picture of trapped-
ion instabilities. They strongly damp the usual trapped-ion mode, and generate 
a new branch around u B J « - ™ — . 

This new branch is more unstable as J « k A is increased. In cases 
with large temperature g radients, it is more unstable than the usual branch. 
The question of its behaviour at J > 1, where it might be even more unstable, 
remains to be solved. 
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