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It is argued that Dupree's procedure for computing self-
sustaining clump spectra is tautological. 

It is well-known that stochastically unstable Hamiltonian 
systems exhibit orbit exponentiation. That is, when the appro
priate resonances overlap the system develops positive Kolmo-
gorov entropy, which implies that, on the average, the 
separation between two orbits initially close grows exponentially 
rapidly. Dupree has called this phenomenon "phase space 

2 granulation." Particularly important for applications is the 
problem where the forces are self-consistent with the dynamical 

3 flow in phase space. For example, it has been proposed that the 
anomalous electron heat transport observed in tokamak devices 
may be explained by the development of stochastic magnetic 

1 4 5 
fields produced in a self-consistent manner by turbulent 
micro-instabilities with electromagnetic polarizations. 

Dupree has studied the steady-state spectrum of stochasti-
2 cally unstable Vlasov plasma, taking into account certain 

aspects of the exponential orbit divergence, in particular, he 
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argued heuristically that the stochastic evolution of phase 
space blobs of limited extent (which he calls "clumps") gives 
rise to a certain so-called "incoherent" electric field 6E , 
wnieh is then shielded by the dielectric £ to give the total 
(fluctuating j fieid SU. lie argued that: such a state will be 
self-consistent or 'self-sustaining" if a certain r>'qe.'.era tier. 
factor, 

R f{£) = <iE2{^}>/(|e|^) , (1) 

o 

equals unity. Here £ = '-5E > and {••• } indicates functional 
dependence. 

The procedure to assess whether a self-sustaining state 
is possible is two-fold. First, one expresses the incoherent 
fluctuation? in terms of o and thus finds the functional form 
R ft£; . Second, one examines the structure and size of the 
functional form and attempts to determine whether the critical 
stat-;- R. - 1 can be achieved for any value of o • ilupree's 
estimates show that T>.C\Z\ involves the plasma susceptibilities 
and phase space gradients of the distribution. However, his 
results Jo not contain the fluctuation intensity explicitly 
and are thus of order unity for z = 0(1). This feature has 
led to considerable uncertainty as to whether a self-sustaining 
state in fact exists, since variations of order unity of 
numerical factors — which are not accurately determined by the 
approximate theory —give large relative variations of 
P.„{£} around R = 1. In fact, it is very peculiar that the 
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dimensionless parameter which determines the existence of 
a certain turbulent state does not explicitly involve the 
turbulence level. This implies that the theory has no 
continuous connection to weak turbulence theory, for which 
it is readily verified that R. = 0(£) , and suggests that the 
self-sustaining state may exist at all turbulence levels, 
which is improbable. 

The structure of Dupree's formulas suggest that his 
theory is a (severe) simplification of the direct-interaction 

fi 7 
approximation. Krommes has previously discussed the 
relations of this and other renormalizations to Dupree's 

o 

concept of incoherent noise. Recently, DuBois extended the 
direct-interaction version of Krommes' formulas to give an 
explicit prediction for the form of the incoherent source. 
Unlike that of Dupree, DuBois' formula does explicitly involve 
the turbulence level and is continuously connected to weak 
turbulence theory. The purpose of this paper is to discuss 
a possible explanation for this discreoancy which, when z 

is taken to be 0(1) , amounts to a whole order in g . 

We propose that Dupree's heuristic procedure of 
screening the incoherent noise is, though intuitively correct, 
in fact a tautology as implemented. That is, if Dupree were 
to retain certain terms which he inconsistently ignores and 
were then to recompute the regeneration factor following the 
logical steps he outlines, he would find Rf{£\ = 1 , cor
responding to the identity 1 = g/g . Though the appearance 
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of such an identity serves as a useful self-consistency check 
on the manipulations, it clearly cannot determine either the 
fluctuation level or spectral details at saturation. These 
would appear to follow only by explicit solution of equations 
of the direct-interaction type. 

Let us recall certain general aspects of the re-normalized 
theory of the electrostatic Valsov-Poisson system 

3 f + v-Vf + E-3f = 0 , 
V-E = 4ir̂ (ne) dv f 

We shall write the solution of Eq. (2b) as E = Ef , which 

defines the operator E . If non-Gaussian initial conditions 
are ignored, the statistical solution of Eqs. (2) can be con-

9 10 veniently developed ' in terms of the mean distribution 
<f> , the two-point correlation function C(l,l') = 
<6f (1) of (1" ) > , where <5f = f-<f> , and the mean infinitesimal 
response function R(l;l') 2 <6f(1)/n(1')>|^ _ Q , where n 
is a non-random source term added to the right-hand side of 
Eq. (2a). The response function includes the self-consistent 

effects of dielectric shielding. Instead of R, we may introduce 
the bare particle "propagator" g (which obeys a certain Dyson 
equation ' which we need not write here). One has in 

,. ,. 11 operator notation 

R = g - g3fc - 1Eg , (3) 

(2a) 

(2b) 
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where f = <f> + <5f , 6f being a certain ponderomotive type 
of nonlinear term defined in Ref.11, and where the dielectric 

, ... . , 8,10-12 is defined by 

e = 1- Eg3f . (4) 

An important identity is 

ER = £"1Eg , (5) 

which describes shielding of test particles moving in the 

turbulent medium. 
8—12 It can now be shown that the fluctuations are 

determined from the balance equation 

C = RFR t, (6) 

where R"(l;l") = R(l';l) and F is a linear functional of a certain 
four-point function ' ' K (1,2;1',2') which describes the 
propagation of two-point fluctuations or pairs of test particles 
and obeys the Bethe-Salpeter equation. In the direct-inter
action approximation, 

K(l,2;l',2') = Js[C(l,l')C(2,2») + (l'<~*2')] =0(£ 2) . 
(7) 

A balance equation for the field spectrum can be constructed 
from Eq. (6) by applying the E operator from both the left and 
the right and by using Eq. (5): 

£= [E(gFg t)E t]/| e| 2 (8) 
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We interpret this ' by saying that there arises a certain 
"incoherent noise" 6f with correlation 

C s <6£<Sf> = gFg * KJ* 

Associated with 6f is an incoherent field 6E = E6f with 

correlation 
0 = <5E6E> = ECE f c . (10) 

The turbulent plasma then shields the incoherent field, 
giving the total field fluctuation as 6E = 6E/e — which is 
to be more precisely interpreted as 

<6EA> = e-1<6EA> (11) 

for arbitrary A. Setting A = 6E leads to g = g /\e| , 
which is just Eq. (8). Equation (6) may be interpreted 
similarly ' by defining a "coherent response" S£ 

(c) according to £f = - g3f6E or, more precisely, 
<fif(c)A> = -g3f<<SEA> . (12) 

Using (3) , we can then write 

C = C + < < 5 f ( c ) < $ i > + < 6 f 6 f ( c ) > + <<5f { c ) 6 f ( c ) > 
( 1 3 ) 

where the laot term, for example, is equal to 
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< 6 f ( c ) ( 5 f (c) > E (g3fE-1Eg)F(gSfe 1 E g ) t 

= (g3f) ̂ (gSf)* • (14) 

I.i arriving at the last line of Eq.(14), we used Eq. (8); 
note that Eq. (14) agrees with Eq. (12) . Dupree neglects 
the cross terms <fif <5f> , arguing that 5f is a very random 
function. However, upon noting Eqs. (12) and (11), we find 

<6f ( c )6f> ~- g3fE~1E<6fSf> , (15) 
(c) ~ 

so that <6f uf> does not vanish if C does not. (c) That a rigid correlation exists between 6f and Si vitiates 
the terminology "coherent" and "incoherent"; however, we retain 
it for comparison purposes. 

We may now describe our interpretation of Dupree's 
procedure for computing C. As we understand it, Dupree works 
not with the formal solution (u), but rather with the 
differential equation R C = FR , which can be written for the 
two-time function C(t,t') as 

g'-'-C-Pg'1 = -6f<6e6f> - F(g3fe'1fg)t: • (16) 

(The corresponding equation for C(t,t) follows by appropriate 
symmetrization, which we occasionally i-.dicate by the subscript 
"s".) Dupi-ee argues that at long wavelengths the term in 
Fg is of the form 3 0 1 x ' S^C (1,1') , where D1 -̂  is a cross-
diffusion coefficient defined by Eq. (42) of Ref.3 . At equal 
times, then, Dupree approximates the operator on C on the left-
hand side of Eq. (16) as a bivariate Fokker-Planck operator 
gj . If one notes Eqs. (13), (12), (4), and (11) so that, 
for example, 



<6i:5f> = -^(gfif)1 + <5E6f> , (17) 
one finds 

C(t,t) = g 2{g _ 1[<6f ( c )5f ( c )> + (Sf ( c )6f> 
+<6ffif ( c )>]) s . (18) 

Dupree neglects the last two terms. 
Of course, (18) describes the total fluctuations, 

including shielding. Following Dupree, we obtain the inco
herent fluctuations by subtracting off everything else 
according to Eq. (13): 

C(t,t) = g {g _ 1[<6f ( c )5f C c )> + <<5f(c)6f> 
+ <5f<Sf { C ) >] } - { [<<5f ( c ) 5 f > 

s 

+ < 6 « f ( c ) > ] s + <5f ( c )5f ( c )>} . (19) 

(c) (c) 
Dupree would retain only the terms in <<5f of > 

We can now construct the incoherent spectrum by applying 
the t operator to Eq. (19). Dupree has shown" that g. prop
agates pairs of particles along stochastically unstable 
orbits and includes the effect of exponential orbit divergence. 
There is thus in Eq. (19) a class of particles, satisfying 
1^1', for which g becomes effectively the "clump lifetime" 
T , —the time for the initially closely-separated particles 
to diverge a typical wavelength. Since T , is logarithmically 
larger than the inverse K-entropy, it can be argued that the 
first term dominates in Eq. (19). Thus, according to Dupree, 
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the incoherent clump noise becomes 

<6E<5E> c l - E E g 2 g _ 1 < 6 f ( c ) 6 f ( C ) > 

= Efc'r , D . 1 r ( 3 f ) 2 . (20) 
c l 1 , 1 

Dupree then asserts that Eq. (20) should be shielded: 

1= <6ESE>cl/|e|2 . (21) 

We believe that this shielding recipe is incorrect. As 
we have already remarked in the paragraph following Eq. (18) , 
the right-hand side of Eq. (20) is in fact Dupree's approxi-

( c ) /? 
m a t i o n (<<Sf6f > = 0) t o t h e s h i e l d e d s p e c t r u m Z • E q u a t i o n 

(20) t h u s r e a d s Z- Z and Eq. {21) becomes Z ~ Z/ I c ! > c o r r e c t 

o n l y f o r e = 1 . More g e n e r a l l y , we c o m p u t e from Eq. (19) 

£ = Z-[-{t-l)Zzt - e ^ ( £ - l ) t + ( E - l ) £ ( c - l ) f c ] (22a) 

= e ^ e * , (22b) 

where we used Eqs. (13) and (4). This agrees with Eq. (11), 
as it must. In Eqs. (22), the £ may be either the total 
spectrum (including all nonlinear processes) or the contribution 
to the spectrum due to a particular nonlinear process such as 
clumps; the important fact is that the same factor of Z 

appears in each term of Eq. (22a). We observe that the correct 
shielding law emerges from cancellations between the first term 
of Eq. (22a) (which gives rise to Dupree'c clump source) and the 



-10-

iast term (the coherent response, which Dupree includes in 
principle but ultimately neglects), and between the coherent 

(c) -response and the mixed terms stemming from <6f 6f> (which 
Dupiee neglects). I n fact, though any of the terms of Eq. 
(19) may be small in a particular region of phase space, 
integration changes their order so that they all compete at 
the more macroscopic level of the electric fields. Further
more, if we attempt to follow Dupree and shield Eq. (22b., 
we find 

e-=e/\-\2 - s . 
which is a manifest tautology. The size and structure of £ 

cannot be determined in this way. One must revert to the ex
plicit formula for F{K} . 

In the direct-interaction approximation, it is clear 
from DuBois' work that F is one order smaller in £ than 
Dupree's prediction. In fact, DuBois' result has dimensionaliy 
the same form as Eq. (20), with the important difference that 
— 2 (c) 2 (c) 

Of) is replaced by <[3Sf ] > i Since 6f is driven by 
3f, it can still be said that gradients of the mean distribution 
drive phase space granulation. However, the detailed dynamics 
differ considerably from Dupree's proposal. 

Beyond direct interaction, the formula for F{K} is 
modified according to the solution of the Bethe-Salpeter 
equation. ' Indeed, K is itself evolved by g2, dielectrically 
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shielded, and also driven by higher-order noise terms. However, 
we have been unable to show, and we do not believe, that a 
higher-order renormalization can lead to Dupree"s theory. In 
accordance with general principles, such renormalizations affect 
detailed dynamics but do not alter the gross order of the terms 
they describe. 

Finally, we emphasize that the considerations in this paper 
are restricted to systems well into the stochastic regime, and 
whose autocorrelation time is short compared to the inverse 
K-entropy. When either of these criteria is not satisfied, 
partial trapping results and the nature and dynamics of 

n 

"clumps" are strongly modified.'' The standard renormali2ed 
kinetic equations are not well-adapted to such regimes, which 
rhus represent an interesting area for future work. 

The author is grateful to Carl Oberman, Bob Klevaj and 
Gary Smith for stimulating discussions and useful comments 
on the manuscript. 
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