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Abstract :

A method for solving the Schrddinger equation for
the ground state of any number of bosons or for the trinucleon
system or a-particle is formulated in the framework of the
hyperspherical harmonic expansion method. It i8 applied to the
trinucleon system for nucleons interacting through realistic
soft core potentials. The convergence of the method is carefully
studied. Binding energies, electric form factors, one body
densities, two body correlation functions and two body photo-

desintegration are calculated for various potentials.
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I. INTRODUCTION

n studying the three body system we are confronted with & problem very much
more difficult than for the two body system because :
1) The three body problem cannot be solved exactly in the state of the modern
computational facilities
1i)The full two body nuclear potential contributes to the motion,
The evolution of the methods enabling to solve the many body problem has been

strongly related to the computers capabilities and the quality of the two body interactions.

At the b impl dard ver: 1 methods and more sophisticated including

Monte Carlo integrations were used (3). But only the 80 called completely symmetric state
was used. On the other hand during the 60th the Faddeev equatlons were tractable only for
separatable potentials,

1n the first introductlon of the hyperspherical har jes (H.H) ion method

Delves {1, 2) had in mind to describe the three body chennels in nuclear reactions.

Banville (4) in his attempt to solve the trinucleon bound state with an H. H expansion, has
been confronted with the difflculty arising from the large degeneracy of the H. H basis
preventing to obtain a satisfactory convergence with realistlc potentials without a suitable
selection of the H. H involved In a specific problem. To avoid this difficulty 8fmonov (6}
introduced a set of H. H including the symmetry required to construct a complete H. H basis
antisymmetric with respect to the exchange of a pair of fermtons. The number of independent
Simonov harmonics necessary to solve the trinucleon bound state with a good enough

accuracy has been studied by Erens and Van Wageningen (54). They found that the convergence

3ot ber of pled

wag still to slow for enabling the treat reslistic potentlals with a tr

The ber of H. H ded to treat the problem has been reduced again by

Fabre (10), who introduced the potentizl basis and the related optimal subset, These




o

subsets select out of the complete H, H basis the elements giving non negligible contribu-
tions to the wave functions,

The convergence rate of the H, H expansjon method usiag the optimal subsets
has been studied with various kinds of potentials by Erens et &l (66), by Beiner aad
Fabre (12) and by Ballot et al (13, 41, 53), Ereas (4} has shown that for central potentfals

the H, H orthogonal to the el s of the optimal subset bring negligible contributions to

the wave function and the binding energy of the trinucleon.

This method has been sub tly applied to the calocul of the properties

of the trinucleon bound atate with realiatic N-N potentials by JJ, Bruinsma et al (62) and
by Demin and Efros (16), At the same time Gignoux and Laverne (34, 21) solved Faddeev
equations in configuration space with realistic local potentials and carefull variational
calculations with a harmonic oscillator basis was also performed by Sauer and Strayer (56 ) |
with realistic potentials,
Our aim in this work is to give a comprehensive survey of the H. H expansion
method applied to the trinuclecn,
This paper ls divided into four parts.
The first part is a general review of the hyperspherical formalism in which .

some mathematical properties of hyperspherical functi are d and gene: 4

formulas related to the expansion of local realistic potentials lnto hyperspherical harmonics
are derived.

In the second part devoted to the three body bound systems we are confronted
to the problem of determining an optimal subset in order to reduce the number of significant
terms in the hyperspherical expansion of the wave function, A side of the local potential,

the velocity d 4, tial is also studied

¥ Uey ¥




‘The third part is devoted to the applications of the formalism to the caleulation

of electric ch form 1i one body d , two body )| funeti and two

body photodestntegration of SHe.

In the last part we di the its ob d in three-nucleon observables and

hagis their ¥ to the details of forces in analyzing various s-wave

we

potentials and also realistic potentinls,



II. General features

II.1 Jacobli coordinates

Let ¢ be a system of A identical particles with spatial
coordinates ;1 (i=1,...A). The system is described in the centre
of mass frame of reference by a set of N=A-l coordinates
Ej (J=1,...N) which are linear combinations of the ;1. One chooses

these linear combinations in such a way that the Laplace operator

becomes
A N=a-1
2
1 Z v = v o+ ooy (11.1)
2 =1 i i=1 h] 2a
12 .
where X = a 3 X, 1s the centre of mass coordinate. Among  various
i=1
possibilities one chooses teo use the Jacobli coordinates defined
by ¢
O
to=d- 20 g oLl Gk (11.2)
I n ity 3

The evolution of the system o can be studied by following
the motion of one point in the D=3N dimensional space in polar
coordinates. The polar coordinates of this point are given by
a set (R) of 3N-1 angles which in the F. Zernike and H.C. Brinkman
(17 répresentation are :

i) the 2N polar angles Ej of each vector Ej'

ii) the N=-1 hyperspherical angles °j defined in terms

of the length Ej of Ej by




(A

Ej = Sin¢n...sin0j+1.cos¢j
with¢,auanau<¢j<1.
2

The hyperradial coordinate £ is defined by :

N A A
DL EED I IR IR ALY
i=1 i=1 A TS

(11.3)

(11.4)

Note that £ is symmetric with respect to all permutation of the

particle coordinates.

II.2 The kinematic rotation vector

In order to study the effect of the permutation opera-

tors on the coordinates, we introduce a tridimensional vector

N
zlo) = Z 8in ¢y... sin \pj“_ cos v Ej
j=1

called the "kinematic rotation vector" (36) which is a linear

(1I1.5)

combination of the vectors (E; ¢ Zz...EN}. These vectors are func~

tion of N-1 angular parameter ¥5 (3=2...M), vy, £ 0.

Thus any linear combination of the vectors (Ej)

N
iD= a
i=1

can be expressed in terms of the kinematic rotation vector

RE) =c 2w ,

{II.6)

{IL.7)
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with

N
2 . 2 ,3 , (11.8)

i=1

the angular parameter being determined by
a?
coazwj = . (11.9)

=t

1)

The notations ¢ and w(i'j) will be used for the set

of parameters (¢} for which,

R S
N

(II.9bis)
and 4o
-» v . -4
U ) =% %y .
I1.3 Kinetic energy and hyperspherical harmonics
3
In polar coordinates, ‘the kinetic energy operator
TE is
N z R 2
ZE :a +——*3N-la—+1‘(m}(1110)
j=1 ag? [ 31 g

where L2 (Q) 1is an angular operator in the 3N dimensional space { 36).
Its analytical expression depends o *he specific choice made

for the angular coordinates. The elements of the complete basis




eigenfunctions of L?(Q) and the quantum numbers involved in its
definitions will also depend on the cholce of these coordinates.
Yu. A, Simenov (6,7,37 ) has used for example in the six dimen=-
sional space one of the possible basis defined in terms of the
specific symmetries of the three body problem, Vilenkin,
Rouznetzov and Smorodinsky have given a general prescription to
construct the eigenfunctions of the operator L?(R) (5) .

In this work we use the Zernike, Brinkman represen-

tation (17) in terms of which the operator L?(R) is :

N N .
-1 2
L2 () = z | I sin%j} . {_3_1 + ((31~4)cotge, -2tg¢, ) 2
i=1 Uj=1+1 ad] 3,

22 (Ey) }
+ ' (I1.11)
cos'¢i

where 2° (Ei) is the usual angular momentum operator corresponding
to the vector Ei‘ The eigenfunctions of the operator L?(fl) are

the hyperspherical harmonics (H.H.)
N
™ m (L)L Ly
- - 4 .z j'Li-1
XL, @ yzl(mfﬂ’ PAKRE P ey cazan
=20 0 3
solution of the equation,

{r2() + I.(L+3N-2)}>[/L] (®) = 0. {11.13)

my .
In the expression of the K.H. (II.lZ).)’lg (€j) are the spherical

harmenics and



I

) 4"';—1 2v, T(v,=n,)T(n +1) i 24 Ls g
P (¢j = ‘: 4 (cosdaj) (sinwj) .
L - - -—
] I‘(\lj nj-l-l.j )”nj”'j+
31 ,l +
P (¢=::52~):| ' (1X.14)
with vy = Lyt —1 -

E(anﬂli) n;=0

P:'e stands for the Jacobi polynomial.
The set [L] of the 3N-1 quantum numbers defining a
H.H. in our choice of angular coordinates (I} is constituted by
1) the 2N orbital and magnetic guantum numbers "j and i
my for each vector Ej (3=1,...N),
11) the N-1 hyperspherical quantum numbers ny. (3=2,..N}
related to the hyperspherical angle °j'

L is the grand orbital related to the 11 and n; quantum numbers by
N
L=y @n + 1) oz 0 . (11.15)

The parity of a H.H. in the change of E into -E is
N

PIEN

i=1 L
-1) = (-1) (11,16}



—

IX.4 Expansion of a plane wave in hyperspherical harmonics

One starts from the expansion of a plane wave in

spherical harmonics,
3N_N

N
exp(izﬁj.gj) - (2‘")_7 (i) j7l j(Ej y j (k ).
j=1

=1 ,‘lm

Juoe 30485
(kj Ej)

(11.17) -

where kj and ij. (Ej and ‘:]) are rzspectively the length and polar
angles of the vector ij, (Ej). Using eqs, (II.3) one express the
components kj and cj respectively in terms of a length k and §
and N-1 hyperspherical angles (wj} and {¢j}. Inserting these
expressions in (IX.17) and using the Bateman formula {48 )} one
finds,

3

IN
EL 1,+.__.
2 : 2 z
exp (i k. E ) = (27) 7[1-‘] (Qk)y“:.] (R} ——a—— " ’
2

{II.18)

in which (k, ﬂk) are the polar coordinates of the vector k (k) ”';"N)
in the 3N dimensional space defined by the 2N polar angles Ej
of each vector ij and the N-1 hyperspherical angles {ntk }

3

ks =k sin ¢, ...8in ¢ .COsd ] 0.
3 kN kj+1 kj k

The symbol Z denotes a summation over all the guantum numbers
L
[L] for which 12 (Zni-Hli)— L, (np 5 0).
Now let us turn all the vector k:l in +he same direction l

d(g,q) then kj=¢} and



T

ky =g sinyy... sinyy,, cos oy

> > > >
ij.zj = Z singy...sinw; ) cosey 4.8, = &), (11.19)
j=1 j=1

For any linear combination Z{y) of the vectors Ej' the expansion

of the plane wave exp{i q.Z{y)) in the 3N dimensional space is :

_yla)

. L+ n
expli 3.3(0)) = (2m) 2 >4 \/m (w.q)ym @) g -
-

[zl
(I1,20)

where
L] (L)~ 2.,
- ] ]v j-l
7/ [zl (v,q) 721@ ‘ I Y (q) FL‘ (-aj) (11.21)
J

is a function of ¢ and of the angular cooruinates & of the vector

q only.

I11.5 The multipoles of realistic local N-N potentials

For realistic local soft core two body potentials,
the following interactions are used ( 20:22,35,38.40)
- . *3
@) V(E ) =V g + vy (r..).lij + Vgl 1j’I1;|-51j +

Vo lrgg) 8400 5) + Volry5) 054



- -
B) V) = Volrgy) + Yy ey 0Lk + Vg (e 08 5.8, eV e, 08,4 (F, )

Y VGEG) = Valeyg) Vol 0Ty + Vgtr 0 58, vy 0B (B )

(11.22)
with
a - 3 > > + > +> o+
sij(rij) = rT (Oi.rijb(oj.rij) = 0y.0y
13
= - - 2 - - - = 2 - 2

Lagy = 6,808,553 .8)) (5‘11115+25‘5 3}y

-(Iij.§ij)'

-+ -» - >
Q= 3(ai.lij)(cj.Iij)-(ai.aj)fij=2(Zsij-3)tij-3LLLj

(11.23)

where for the pair {(ij)

Ixj
§Lj is the spin vector

is the angular momentum vector

j+1j is the total spin vector
while 'Ei arethe Pauli matrix of the particle 1.
In order to perform the expansion of the potential in

H.H. one writes the compenents in terms of spherical harmonics

- x m m 2
v lE ) =3 Quan Yy G Ve (11.24)
m

where a labels the various components {(central, LS, tensor...)
of the interaction, £=0 for {C, LS, LL, Q, L?) components and =2

for the tensor force. All orbital and spin operators of each «



t

a_m
component are contained in the operator 0,1 (13).

For the components a=(C, LS, LL, Q, L?) we have
*0a0 = VAT, £,

where =%={1, Iij.s."“, Lbyys Q440 Iij) respectively, while

T m 1 1 2 -

Q.01 = 2% > o) ™) (m-v v -m) a Vi,
v (I1.26)

for tensor force and where a‘:(k) is the Pauli tensor of rank one

in the standard representation,

The Fourier transform a(a) of the two body potential
Vo Eyy) =fa=q W @ewn §.3649, (I1.27)

is defined by

-3 am n J (ax)
Y@ = an 230t us \/,L(q)jI ax x2vE(x) ’(“ - i1.20)
2m 0 ax

Introducing this expression in (II.27) in which the plane wave

has been expanded into H.H. according (II.20), one finds

3m-1 o ® r(k+z+ 3
e 2 : kK
v Eyg) =2 w > Qup 2 -n —
m K=0 T(+ -2-)1'(!(+ =3 - 7)
n . 1 3N-5
@ faaY, @) et f vieo o 2
[2K+) [ 2K+2] [ 2K+2]
F('K'““ + 8oy, e 2, ut) au (11.29)
2% 1 2 2




where as usual the sum " Y. is taken over all the quantum
2K+
numbers excluding the grand orbital 2K+%.

Introducing the multipoles

ay AN, 0 g+ Byriress s
V (€Y = 2. [ V:"(E'.l)u""'2 (1-u?y 2
x reEdraes - Hros
2E (koaek + B -1,00 25 0% @, (11.30)

with the normalisation

a {3N,%)
v, (0 =V (0 (11.31)

a similar expression is obtained for the interaction va(;ij) H

V@ = L E Q1 uvz(;N'(’E;. rtem  (mrs2)
where
w(1,3) Q) - ”“ 7 /dq?'l(q) 2 Y w4 e Y @ aram
[ 2K+8) [2R+2] [ 2K+2]
is a linear combination of H.H, [2(211] . In this linear combi-

nation the quantum numbers % and m are related to the nature of
the a component of the poteptial. The hyperangular functions
£,m -

Ak (w(i']) ) will be used in the construction of the optimal

subset. Integrating over the angles c} in egs, (II.33) one obtains,

2



A

3
T(a+ 'i)

£,m 8(2A1Az)
a '(vli:j)'n) - (_”h'ﬂz pitAital
X TE VAT (2iA D)
(2) hh (2) A2 n
(w P () 7 (E1,E3) (II.34)
2R+4 2K+2 2(A1hq)

where A is given in terms of the 3J symbols by

A(EA1AZ) = [ (2041) (20141) (g1 (’; b 32) (11.35)

while
m M1 B2
- = r— Az=A;-m Ay Az % : -
R 2 ey (‘“ w2 "“)\/x,“')YA (£2) -

2
Hib2 (I1.36)
o (3N,%)

The multipoles VZK(E) glven by eqs, (II.30) have

the following properties :

1) Wwhen the potential vu(;i:l) has a Fourier transform
regular near the origin the multipoles behave asympto-~
tically like

3,038
{3N,0) T (K+ =)N—2—) v, (0

vV (&) ~ 167
2K €23

(II.37)

”K+3(N 1 44

with v, (0) --l—zf v, (x)x?ax
2w °

a (3N,0)
11) The multipole V, (£) has the behavior of the
potential Vu (;ij) near the origin, for instance

according to (II.30} a potential (r n generates

13
multipoles proportional to £ n' {n=-1 for the

Coulomb potential).



iii) When vu(rij) is £
ding to (II.31)

15,

inite at the origin then accor-
o (3N,2) a
Vo (0) =vu(0) and VZK(;);:OO‘
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III. Bound states of three body systems

III.1 Basic equations

For describing the position of three identical particles
with respect to the centre of mass one uses the Jacobi coordinates
f; and E: given in terms of the coordinates ;1 of the particles

(i=1,2,3) by

) El - xi_:xl
- 73 (Fe= L (xTTH01 = /T Ry-R) (111.1)
2

%=

>
(X)+X24Ky)

[N

We introduce the Lyperspherical coordinates (§,8) of

the six dimensional vector f like in (II.3). The hyperradius is
£2 = E: + E: 0K, (I11.2)

# 1s a set of five angular coordinates : one hyperspherical angle
¢ {tge = é‘-) and the four angular coordinates El and E, in the

2
three dimensional space., With this choice the kinetic energy

operator is

T-_ﬁ(_a*.+za_+m) (1I1.3)
m \ag? g g g2
with
2 28
L2(Q) = at + 4dcotg2¢ a2 (II1.4)
202 ¢  sin?¢ cos?¢



-

[

The eigenfunctions of this "grand angular" operator are the

orthonormalized hyperspherical harmonics (H.H)

y _\/ . 7/"“. (Z)P L2.2,
(L] @ = h(!:) ﬂ.z(g’) (6} .

117,

{III.5)
2neh +L,

The symbol [L] stands for the five angular quantum numbers
{n 2y 22 m; m;} appearing in (III.5), Mote that for a grand
orbital L (L=2n+2;+%:) the degeneracy is

p(ry = 22 (L3} (1I1.6)

12 Ll

The Schrédinger equation written in hyperspherical coordinates

becomes :

2 2 2
(H-E)Y(£,0) = {- L{L +24 ,L ‘f’}me,n)-s }ws.n) =0

nlaE? ¢ at [

where V(£,8) is the interaction.
In expanding the wave function ¥(£,9) in the H.H basis

-3
viE.m) = ), 62 U-.[L](s).ymtm ,
3]

and integrating over the angular set € one transforms the

(III.7)

(I11.8)

Schr8dinger equation (JII.7) into an infinite set of second order

coupled differential equations :

-3
Kl vz |[z] £ Uy gy @> =0
o

(ITI.9)
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hif a2 | (ws2)2-1/4 ]
{- :[E " ] E }U‘[L] (E)

+ |Z;1< (g lviE. }’[L.]>U-[L.lm -0 . (I11.10)
L

The radial partial waves Yy (£) are normalized according to

Zfdéluu] @l2=1 . {III.11)

[L] ©

For large values of the grand orbital L the number D(L) of
independent H.H is very large. In order to solve numerically

the three body problem we have to reduce the number of partial
waves involved in the expansion of the wave function ¥(£,R) to
the minimum number of significant terms.

The first step is to couple the spherical harmonics in order to
obtain & basis of definite total angular momentum & of projection

m. It 1s made as usual with the 3J coefficients :

™ La~fy=m [ 2) 2, 2
() =Z£(-1) i (m: n _m) )’m @ . (I11.12)

(R122) 2 mimg

The ground state of the trinucleon system for a potential without
tensor force is completely described by the elements £=m=0 only.
In this case the number of H.X of grand orbital L=2K is K+l
because the parity conservaticn selects only the even values

of L. In section III.2 it will be shown how to select an optimal
subset of the complete H.H basis taking into account the most
important features of a given potential and including the permu-
tation symmetry of the three particles introduced by the Pauli

principle.



(.

III.2 Antisymmetrization of the wave function

The spatial wave function of the three hody system
¥({z2(v) ,2(¢=-1/2})) is written in terms of the kinematic rotation

wactor,
2(¢) = E, sinv + £, cos v . (III.13)

Por y¢=n/2, 1n/2-2n/3,1/2+21/3, one obtains respectively the inter-
distances between two particles (;1-52, . ;,-;;, ;,-;,) and, for
the same values of ¢, z(p-1/2) give /3(x,~%), /3(X,~X) and /I {%X;-%).
We define two types of wave functions ‘V:(.z'(w) , Zle-1/2))
{anti)symmetric (superscript (-), +) according to the parity with
respect to Z(p) + ~Z(¢). Since the cyclic permutation operator
acting on a symmetric (or antisymmetric) function under the
exchange of two particles produces a fully symmetric (or antisymme-
tric) function under the exchange of any particle, we construct
the completely antisymmetric states by taking the cyclic permuta-
tion of the isospin-spin state with the spatial function exhibiting
two conjugate symmetry features. For convenience we construct
the £ully antisymmetric state from wave functions exhibiting defi-
nite symmetries in the pair (1,2) i.e. for ¢=n/2,

The antisymmetric wave function has the general form :

m.m=r 'A)E iz ) Eeo- —))+r ;s) 2 vV G i I
+Z{sinzw r iMﬁ»)-costp r;é"” }"r:ﬂ Z(p) Z (0~ -;-))
Mg _
-;{ sin2y r fl;.l-)ﬂ:osw Lm0 } '1’,2 )('z"(w),i(w- %))
Tz

M. m, me
+zc:{sinw rg?MEHcosw r‘i © } (”(z(w),z(w- —))
2



)

: o P
+ 3 froose S{reste | on) Ju G Ee- I
c ii
{ stno r (M) scom r (u+) } v Geor - )

meS
. {-cosw (M-)+sinw r;ftm) }w"l:’ Eeer e )
2

+

oMM

“‘-;"“s
+ @ T v‘ YZerEw- In. (III.14)
4 ¢

In this expression, 2 is the cyclic permutation operator and
Mg

{k) are the nine orthonormal irreductible representation of
spin isospin states for trinucleon system.

We define three operators I, E+ Z_ acting on a function of the

angular parameter y via the relations :

Tofte) = 2 (£00) + £lo- 20y 4 £(o+ 2T))
3 3 3

L}

g0 = L (28(0) - £l0- 20) - £+ 2T)) (111.15)
3 3

L (£(p- —3) - £lo+ —1)

L £y}
i
We perform the cyclic permutation in (IIX.14) by using {(IIX.15).
The completely antisymmetric wave function becomes :
(0,+) (0,-)
Y(E,Q) = P“(A) .¢S(E,ﬂ) + I‘H(S) ¢A(£,n)
(++) (=)
+ I‘H(M-)NH(E,B) + oy (£,a)
(=,4) (+,-)
+ I‘“(Mﬂf by (EeR) + by (€.}
(+,4) (=,-)
+ r-l;(“"“’u (£.9) - ¢y €,
2

(-,+) (+,-)
+ r,}i(m)w,,, (€.a) + ¢y (£,2))


http://Sj.fi
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(o) (=,
+Tia o) Loy (6,0 - &y (€}

(III.16)
(=,4) (+,=)
+ rh._(m) {8y (£, + 0y (E,D))
0,=)
+ Tyy(8) ba g.Q
22
with the definitions

(0,¢)

0y (&, = 38, (& (Fo), Fe0- In)
(III.17)

(ere) 3 (e )2 * n '

¢u (g.0) = —2- ZE ‘l‘u (z(v),2(p- 5))! €=t .

III.3 General method for the construction of the hyperspherical

basis

To calculate the completely antisymmetric wave func~
tion ¥(£,0) (eq. III1.16), we have to construct a function
‘l‘o(l':) (Z(e) ,2le- %)) which has a definite symmetry (¢) in the
Z(w) + =2(v). Since according to (II,.4) the hyperradius § is
symmetric, the symmetry characters of the wave function is
contained in the angular part which can be extracted from a
Fourier transform analysis. Let be {:(i; ,ﬁz) the Fourier transform

of ¥(Z(p), Zlo- %)) :

vE ) Ee- Pr=fatiatios i Kaexpilks Zwrvka So- P (zraae)

where Zw) =%, sinp + £, cos p = 3,
- D =%y cosv + Lasing = 3 . (1I1.19)



We introduce two six dimensional vectors K and Z constructed
from the vectors (¥,,k,) and (2), Z:) respectively. The veator K
has for components k=[k’+ ]* and the five angles nk-(kl,kz,d:k)
with tqd:k = ng-l- . The hypersphoerical coordinates of the vector z
are constituta?i by ;-[z +22] L 1g2 +£’]i and the five angles

Q= (B1,32,4,) with tap, = J-_:;LI- .

2
We expand o (K, .iz) and the plane wave in hyperspherical harmonics,

(kE)
exp ik, .2+ K2.32) =(2m? ; y[ . ‘"k’Y[L] ta,) L2 — o 2 Akl

(k£)?
(IITZ.20)
and
oK, K) = by K yn.'] @) (rrr.21) ‘
L'l !
The wave function (III.18) becomes 3
J (kE)
¥(3,3) = m;‘z; Y ) o oy o0 T2
2 ke)? (T11.22)

where all the angular dependance 1s contained in XL] (9 }. The
H.H YIL] (ﬂ ) may be projected (appendix 2) on the complete H.H
basis [YIL'] (2)} as follows :

>/ (L'
(1) (8 = [Z:lcm ) YIL.] @ . (111.23)
LI

where
[n'] ]
C z ) = S —i2m Z tcosp) P’ . (ainp) F(-1)B'HY
4 (L+4) (L+3) [ATTA'}
L=A+A"t

(L+4) ) ® * |
(L-A42) 1 (A+2) 1 {-/;mky[“ @0 Y {any 0 >/[ tl mk)}'
=
./dn y[L.]m) Y“" ) y“\']‘“" (111.24) _
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By coupling the two angular momenta £, and &: contained in the
set [L] to the angular momentum 2, the coefficients C [z (lp)

becomes independant of the magnetic quantum numbers leading to
m (L] (2) «h m “ A
Y ey Q P @' Y (&8 (11z.25)
L(RiRy) 8 oo l'l' (85302
172
where B is a normalization factor and

m L1=R1-m f2' R}
- - ——— . 1 ? 1 ?
>/ (£1,62) = E i (L /\ ' (L:’ .
(iehs T m; m; -m
1

1
M (III 26)
The coefficlants are

i -
Qo) =2 z : ' RL o) A (gpnpy A
1ve 2 ARIAINS (L=-A+2) 1 (A+2) 1

Arda

L3 LY L
. }l; A3 A I .A(h];l])A(Az/\!lz)A(E;A,A;)A(’.;Azl;).
|

2 L R2 ’

Az}, A3Ag 1:’-1 1211 12’-1 l P
e PI\ | P ! P < I_P > (111.27)

with A(abe) = [ (2a+l) (2b+1} {2c+1}] } (: ’g g)

and
I ( @
a1 2 2) A))\z 2N\, 122
< P;=*1|P;f“|P§2“>=f a0 P ""”P{“ (1)  (cos9) ?
1]
(III.28B)

The coefficients O]H’L are known as Raynal-Reval coefficients
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The expansion of the wave function becomes

¥, Ee- Iy = E bryy (8) >’m,-p) . (111.29)
2 n L(2122)2

The expansion of ¥{(~Z(¢),% (v~ -;—')) is deduced from (III.29) by

1}
replacing the coefficients Og_?]g;("’i by (—1)"1 [1’5'1_; (¢). Accor-
ding to the parity with respect to z{y)one defines the wave func~-
tion
(e) - - (el ym
¥(2w),zlv- =) = E by (8 (2,9) . (III.30)
L2122 L{2:22)%
Lm
(el ,m ILI (2)y 2, 1' L.
with (0) =u E P y (By,Ey)  (II1.31)
L{f1%2)2 1'1' (212518

18]

where e=% according to the even or odd parity of %!. To obtain the
expression of the completely antisymmetric wave function (IIX.16)
it is sufficient to know the effect of the operators I, I, and Z_

on the coefficients O_[,LI.'L. {v)., One finds
1%

(4] .
Lo 0.,_.,,. (p) = I, Z {sing) ™ A (cosnp) D 2?]11;\1\
AA?Y
A
[L)oa’ ( 1) 2 “1 [L)AA?
-2 DI + > 7Dl
AtAevengo
£ Olm () = (-n+l 1L Z 3!2\' -1D [LIAAY
+WAergs . . L
A’ Aeven
A
[1] A,
= L4l pl-L 2 {LIAA®
g ) = 0 : 3 ' . (I11.32)
-al:EZ Z ﬂ_ly_;
AT Aodd



-

in terms of the coefficients (see egs. II1I.27)

s 2, Ay AL
L]
Dibth'=2 z -1 M M'——!z, AL Ae | AGAMAJRIIB(A2A]R,)
1%2 2 ATR: (L=A+2)t (A+2) ) TR
MiAg
[ 2 | [ ) [ 4
A(l:é\ﬂ;)“’-;h”)‘P:”'|P:f""P:”)“ P;zllleihlP hh,_

(III.32)

III.4 The optimal subset and potential basis

A potential independent of 2 is hypercentral. It is a
function of ccordinate the £ only. A sum of two body interactions is
not hypercentral in the six dimensional space (except for harmonic
oscillator potential) because it contains hyperspherical defor-
mations described by the various components of the H.H expansion
of the potential. These components in turn generate hyperspherical
deformations in the wave function. When the deformation of the
potential is small with respect to the hypercentral term, it
seems justified to use a perturbation expansion of the wave func-
tion in texms of the deformed part of the potential. Assume that
a state ¥(%,s,t) is described to a good approximation by a wave
function ¥, (£,8,t) in such a way that <y|y;> = 1, One defines an
optinal subset with respect to this state by stating that any
element ‘rk(E,s,t) orthogonal to Yo (E,s,t) must fulfill the

condition



<l Vednwes =fdﬂ e Vdvads,e po. (11.34)

In this case the exclusive use of the vk(t, 8,t) subset enables
one to take completely into account a perturbative calculation
up to the third order included. In the hyperspherical formalism
Wo(f,s,t) 1s the product of ¢, (E) and a H.H B,{fl,s,t} fully
antisymmetric. The slements Bk(n,s,t) of a hyperspherical optimal

subset with respect to By (fi,s,t) must fulfill the conditions :

ﬁn BR(6,8,t), By, (Q,8,t) = B
(I11.35)

ﬁn BR(9,8,t) V(ERB (R,5,) # 0.

For determining the “hyperspherical state" B,{Qi,s,t,) describing
the ground state one uses the general theorem which states, that
in the case of hypercentral potentials the grand orbital L is
mini~al for the ground state. This property remains valid when
the potential is slightly deformed 1.e. when the first term K=0
in the expansion (II.32) of the potentials is largely predominant.
In the trinucleon system the minimal value of L is reached when
all the nucleons are in the & state. In this case ['min=° and

the hyperspherical ground state By (2,s,t) is a product of the

completely antisymmetrlc spin-isospin state and yl(ﬂl) l.e. :
0
Bo(Res,t) = T ) Yo =132 . (I11.36)
It 18 clear from the conditions (IIX.35) that the optimal subset

depends essentially upon the nature of the interaction (i.e. two

body or many body forces with or without exchange properties,
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central or tensor interaction...). The potential is an even

function therefore the H.H expansion,

V(E,0) = E O szm) vzx(z) (111.37)

K=0
contains only even H.H (1.e with grand orbital even), a—zx are
constants, The H.H sz(n) of grand orbital 2K which include
spin-isospin operators (3,?) is an element of the so called "potential
basis* and sz(E): the multipoles of the potential are scalar

functions of §.
The conditions {(III.35) lead immediately for the
ground state r“(A) 7[01 (9) to the H.H optimal subset,

Bzx(ﬂ,s,t) = Coy szm,a,‘-h r“(m (III.38)

where sz are normalization constants.

III.5 QOptimal subsets for central and tensor forces

The H.H expansion of the completely antisymmetric wave
T)

function V¥ MT {£,9) of the trinucleon is made by using the
(LS)JMJ

potential H.H operator {II.34} symmetric under the interchange

1 + j for & even (2=0 and %=2 respectively for central and tensor

potentials) therefore the complet ey antisymmetric wave function

(IIX.14) is restricted to the components,



Lo

(0,+) t+et) (=)
V(E, D)= T R) 05 (ER) + Ty (M=) &y (ER) = T, (4+) & (EQ)

(+,4) (=,4+) (+,4)
FTL) by (BR) 4 T a ) by, (ER) + Tgy (M) by (E0)
(=, +)
+ Ty, (08) bl (ED) (111.39)
2

The isospin-spin functions T'(R} for R=(A,M+,M-) must

be combined with spatial wave functicns of conjugate symmetry

R®=(0,~,+) generated by the operator defined by eg. (III.15), Then

we define the orthonormalized elements of the optimal subset,

R m r* . ,' A z,z,
_lew.(m -'N 2K+2 Z (-1) 7 /2LA T4 o 00 o
219,
(2)pN222, m - -
(¢). (E1,E2) ' (II1.40)

2%42 (2,9.2)1

R
where N Jk+g 182 normalization factor. In the (£S)JM subspace

the completely antisymmetric function becomes

x
THT RTS -5/2 R HJ
(E.Q)= P (R U (€) & (T o (RI® 1 (ITZ.41)
Y(ES)JMJ % TS U U2R4R TS B2K+l J

the coefficient pTS(R) =tl according to the construction (III.39).

To explicit the tensorial product appearing in eg. (III.41), we

m,
use the following expansion of the isospin-spin states 1‘:: s iR}
Mg .
Tog (R) =z: bg{(R) | (s$)smg>| {t)mm,> {III.42)
st

whery the coefficlents bl(R) are given in egs. (A9-Al7).
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The elements of the optimal subset in the (15)JM subspace take

the general form :

x : ]
R M; R N sMy . . .
[ Fpg (R) @® Bz:‘cﬂ )y = N.“ﬂ Y, vtm - TS .

llhatmms

k2, %, (2) %22, (2)
[ (1lj)
(D o o )( . ){ > Pmi" ); P(«p)l(z.zmm (s4) Smg

(H)Tm,r> . (IIX.43)

The use of this optimal subget enables one to calculate the tri-

2,2 2,4

nucleon states ' s! for 2s0 and D! for f=2,

The contribution of the two components of the 2.2

Si state procee-~
ding from the space completely symmetric and mixed symmetry states

(in choosing the pair (1,2) as a reference w(l’z)s-n/zl is =

(€)= Z T,,W. sz(m Sy T

Mit s
Z i"“’P‘""Ti‘"*’P‘“’ gl6) €1

(III.44)

(0!)“

in terms of the orthonormal H.H

p & = TR p@=N Z szu/z) Pm ZY;‘WY )

2K
(III.45)
in which the symmetry is introduced by the function
Epw &0 (2}~ 2,2
w) =Y w . (111.46)
2K . 2X
X
€ it
EN 2o (2 sz 12 (111.47)
K
2K gmp



is a normalization constant.

A similar expression is obtained for the wave function of the
2,4q

i state
Yin -E o dho kD)
(E,2) = £ w2, (f) = { (€) 1 (04)im> +
ahn e w2 g 2K+2 T
(-iD (8 [ (1}) imy>} (111.48)
+ im,> III.,
2K+2 e
with
(€) E € Lely  (2) 222,
= 1.3 (2 y ‘1) F {1/2) (6)  <iiis)
‘szn N2x+z ;“ P\oo 0 2K+2 Ke2
fiei22)2; (1) gs 88> . (111.49)
and the normalization factor.
€ =2 E 220
= (28,41} (22241) (2 L1 ‘} (n/2)12 (III.50)
2K+2 Z ! : 00 o0 sz...z

2182

III.6 The coupled equations for local realistic potentials

RTS
The partial waves u (£ of the H.H expansion of the
2K+ 2
trinucleon wave function

M ™, RTS _ s o ¥ ,
y _ $ 3
Ya e = Zz I (es) gm E01= Z Pps(R) 1 (E) € TR Bgl,_la
ST

KRSTL
(III.51)
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are solution of the coupled differential equations (III.17)

:. e R
dg? g1 2K+8
] x
R R' '
",[\g) pT‘(g:H[FTéR)Q B 2x+tla V(m)“r!‘,],‘;),@ BZK'+£']J>
R'T.s.

AL (E) (11I.52)
2K'+4!

K'R'T'S'L?

*
me R
The expressions of I‘ S(R), B (2) and V(E,Q) given respectively -
2K+4

by equations (111.42), (IT1.40), (11.32) lead to the set of coupled . |

equations .
RTS |
{_ g[L _ {2K+2+2) 22 ]-z U_(e) + !
mlag? g2 2K+ {
" (2K'+2*)R'T RIT'E’ '
= C (e v,87) 1)’ (5 RRY | &) =0 (111.53)
K"K'R'T'S"’ (2KR+ 2K'+2"
sea'e'ity (2K'+2")R's'S'T
in terms of the coupling coefficients C (R, v,") given
{2K+2) RsSJ

L

in appendix B. The potential matrix UZK" (§,R,R') is given in

appendix C.
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I1I1.7 Coupled eguations for a velocity~dependent tential

During the past and more recently in Orsay several
authors (40) have shown that velocity dependent poten-
tials could give as good fit in the relevant two body data and
nuclear matter in nuclear physics as the hard core potentials
( 38,35) and also the class of super soft ¢ore potentials
(35,22,20). It is then interesting tc analyze the static and
dynamic properties of the three body problem with these less
conventional interactions. However the corresponding equations
in the hyperspherical formalism are not obvious.

In the general case we must determine the matrix

elements of the two body interaction V(£,) appearing in the
equation (III.52) with a velocity dependent term which reads :

v:

iy v (x:ij) +  w ""n'wij . (III1,54)

To avoid cumbersome calculations we give the method for the part
of the optimal subset corresponding to a central potential
(I11.45). Then we have to analyze the action of the operator
{III.54) on the set of hyperspherical harmonics contained in

the b '
2K(2410

. . pu Ryn, n*,
Q) = P (9 Z 7’ (€ )y (E2) . (T11,55)
sz(u)o /2051 x Ao S0V

Choosing the particles 1 and 2 as reference pair, E|=§z-§; the

velocity dependent operator becomes,

- 2
i wEnEndl 24w, 2 dv  de 3 ez . (11.56)
! Voagl & an &g e !
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We symmetrize the two last terms of the previous formula accor-

ding,
B2 e - 1w € {(.1._9__+Ld_+1_2_-1_§_)
agy 3L, 2 ag €1 ALy & A&, Ey dgy E2 &

+ w(ky) ltv‘ v‘ )+(v2

2
€ Vh)l . (III.57)

With this expression the action of the operator (1II1.56) on the

H.H (III.55) is :

00

[VEI m(rl)m(sn)v’]y (o) =”—— Z (K'+1) ZIE?)

2K(22)0 o

{ ;Kgi)o [uz(;:mmz(;z G %E m;?!m (—:fz- +§:—€ - ———‘“";jz’ )]
. , (0 3 (0) 32
- aK 7/2(““(?)(")0 [‘*’ZK' (&) (E E +2K)+‘”2K' (£} {a_g;
S ___4x(x+1>}]
£ 3 £?

(1) » 0) aR+7 3
- )] [w (&) (.E _— - 2(K+2) + (E)( + — =
Qg1 \/2(1(-1)(11)0 X! Y3 2K g2 £ 3

, 4iKs1) mz))]} (I11.58)
52
with

1
0'; 1 [(x+1+2) (K-z+1)] K> L
2 L e e

(0)
w (Ey) = w(E,)

(1 ()
w () =2 ey
2g, 4k,

(2 2 (0)
w (€1 =("—— + 2—“——)... (£1)
dEf £: 4&,
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)
whex:euzx(il are the multipoles of the corresponding potentials

oy,

are 3

The matrix elements of the velocity dependent potential

<ye ¥ Wi sulE) T} = F w6 =
72““)9| ’ ! |7’zx' (22)0 2x!

i, ) (2) 22 (2) 00 (2) 22
= E (K7+1) {"’zx"" [‘ 2 2xe! sz
K"=0
L@ L (2) et : (2122 (2)
3

Oy 2(x'+1)‘o1<'-1 2(k'-1)> 25t * < sz 2K"

¢ (2) (2) 15
Qo (243 Pz(x'+1)' O'K'-I(Zb!('-” 2-1)” 50

_ <(Z)P

)

2) 28

22 (2)00 (2) 22 a {
2kl sz"lbx'(bx'”’ agr HUg (bgitl) (b, +3) 2(K'+1)

[ (2) {2)y2e {2)
- 1
+Qgi_; by Bei-2) 2(x'-1) = ] alley < Pyl P |
(2} 9- (2) <22 2 (2) R0 3
sz' qu('ﬂ)'ax'—l Pz(x'-f‘: o
(2)y 2L (2)P 00 5 () a (2)
- xl T 2xel3 zl('+ k' Pged) 2(k'+1)”
2 (IPEI
“Qgion) Bt Pagea
(2) (2)y 22 (2) 00 (2)py 22
Hugen (§) < sz’ 2x0 | Pzw’ Upr (B0 (1II.59)
where b, = 2K+ 3.
K 2
To obtain the coupled equations one reconstructs the
optimal subset {I11.45) in terms of the ¢ Q)

2K{22)0

]



{e) (€ _ s
‘szm)lvglm(a.)m(mvgllPZK. 2677 uylE) =
min(K,K') !
€ e! € LL e A8
Nox N & (22+41) oy 2kt < Yircaayol 75,060 +
- &
W€V Y S (weyo> & T ugge (&) o (1I1.60)

leading to new coupled equations.
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IV,1 convergence of the hyperspharical harmonic expansion

The convergence trend depends on the nature of the
shape of the N-N ilnteraction. For studying the convergance in
terms of the number of solved coupled equations, the completely
symmetric 8 state only will be investigated for the sake of
simplicity. It can be extended without ambiguity to the other
S' and D states, In the coupled equations (III. 53} relative to
a central two body potential with the fully symmetric wave func-

tion only, we separatez out the main X=0 equation writting :

{_ P_’[gL - v;,:!]+u(€)-3} up (E)+ Z (-1)K<x|x|o> 1);]((5),,2‘(“:#0

mlag? K#0

2
ne gt vy =t K Ko Y _
g-[— el ]+UK(€)-E U )+ 3 =0 ek x> Uz—x"‘g’“éﬁl“’

K'#K
K" . (Iv.1)

vg = 2 (K+1)

2K
while <K|K"| '>= CZK(K",O,DI is a coupling coefficient and
K "
U c®r1= Z -0 ¥ <k x> U’zx..(g) is a diagonal term of the poten-
X"

tial matrix. One introduces the change of function,

ugylf) = Gyp{8) ae (8} (1v.2)

with G ()51

leading to the new equation eguivalent to (IV.l)
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2 - 2
K(E){- —-[" - i-i]m(z)-s}u,m- &g &) A ug
m 4§ ag

ag? g?
[ % 3 \JK-\).O] ])

£) (———- (5)-w G )+

+uo { { m[az* o [J §)=W{E}| ) GyplE

+ E <RIK"lx'>1);xu(:)cm.(c)= =0, (v.3)
Rll

K'#K
where W(E) is an effective potential acting on the main X=0

partial wave according to

{ "2[‘; - ]"’W(E)-E}\IA(E) =0 (1v.4)

In the equation (IV,3) one makes the following approximations :
2n2 4 d

1) the term o aE GZK(E). at u, {€) 18 neglected
because the major contribution in u,, () comes £rom
the vicinity of the point § where the partial wave
ue {£) 1s maximum i.e. where gE up {£)=0, (notice
that according to the numerical analysis the partial
wave ug(£) contributes around 98% to the total wave
function).

a2 1‘ K
: the terms T Gy (£) and ( K(E)-W(E;))GZK(E) are

neglected with respect to the centrifugal term
n? Vk~Vo
= T for large K values.

Taking into account these two approximations (IV.3)

becomes

0 (Iv.S)

h? (VK vi) . s
b o E <K|K"|R'> U;K,,(z)czx.m
K'#K

with

Gol(E) =1 and vi-vi = 4K(K+2).
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If one neglects Goyr () in the last term of the previous equation

with respect to the unity, one obtains :

(6) = - I g SKIKO qf (1v.6)
h? 4K (K+2)
introducing GZK(C) in (IV.3) one obtains (IV.4) where the effective

potential,

wey = Vi - £ KIKIOE 145 (5 (av.n
4h? %320 K(K+2)
contains an estimate of the effect of the partial waves K#0 on
the binding energy E and on the main partial wave u,(f).
Assuming that the system of coupled eguations has been
solved numerically up to a value Kmax’ the missing energy with

respect to the exact value is8 given by :

1 2
AE = - <up |2 E sklkjo>? & '\J’zx(g))=|un> . (1v.8)
4h? K=k +1 KiK+2)
‘max

The convergence trend proceed from the variation with Kmax of

et 2
S KR! o qf ) (1v.9)
=K +1

K(K+2)

which depends on the shape of the two body interaction through

the multipoles

. 327
UZK(E) = ET / Tokep (9E) V(q)dq (IV.10)

where l\f(q) is the Pouriler transform of the two body potential.
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a -~ Yykawa potential and Coulomb potential

The Pouriler transform,

.

2
Vol =¥ 1 .V L o, LB,
b4 PrT) qt+u? 212 gt qt

of the Yukawa potential

e "Tij

V,ir.y) = v
y' i3
Ty

generates an expansion of the multipole in term of p?

eV - ‘—"'1{ 1 - uZe?

which in turn provide a convergence trend

+
(k+ 1) (K+1)  4(K+ 1) (k+ $) (R+}) (R=})

39,

(IV.11)

(Iv.12)

y

(Iv.13)

2

=
Z <k|K[0>2 16V} [ 1 - uz?

K (K+2) n?
KoK +1

the first term corresponds to0 a Coulomb contribution because

Volr;g) = Lim Vo(rg) .
us0

The convergence trend of Yukawa potentials is therefore very

(K+ ) (R+3) 4K+ £) (R+ ) (R+1) (K=]) ]

(Iv.14)

similar to the cone of the Coulomb potential because the second

term proportional to £? decrease like K™ and gives weak correc-

tion with regard to the Coulomb term. The coupling coefficient

th

between the first and the K equation is roughly (12)
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<k]K|0>? = L (ke1)?

w

leading to an extrapolated missing energy

2
AR = - 4"‘:"02 <ug|ug>? E —t (v.15)
Ir?h (K+1)
KoK 4L

f -~ Gaussian potential

The multipole

Q)
= 2V =P
Vog (6) = . e " I, (Iv.16}
of the Gaussian potential
—r?, /b2
1 {1v.17)

Vc(rij) =V, e

is expressed in terms of a modified Bessel function of the first

2
I (p) with p = —5- ,
K+1 ap?

The potential proceeding from the terms K>K .. in the

kind

main equation is

o

2 (6) = 2 2L
= ]: o ) (Vg 3 = (K(K ekl el ZDI:(u(”’
L K{K+v 5 - K (K+2) p
K=K 41 K=K+l
(IV.18)



using the approximate ratio

<k|R{0>* _ 1
K(K+2) 3

and the relation

41,

o
2 2
To(20) = T500) + 2 ) Thie) (1v.19)
n=1
the convergence trend becomes
Kmax“
e = -2 2 b2V <uy|T5(20)-T3 (p) [wg>~2<uy | 12(20) Ju,>
3y vy
(Iv.20)
y ~ Shell & potential
The shell & potential ( S2 )
Vs (rij) =Vy a G(rij-—a)
generates multipoles
8) [} for r < a
(Iv.21)

Vox (8) =

8 X! -1 2,22, Pied 1.2
- Volag ") (1-a’t ) (1=-2a’f )
T ($ +K) ! PK

r>a



which contain a Jacobi polynomial P]*(:% .
For large value of K one uses the asymptotic expansion of the

Jacobi polynomial,

bl -1 -
P“(I-Za'i, LI 2JE sin2kab . L bgnozkar”t. (.2
Kom n 2aK ¢ /K7 a

Therefore for K large enough the multipoles become

() 2 ) .
lim {6V, (017 —i. (M) (at 2 (1-ats Y aintera”, L
K (K+1)K L
Using sin?zaki™! = 1(1-cosaka™'), one notices that the last

2
oscillating term does not give any significant contribution in

the average. The convergence trend is given by the first term

only.

(3) 2 -
lm (2Vyy (8))7 —— (i’lﬁ) ag™h? (1-at™2 (1v.23)
Koo 2K(R+1) \ @

2 - .
= (5‘”—'3) (ag™h? (1-a% 72 ‘[ C (- ¢ (3)] -
n

K
max :
- ?: (‘—--L)} (v.21)
= R? K3 -

where C{N} is the Riemann function.

The missing energy is

R -
AE =-a(¥lﬂ> <uel tag™2)? (1~a?57?) [u,> Z <k|xl0> _1

K(K+2) K{K+1)

¥pax*!
2 w
se= - & (Vﬂ) <uo| t2g™ Yy 2 (1-a%£72) |u,> E ; 'z‘“—l . (1v.25)
3 \rh X2 (K+2)
Koaxt?
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§ - Practical extrapolated missing energy formula

In order to estimate the extrapolated binding energy,
we denote by E(K) tie energy corresponding to the integration of
coupled equations up to L=2K. It has been shown (12) that the
behaviour of the hyperspherical coefficients generates an increa-
sing of the binding energy which is of the same order of magnitude
for the K=3n+l, K=3n+2 and K=3n+3 partial waves. Then we define

the increase of binding energy
AE(K) = E{K) - E(K-3)

For Gaussian potential (Vx, G2, GPDT,...) the exponen-

tial trend of convergence is (13)

AE(K) = E(K) - E(X-3) = ¢ e &
leading to extrapolation formula
AE(K ~3) -1
= - _—____max -
E = E(Kmax) AE(Kmax) AE(R ) 1 . (IV.20bis)
max

For the Coulomb and Yukawa potentials, the increase

of binding energy behaves like (13,53)

BE(K) = E(K) - E(K-3) = -(ak+m) % |

leading again to the binding ‘energy

-3

= _8 -y in-2
E = E(Kp ) + " AE(K, L) (1-p) T 01 3) (IV.15bis)

with p = [AE(Kmax)/AE(Kmax-ﬂ]%



IV.2 oOne body density and two body correlations

The one body density R, (£;) and the two body correla-

tion function Rz(fu) are respectively given by
R (E)) =flv(E,,Ez)|’d=51 i3 (1,3=1,2), (1v.26)

One uses the trinucleon wave function with 2'25! and
2'4D. states, Taking into account the orthogonality of the spin-
<
isospin state of the trinucleon wave function one writes the

densities Ri(Ej) as the sum of five components,

Z y=pi® 13,04 (=) (D+) (D-)
R; (£)=Ry (Ej)+2{a1 E04Rg ™ (E+r P () 4my (Ej)} (1v.27)

where

- o} aii min(K,K")
(e) oz nqs € € -5 3 2%+1
Ry (r.j)-fc.idt,i § Byp Noge £ 2Kt:)uzx. &) =

0 220
£t Em 22 (2N 2,2 (20 &,
Fom F e (4) @ (1v.28)
2K 2K! 2K 2K

for the 8 and §' states in which the parity of ¢ in the sum is
even for €=0,+ and odd for e¢=-; o«=5 for €=0 and a=m for e=i.

The contributions of the D states to the densities are,

LoV - T, 10 2 (22,41) (22,41) {2 &1 2;)2
2K+2 2K'+2 1612 00 O
xx' [ 3% 3
n 228 N %2t -5 m,— (2)~22,21(2) 22,2
(r/2) L2 7w té) w b (%) (4) 4 (1v.29)
2K+2 2K+ 2K+2 2K'+2 2K+2 2K'+2

for n= +,-
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Introducing the two integrals,

I (ﬂ-rﬁl)
L,L’

La, Ry (2) E: l) (2) P2 k2
1<af£z)-f ' 25 -n P lil

L,L'

45.

2 2 21,8 2 21,2
12 (2) 1082 _2_{1 - ( )P 10822 _54_ _1)(5 §] u(b;)uc(lg)dg
P

1)1-5—5-— u(s)u(s)ds .

(1v.30)

the components of the one body density and two body correlations

functions become,

nin(K,X')

(e) €
R (e)= 1 LY owy Sy Zl (22+1) (n/z) F(w/z)J (ot

T ORK!

Dn
Ty 2 2 4
Ry (E)= 161:22 2,“_2 Nzx'+2 E (2h+1)(zzz+1>( ! ‘)z
»

R1f2
N 22,0 222,
F (1/2) M3 E5)
2K'+2 2K+2,2K'+2
L2284 28,
with J, e = o1 ateen

I3

%28, LIRS )
Lo (@eg) = (=¥

1, g largo).

N2z

Fasa
2K+2

(1v.31)

(Iv.32)
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IV.3 The electromagnetic form factors of 3H and 3He

The non relativistic charge and magnetic nuclear

form factor F, {(q) and Fn (q) are given by

T 3 .
3 +T3JFc'(q)=<WIlgl[%uﬂz(mfcp(qn FUm1, U EN ()] exp tEG,-R) |1,

(Iv.33)
and
Tz 2 1 P ’
Tx (q)=<vliz;:1l—20=m (e (AT £R()+ .
+ 3 0,0) Q=T WNT ER@)lexp 1 G, %) |¥> (1v.34)
where T = % for 3l-le and T, == % for 3I-I. I‘T is the magnetic moment

( z
of the nucleus.fs (:;q are the charge (magnetic) proton (neutxon) fomm factors.

The electric form factor is given in terms of the
scalar GES(q) and vector GEv(q) nucleon charge form factors by

14.2,/73

-
3 tz _
(5 4T, IF (@) = 3<¥](Gpglq) + GpylmT,(3))e |¥>,  {(Iv.35)

where a(;,-ﬁ) = a.E,/ﬁ .
Using the completely antisymmetric normalized wave function (III.44)

-t

‘ 04} L +33 i
¥(,0)=¢ (59].['“(1\) + 72 [¢ (£EQ) T“(M')'&P (EQ) T%E(Mﬂ]

+ 4 -3
+ ¢ (E;ﬂ)r_zl; M=) + ¢ (eR) T, (M+) 5+
2

&l

-;jz.

+

ol

+id
{¢ '(;,mriimq + ¢ “'“”;i“‘“’} . (IV.36)
2 2



The electric form factor becomes,

T
(§ +T,)F_% ()= (36,5 (@) 42T, .Gy (a) ) <b| e

1
033 +44
Ble - e

+1}
"ZTzGEV(q’_SZﬂ ¢ |e <4

-33 i -3d _ +3d
+<0 Cle Do 5)=27,6y (@) (2/2<6 | @
- -+

T -1 sy 1 +1
26 “te Blo se2c e Bl

(1Iv.37)

The two last brackets of this formula contributes only to the e

electric form factor. The various amplitudes <p je

i »
73| RT'S’,

are simple expressions of the hyperspherical coefficients calcu-

lated previocusly for central forces (B1l4),

.

* faaz =
R*rs r'¥q1ge
@ le s ’=°Z -0 ¥"
L,
s 90010 pitpg
Y oxer ey Yokteg

where q'= € and
/3
x 3 (a'E)
KT Taried l

un"r's /” uR’(‘T)s
2Rz >e [ a u
e Ty | 2K J ne

It is worthwhile to notice that in (IV.35) only the spherical

u

(2K'+2)R's53

(x",C,0)

(2K+2)RsS}
», J{g’E)
RUT'S “ofeln
2K'+L (q'e)?

(Iv.38)

(IV.39)

term £=0 of the expansion of the plane wave in spherical harmonics

contribute.
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IV.4 Two body photodesintegration of the three body system

The two body photodesintegration in which the trinucleon
is broken into a deuteron and a nucleon is treated in the dipole
approximation, In the Born approximation the final state w.ve
function is the product of a deuteron wave function and a plane
wave describing the outgoing nucleon. When the tensor force is
taken into account the deuteron wave function contains a D state
coupled in the final state with the spin of the single nucleon
to generate a J=; total angular momentum. In the plane wave appro-

xXimation the final state in the C.M. system is :

uig )
. _ 2,1 , . B 1 0,2
teth =37 wed g =— Z{\ 1 img>| (L) > —2Y 0y )
13

/3
c o]
- 44N 3 . wiE, ) m
? J 2 5 3 i 7 1)1
DI %) (m.;n. _MJ> —el \/,(zij)](o‘,)mT>|<1,),% m>
mm' ij
cexp(t K2 , (1v.40)

where Eij=§i‘;j and Ek= /?(;k—i). The sum is taken over the cyclic

permutation of (ijk) and the final wave function is normalized

asymptotically to one free particle per unit volume.

The dipole operator written in Jacobi coordinates is
)
TE !-o » -+
D = ie [—l] e.(€ar, + BaT ) (Iv.41)
6

where the isospin operators 71, are combinations of the individual

1y of the nucleons



1, = 1,00 = Flr ()4 (3))

l’-—z (141 = T,an

(IV.42)

-
"

e is the proton charge and € is the polarization vector which is
taken along the z axis. The initial state is fully antiaymmetrized
therefore the final state wave function may be specified for
the couple (i=1, j=2) which corresponds to the Jacobl coordinates
£, and &, .

The dipole photodesintegration differential cross
section is

do = :—: | gyl (®) = ';‘:f——;—’ IDg;1? & (1v.43)
where Dgy is the dipole matrix element between the initial tri-
nucleon ground state and the final D+N state. The energy density

of fipal states is

s k i
o(E) = 8% _ _mkdk (IV.44)
(2m) aE 2n?(2m)?

and the total energy of the system is conserved according te

hzkz
E = Eq * _m = ET + EY ’ (IV.45)
hZx?
where Eg is the deuteron binding energy anrd = is the kinetic

energy of the outgoing nucieon in the center of mass while Ep

is the binding energy of the trinucleon at rest and EY the photon

energy.
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The effect of the dipole operator D on the function

e tBrola) is
" nE 7} -
Ov ¢ (€1, Ba)=6T, te [—67-] {:hw,(tx R AR i/l-g [us_.i Yiéa.
[$}
- 3 m .
1O 1) dmg> | (13) 4o+ '(-1)“ vz (fn z, _;J)[ﬂi—:l] Y R0 03y my |
o :

(m,lmw]}.expu ¥.22). (IV.46)

whare u(€,) and w(f,;) are respectively the & and D state deuteron
wave function. ‘' ne trinucleon wave function contains the fully
symmetric S state, the mixed symmetry S' state and the mixed symme-

try D state. It may be written in the simplified form :

o) (+) (&) .
pEnt=ray ¢ (g, B 175—{”:4-) skl e -ram ¢<s,,t~;n;
(+] (-) '
+ /—-;{I(Ui).mTWD(%uEz) + (13 img>. ¢D(Ex,tn} ) (Iv.47)
leading to the f£,llowing expressicns of the dipole matrix elements :
TE 3 1
<¥oD|¥e>=3(2T))ie [—61] Hpley, I¥e> + v <?Tleuli -
0 . _ 1 2 -Mym N
S Y@ 101 g | 03114 V2 (j I, i,,) SILERPAYY —E-L-"‘El’

£1 p—yd

. {IV.48)

ik.§
Hon img | ang s e )

A more compact fr rmula is obtained in terms of overlaping functions :

Yo |Dl¥er=n? 7: Yk e EY.(zrz).fsz ag, 3 (kgz) .R (€2) (IV.49)
0
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where

R t£2) = Ry (L) ‘?2 (R} () +RT (£2)+RT (L)) (1v.50)

is a sum of the overlapping functions between the deuteron and

the trinucleon system :
n 1 s, nten M
R (E2) = = fa’F, ¢ (1,20
van &

L Y "F((w/z)fa ae, PP winelipers ¥
= — N " £ ¢) u(g;ln n=Q+(p=S,m)
T x® T o T X !

i

Tt L F( Y, )fs ae, PP s e e
R = n/2 £ ¢) ulgy)u
1(82 o “ - Nox 1 e IR P

mit

. N . +00,2 j' (2) 0,2 -

Ry (§2)= == N (n/2) £1dE (9) u (£) w(£1)§

T ; K+2 F2x+2 § K2 2Ke2
(Iv.51)

The differential dipole photodesintegration cross section in the

Born approximation becomes :

Qo . h:( )ks 2n’ |Y (k)l’[/ s‘dsm(kaz)R(:z)] . (1v.52)

ak

The total cross sectlon is deduced by integrating over k.

> 2
o= (e—2) KE, 2—:5 [fs;dzzj, s R (m] (1v.53)
0

w2 \he
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V. Results and discussion

A large number of trinucleon calculations have been
done with wave functions extracted by various accurate numerical
method from the non relativistic Schridinger or Faddeev equations
using realistic conventional two body forces. The various
"realistic" wave functions obtained by this model are not similar
and do not reproduce accurately the experimental binding energies
and r.m.s. radii of 31-1 and 3I‘Ie. The most accurate test of the .
quality of a wave function may be provided by the comparison
between the Fourier transform of the charge density and the
experimental form factor in spite that it does not give any infor-
mation about the two body correlations. It is difficult to
decide whether the discrepancy with experimental data is due to
the unability of the non relativistic Schrddinger equation to
describe the nature or to the conventional approach of the two
body interaction.

For these reasons a part of this section is devoted
to an analysis of the influence of the strength of the repulsive
soft core upon the form factor, the charge density, the two body
correlation function and the photodesintegration cross section.
For this purpose two body model interactions with quite different
soft core have been chosen giving the experimental binding energy
and the size of the trinucleon. Doing this way we do not expect
to deal with interaction in agreement with the two body data
nevertheless our medel potentials are close enough to the realis-
tic interaction to be able to predict the effect of a similar

variation of the core occuring for realistic potentials.
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The other part of this section is devoted to an
analysis of the binding energies, sizes, charge form factors
and dipole photonuclear effects provided by the wave functions

extracted from conventional realistic soft core potentials {20,22).

V.l wWave functions and electric form factors

V.1.1 S wave potentials G2 and W

To study the influence of the core we have chosen
the model potentials G2 and V® ( 13 ) ; both potentials are
central and constituted by a sum of two gaussians for each of
the triplet and singlet even states (fig.l). In contrast to the
vX potential, the G2 interaction has a very strong repulsive core
and to simplify the three body calculations, the tensor component
is omitted. The H.H. expansion is limited to the use of the
optimal subset including only the first partial wave of the mixed
symmetry state (L=2). This restriction leads to neglect about
0.1% of the mixed symmetry state. A total of 13 coupled equations
have been solved in order to obtain the three body binding energy
within and accuracy of less than .1 Mev.

in fig.2 and fig.3, the °H and 3

He charge form factors
are plotted for botn potentials. The slope of the form factors
for 2ero momentum transfer (g=0) and therefore the r.m.s. radii
are in good agreement with experimental data. However the core

of v¥ is too weak to enable one to reproduce the first minimum

|
|



of the charge form factor at the experimental point in contrast
with the result obtained with G2 potential. We have to notice
that the good order of magnitude of the second maximum (around
q=16 im-z) is not obtained. Nevertheless the stronger is the
core the smaller is the position of the minimum and the larger
is the magnitude of the second maximum of the charge form factor.

In £ig.4, the partial wave L=0 (fully space symmetric)
and L=2 (mixed symmetric) for G2 and V* are shown together. The
asymptotic behavior determined only by the binding energy is .
the same for all these partial waves which are also very similar
around the maximum near 3 fm, probably because both potentials
produce the same mean square radius. The difference appearing
for small { proceeds from the strength of the core.

The very similar behavior of both the L=0 and L=2
partial waves subjected to the constraints of the binding energy
and of the size of the trinucleon system suggest that the diffe-
ence between the wave functions proceeds from the higher order
partial waves L>2. Indeed the contribution in the ground state
wave function of the two first partial waves amount 99% for VX .
and 96% only for G2. It is therefore expected that the differences
between the results obtained with potentials giving the same
binding energy and r.m.s. radii will be sensitive to the core of
the interaction when in the analyzed phenomz2non the contribution
of the cross terms hetween the small (L#0) and the main (L=0)
partial waves will be significant. In order to show clearly this
effect we have choosen to calculate the one body densities and the two body
correlations functions in which cross terms exist for both poten-

tials and on the other hand the dipole photodesintegration in
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Born approximation for which the cross terms are excluded by the

dipole selection rule.

V.1.2 Wave functione and elastic electron scattering with

shell 6§ potentials

In order to ccmpare the previous results to those
obtained with a simple central potential giving accurately the
381 and 150 phase shifts and the correct deuteron binding energy

we have constructed a shell § potential,

VitEr) = A.r, 808 -T)) (v.1)
!
P !
with a =- o
m ri

The triplet even {(i=t) and singlet even (1=s) para-

meters are given in table { 2). The n-p phase shifts lso and 351

are plotted together with Mac Gregor et al. (47,60) phase shifts
in fig. 6,7. The agreement up to Elah=300 Mev 1s quite good and
similar to those obtained with realistic potentials but we have
to notice that the tensor force has not been included in our
analysis.

The convergence of the 3}1 and 3

He binding energies
has been investigated by integrating up to 14 coupled equations
for the completely symmetric § states and 10 coupled equations
for the mixed symmetric §' states. Table ( 3, 4) gives the 3n

and 3Be binding energies ~Eg (Mev) as a function of K. The rms radii



(A

R, = 1,478 £fm and Ry = 1.5 fm

3y He

are too small., The first minimum of the 3He charge form factor

2 (f1g. 8 ) is too far.

around g°=19 fm~
The shell § potentlal provides an example of interac-

tion giving quite good two bedy s phase shifts but poor results in

the trinucleon system. One can of course argue that the intro-

duction of a tensor force should improve our results.

V.1.3 Soft core realistic potentials

The potential models have shown that the calculated
trinucleon observables are sensitive to the characteristics of
the two body interaction. To exhibit this aspect we have chosen
to investigate the trinucleon static and dynamic properties with

four realistic local interactions proposed by Gogny-Pires-

de Tourreil (GPDT) (22), and by Sprung and de Tourreil (SSCA,
SSCB, §8CC) (20). These four potentials reproduce guite well

the two-nucleon data and are classified as super soft core
potentials. However they differs from each other by the relative
strength of the central, LS, Tensor or L? components. We have
nevertheless to motice that the GPDT potential overbind the
deuteron. This property affect strongly the trinucleon binding
energy which then becomes in agreement with the experimental

value.
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In table { 5 , 6 ) we give the static results for

3I-I and 3l-le nuclei compared to the experimental ones. Our results
(see Table ( 7)) are in close agreement with those of
Laverne and Gignoux {34) and Kim and Tubis (31).

However we note that our P(S'} is always weaker than their ones,
but in agreement with those of Demin-Efros { 15, 16 ) whose
calculations have been done with the hyperspherical formalism.
The trinucleon binding energies E(3H) and E(3He)
depend strongly on the two nucleon interaction in the lso and
351-3[)1 partial waves. However the contribution from higher partial
waves is not negligible and increase the binding energy by about
0.4 Mev, In our formalism nearly all the partial waves of the
two body interaction are taken inte account. Indeed in integrating
coupled equations up to K=14 we use two-nucleon orbitals up to
2,4

L ax=16 in the

i Di trinucleon state for instance.

The importance of the non potential harmonics has
been analyzed. The first non potential partial waves appear at

different values of X following the symmetry of the state. For
instance in the fully symmetric state it appears from K=6,8...,

in the mixed symmetry S' from K=4 and in mixed symmetry D state
from K=2. In his thesis Erens ( 14 } has shown that the

first non potential partial waves in S and 8' state contribute
by about 0.1 Kev. We calculated the contribution of the first

non potential partial wave (K=2,3) in 2,4

Di state and found
AE = 7. Kev for GPDT and AE=37 Kev for SSCC potentials.

The electric form factors generated by realistic 3He
wave functions obtained in solving either the Faddeev equations
or the coupled equations of the hyperspherical formalism fig.
have a too small secondary maximum and a too far minimum. Phenome-

nologically this dicrepancy proceed from realistic N-N interac-



tions which are not repulsive enough at short distance. The
introduction of meson exchange current corrections tend to
improve the position of the dip and the magnitude of the second
maximum. However these corrections are not large enough to agree
with experiments.

3

V.1.4 The “H~ Jl-le energy difference

The Coulomk energy EC=E(3He)-E(3H) is given in the

last column of Table { 5 ), It has been shown previously ( 58 )
that the Coulomb energy proceeding from the Coulomb interaction -
e?/r between the two protons can be obtained in a nearly model
independent way in starting from the trinucleon charge form

factors. The close relation between the proton distribution and

the Coulomb energy is responsible for the sensitivity of Ec to

the trinucleon r.m.s. radius. Practically two waves functions
generating the same radius lead to the same Coulomb energy there-
fore the difference between our results and those obtained for

the same potentials with other methods reflect the difference

in radii proceeding from the wave functions. The model independent
formula has been obtained in asgsuming the same wave function -
for both elements of the iso doublet. In fact the repulsive Coulomb

3Ee increase its

interaction in reducing the binding energy of
radius of about .03 fm with respect to the one of 31-[. An estimate

of the Coulomb energy correction for 3He is given by

2
AE < - &. AR
c Rz

; 2 4R 1
with & = E_ i.e. AE_ < -~ E_ == - 2=
R (] c [+ R 50 (=]

which is a negligible percentage of E,.
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v.2 One body density and two body correlation functions

The one body density R, (Z;) and the two body correla-

tion functions Ry {§;) are respectively given by eg. (IV.26)
Ry () =f|w'<€n€=)|’d'e;i 143 (1,3=1,2) .

The densities R, (£;) and R, (E,) are the same when the
two first partial waves are used only £ig. (10} . The difference
proceeds from the cross term between the higher partial waves
and the first wave L=0, For wave functions described by the
first fully symmetric term L=0 only, like for the early Irving
{ 61 ), Irving-Gunn or Gaussian functions { 57 }, the
first derivative,

&2 5

a __.2 Tz 3
d—g——nj(ai) pir 51/ (e]+53) lvo (g +e3) ) *ae
i 0

is always negative. The densities are smoothly decreasing func-
tions. The first term cannot therefore take the correlation
originating from a strong repulsive core into account. This
core should indeed prevent two nucleons to come close together
and generate a hole into the two L..dy correlation function,

In figures 11, 12, 13 one shows the two densitles
calculated with the full wave function for § wave potentials
G2 and v¥and for the realistic GPDT potential.
For each potential the two densities have the same asymptotic

tail for ;iw. The influence of the core is clearly seen. The
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stronger is the core the deeper is the hole in the correlation func-
tion. The one body density does not exhibit any minimum near the
origin. In terms of a H.H expansion only the partial waves uZK(E)
for odd K values contribute to the difference between the one

body density and the correlation function as a conseguence of eqs.
{Iv.31) and (I1v.32), because i? ;:{nj (eq. I1I1I.45) haveli-n

parity in the exchange of the set (§i—§j) and /3(§k-§} (k3gl) .

The differences appearing in fig. 11,12 proceed from the odd K
partial waves which contribute only 0.2% and 1.6% to the ground -
state for v* and G2 potential respectivaly. One sees how large .
can be the effect of small components of the wave function on

the behaviour of the correlation function at short distance. The
comparison between the one body densities shows that the stronger
is the core the flattar is the density near the origin which in
turn produces a minimum of the form factor for smaller momcntum.
The proton density differs from the matter density by a cross term
between the S and S' symmetry components generated by the 12(3)

operator occuring in the proton density pp(F)
> >
np(r) = 3/3 Rp(/3 r)

with

3 .
(l+t_(3))
R_(£2) = fv*ﬂf..tu Z —Z Tyt Enate.
P =t 2
i=

the density Rp(il is plotted in fig. (14,15) for the potentials
v®, G2 and GPDT. For the G2 potential the contribution of the
5-S' terms flattens strongly the density at small distances but

asymptotically the proton and the matter densities are the same.




Photodesintegration of the three body system

Concerning the two body photodesintegration

Y+3He"p+n

Y + 3H +n+D

at low photon energies EY<10° Mev many calculations have been

done (41,

42, 43, 44, 45, 46 }« In this energy range the

reactions proceed mainly from an electric dipole transition

and most of the studies were done in this approximation. However

the earlier calculations were restricted to phenomenological

wave functions and approximate treatment of final state. Only

recently the solution of the three body problem with realistic

potential has been used to calculate the photodesintegration

cross section. In this section we discuss the results cobtained

with our § wave potential models and with realistic local poten-

tials.

The effect of the core on the two body dipole photo-

desintegration has been studied in keeping the same deuteron wave

function {40) and the Born approximation for the final state.

The overlapping functions between the deuteron and the trinucleon

i.e Ry{E2}, RT(£2) and R)(£1) {egs. IV.51) are shown in figs,

¢ 16 )} for G2 and V¥ potentials. These overlapping functions

are nearly the same and lead to very similar dipole photodesinte-

gration cross sections as it 1s shown on fig., ( 17 ). For both

potentials the calculated cross sections underestimate the data

Jp to Ey=14 Mev and overestimate the data for BY>14 Mev. We

clearly 8see the influence of the core at low energles. The



calculated cross section in fig. ( 18 ) using the three body
wave function corresponding to the GPDT interaction show expli-
citely the contributions of the s-S transitions (total symmetry
and mixed symmetry) and the contributions of the d-D transitions.
The s-S transitions with the S symmetry state gives a cross
section which underestimate the data. The contribution of the
mixed symmetry is large and generates together with the total
symmetry a cross sectlon which overestimates the data. The
introduction of the d-D transitlons is quite necessary to repro-
duce the experimental data. The d-D transitions strongly affects
the magnitude of the cross section, but does not change its
shape. We do not find the "effect" of Craver et al. { 45, 46 )
producing a peak very flat. In our calculations the d-D transi-
tions have a destructive effect on the total cross section contra-
ry to the result obtained by Craver.

In fig. ( 19 ) the cross sections calculated with
the Sprung-de Tourreil super soft core potentials are given.
The agreement with experimental data is good for all these local

potentials the results of which are very similar.
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VvI. Comments and conclusion

We have developed a method enabling to solve the
Schrddinger equation for any number of bosons in the ground state.
This method can also be applied for fermion systems when all
particles are in the 1s state like for the ground state of 3He,

3H, 4

He or helium like atom ( 53 ). In this work the three
nucleon bound system has been analyzed. We found by comparison
with other method for local realistic N-N potential that the
hyperspherical harmonic expansion method is at least as well
reliable than the numerical solutions obtained with the Faddeev
equations. Our binding energies are sometimes over and sometimes
under the values obtained in solving the Faddeev equation.

But one must notice that in constrast to the Faddeev equation

our method fulfill the Rayleigh~Ritz variational principle which
state that in solving a truncated system of equations one obtains
a binding energy situated over the exact value . The contribu-
tion of the various terms of the wave function {symmetry 3, S'

and D state) are roughly similar to those given by Gignoux-Laverne
{ 34 ) except for the weight of the 5' state which is always
about half the percentage of their solutions.It is to some extend
surprising to f£ind the percentage of the 5' state given by the
variational method quite smaller than the one given by the Faddeev
equations. At this point one must stress that our basis is comple-
tely antisymmetric and that no ambiguity can arise from the
symmetrization process. The conve:igyence of the method has been
carefully analyzed and a consequence of eq. (IV.2,IV.6) 1is that the
partial wave “2x(€) should vanish together with the multipole

Vzk(c). The exact numerical analysis is in agreement with this
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prediction giving confidence to our approximation (eq.IV.B }.
In the framework of the optimal subset all the two body orbitals
!ij has been taken into account in our analysis of the two body
potential till the valus Eij'Kmx’ (Kmax'“ in our caleulation).
This means in particular that the odd states have been taken

into account. By omitting the odd potentials in the coupled
equations we found that the contribution of the odd waves amounts
to ~0,6 MeV in the binging energy calculated with the GPDT
potential.

In order to reduce the number of significant coupled
equations we assumed that ‘he contribution of the H.H orthogonal
to the optimal subset are negligible. The smallness of this
contribution has been previously shown by G. Erens (Thesis) for
the 8 and S' state. Including the D state we found an increase
of binding of a few ten of keV proceeding from the "non-potential”
elements.

Practically the wave function is concentrated in a
small number of partial waves but the amount of binding procee-
ding trom higl- r partial wave are not negligible because they .
contribute to the energy through the cross terms with the main .
partial wave K=0, It is therefore a mistake to use the partial
waves of the solution of a truncated problem which is not yet
completely converged. This is especially true when we are dealing
with a phenomenon in which the tail brings a large contribution
like for the photodesintegration, because then the exponential
asymptotic behaviour exp -""ﬁ; E r of the wave function is
reproduced with the inaccuracy of E and the tail can extend very

much farther that it actually do when the experimental value




(=8.48 MeV) 1is used. From this point of view the wave functions
solution of realistic potentials are not accurately "realistic
wave functiona” because their tail (except for the G2DT potential
extend to far away. We have shown in our analysis with the model
potentials V¥ and G2 that the shape of the two first partial
waves K=0 (full symmetry) and K=) (mixed symmetry)} are to

some extend insensitive to the strength of the core =xcept at
small distances when the potential haa been chosen in such a
way to produce the same binding energy and the same size of the
trinucleon. Therefore one can guess that many differences between
results obtained with various potentials proceed from discre~
pancies between binding energles and radii produced by these
interactions.

The best probe to test the quality of a wave func-
tion solution of the Schrddinger equation may be the comparison
between the Pourier transform of the charge depsity and the
charge form factor of the iso doublet 3H-3Ha. e found with
our model potential that even with a very strong repulsive core
which produce a zero of the form factor at the right value
{g? = 11.5 fm—z) the amplitude of the second maximum of the form
factor is missed by a factor 2. This effect is still more
pronounced with the super soft core realistic potentials analyzed,
in which neither the position of the Zero nor the amplitude of
the maximum are obtained.

Even the dif!erenée between the form factars of 3[-[
and 339 at small momentum transfer which is related to the charge
radii is not obtained. This last result proceed from a too amall

amount of mixed symmetry component in the wave function which



in turn results mainly from a too small difference between the
singlet and triplet even potentials which generate this compo-~
nent.

All the realistic potential giving the same result
a question arises about either the accuracy of the experiment
on 3H or the behaviour of the realistic even central potentials.

An accord with tha experimental charge form factor
has been found by Sick with a charge density exhibiting a hole
near the origin. On the fig.14 we have plotted the point like .
proton density for the G2 potential together with the same
density deduced by Sick ( 59 ) from the experimental charge
form factors. In egpite of a good agreement between the two
densities at large enough distances we did not find any hole
in the proton density. We therefore believe that the hole
simulate effects proceeding from other physical contributions
including exchange currents in nuclei.

An attempt has been done to introduce a three
body force in order to see the influence on the form factor,
This force has been approximated by its first hyperspherical .
term, function of £ only, and we retained the asymptotical shape
in E-s cut by a repulsive core at a distance chosen in such a way
to obtain the experimental binding energy. The effect on the
amplitude of the second maximum is not sufficient to give a
result better than the one obtained with the G2 potential.
Brayshaw (63 ) did a calculation from which he claims the
existence of a strong three body force. In his calculation he
retained only the terms K=0, 1, 2 in the H.H expansion missing

completely a converged solution. This kind of calculation is a
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typical example of what is forbidden to do with the

expansion method. Firstly in neglecting the H.H for K » 3 one
miss the correlations generated by the odd K harmonics . On
the other hand to the truncation of the wave function corres-
ponds similar truncation in the expansion of the potential
which then cannot longer represent the expansion of two body
potential especially when the truncation is done for too small
K. It is then not surprising to find a large missing part in
the interaction which can be miaintexpreted as a three body

force, indeed writting the first of the coupled equations for K=0

B dr . -
[ -5 3xr + W)=E Juslr)=0 with

2 = -
T B LIRSS T o' (x) gy 2
4 mr? up (r) K'=1
o 0
the sum of the neglected components E Dlp('(r) uz‘
=3 ug {r)

may be also wrongly identified to a three body central force.

We want to stress the efficiency of the small
components K odd of the wave function responsible for the corre-
lations, indeed these components contribute respectively 0.33 %
and 0.53 % to the norm of the wave function for the GPDT
and supersoft core Sprung-de Tourreil potentials. The photodesin-
tegration is another example in which small components cannot
be neglected. We have seen that for a contribution of about
0.B & in the wave function the 8' state increases by 20% the two
body 3ne photodesintegration cross section. As a consequence of
the tensorial character of the dipole operator which is a vector

in the 6 dimensional space only a small number of H.H is needed



in order to obtain a good accuracy in the calculated cross
section. Nevertheless most of the magnitude of the cross section

3l-le wave function with

proceed from the overlap of the tail of
the final state. The tail is clearly well described only in a
completely converged solution. Therefore the claim of

Jibuti ( 50 ), that it is a good approximation to use wave
functions integrated with a truncation at K={4 for nuclear reactions
is certainly quite unreasonable, because the higher partial

waves modify the shape of the first partial waves during the
process of integration in which the binding energy, and
consequently the tail, decrease.

We found that the introduction of the D state has
a destructive effect on the photodesintegration cross section.
This result is in contradiction with the Caver, Kim and
Tubis ( 46 ) calculations., Especially we did not find the
flattening effect of the D state on the cross section described
by these authors.

The H.H expansion method appears to be a power full
mean for integrating the Schriédinger equation for bound states,
but one must be carefull to include a large enough number of
partial waves in order to obtained a reliable solution. A guide
to this truncation is given by the trend of the convergence
which is quite definite by the shape of the potential. In contrast
to the integral equations, it is not more difficult to apply
the H.H expansion method to the four nucleon bound state ('He) .

It requires only the calculation of other coupling coefficients.
This method seems therefore promissing for solving at least the

few-body bound state problems.
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Appendix A

Antisymmetrization of three body isospin-spin states

We use the normalized spin functions in which the
total spin Bj_j of a pair of nucleons (i,)) 1is coupled to the
spin of the last nucleon k in order to give a total spin S with

projection mg :
=8 . =v-m. __ 1 1 s )(S i s)
= - 1j S 3 i3 {714
I(sj:i‘x)smé'fk B 2 -1 ssij (\n V2 -V v vy -mg
Vi1ViVy

8} (Ws}? (s ] k) (a.1)

with § = /2541 . . |
A similar treatment of the isospin functions leads to ‘

a state of total isospin T with projection L

1=t -p-m, _ - 3 it F T\ w2 @
10 530y 2= 2 -.n BT T ae ( 11X(13 el £l
)7 Wp Nyy w2 - [TRRTH i 1 H

HiH2Uy
{a.2)

where the subscript k of the ket labels the single particle coupled

to the pair (i,j).

a) - s=} T=} states
In eqgs. A,l1 or A.2, the two normalized spin (cr isospin)
states | (01}im>, and l(l.i)im>k are respectively antisymmetric and

symmetric for the exchange i ¢ j. We introduce the spin (or isospin)

vector,



|H(p)> = sinwl(bl)‘}m>k + cose| (13) jm>y

(A.3)

similar to the kinematic rotation vector (II.5). A suitable set

of angles ¢ can simulate the effects of spin {or isospin) exchange

operators, We have the relations :

IW(';')> = l("*)i""k = |- Antisym.
i - _2_‘;)> = [(0})im § = .;- (/34> = | >, } Antisym.
|“(% . %p = |(o§);m>j - - i (345 4|2} Antisym.
IW(0)> = | (1iyim>, = |+, sym.
W= 2> = | Q) imo, = - i (4> + /3| =2} sym.
WiZp> = [(im 3 = i (=1+> + /3|=>) sym.

in

in

in

k+ei

(A.4)

In order to construct the basic functions of isospin-spin, we

consider linear combinations of products |w(wl)ww,)> where the

left and right part of the ket stand for isospin and spin func-

tions respectively. Using egs. (A.4) we construct two isospin=-

spin vectors,

|WiwlWlo- %)> ==ginpcosp{|=,~>~|+,+>}+s8in?p| -, +>=cos?¢|+,~> (A.5)

LGS %)W(\Ob =-gingcosp{|-,~>-|+,+>} +sinl¢|+,->-cos’e|-,+>

g

(h.6)

which for values of y¢= 12'-, % - z—g. 3 + ﬁ;- are antisymmetric in the

corresponding interchange (i%j), (3j#k), (kei). The two isospin-

spin vectors
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|[W (P W(P)> = sinpcosp{|+,->+|-,+>}+sin2p |-, ~>+cos?y|+,+> (a.7)

v~ Dywie- I)> = ~sinpcosg([+,->+|~,+>)}+sin?p|+,+>+cosly |-, ~>
2 2 (2.8)

are symmetric in the interchange (i#j, j®k, k*l) for the same
=X 7 _2t ® 21
values of ¢ = 3¢ 2 3¢ 3 + 3 respectively.
From these vectors two linear orthonormal combinations independent

of ¢ can be constructed. The first

1 T i 1
= {=|W(@)W(p- ) >+]|Wle=- ShW(p)>}= == {|+,->=]~,+>} =T, ,(A) (A.9)
7 2 2’ a H

is completely antisymmetric under any exchange of nucleons, while

2 {wrwiers+ wie- DHuwte- 151 = L (J4,454]=,->) = Iy 8) (A1)
V2 2 2 :

1
'
is completely symmetric.

We now construct two mixed symmetry combinations :

1 T n 1 1
— {|WlehW (P~ )>+ [Wlo- D)Wl >}==—= (|-, ~>=|+,+>}sin2p~ —={[+,->+[=,+>}
7 | (v) 3 | 2 7 | | n. I [ | '

.COE2¢

= sin2y I‘“(M+) - cos2y l‘“(M-), (A.13)

and

1 7 m, 1 1
—= {=|W{e)W(p) >+ Wip= Z)W(p= Dpl=——={]+,->+| =, +>}5in2¢ = =2{ | +,4>=| ~,=>}
7 2 ra ! =

.cos2y
==s5in2p T, (M~)-cos2¢ T,.(MH), (A.12)
¥ i1

which like previously for ¢ = %, % - —2—%, % + 2—’:; are respectively

antisymmetric and symmetric under the i®j, jok, kel exchange. We
have denoted by I‘TS(R) the orthonormal irreductible representations

of the isospin-~spin states for trinucleon systems.
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B) S=§ T= 3 states

The 1sospin states | (1)} m>, completely symmetric
under any exchange of two nucleons is denoted by |0>., The symmetry
properties with respect to isospin spin are fixed by the spin

function only. Two kinds of functions can be constructed

10,W(v)>= 8ing|0,~> + cose|0,+> = siny Ty, (M=) + cosw Ty, (M+)  (A.13)
2 2

lo,wie- -;l)>=-cos\o|0,->+sinrp|0,+>=-cow Tyy(4-)+sing Ty, () (a.14)
E]

They are respectively antisymmetric and symmetric according to ¢

in the exchange (i%j, jvk, ki),

¥l 8= T=} _states

In a guite similar way two kinds of isospin-spin func-

tiong are constructed :

{W(g),0> = sing|-,0>+cosp|+,0> = sing FH.(M—)ﬂ:osw rh}(m) {A.15)
[Wiw- L),0>=—cose|-,0>+sinp|+,0>=-cose Tyg(M-)esing Tyy(m)  (A.16)
2

They are respectively antisymmetric and symmetric for suitable ¢

in the exchange (i*j, j*k, k%i).



8)

5=+ %=1 states
There is only one state

0,0 >=
I > P_g_ _!_(S)

fully symmetric under any exchange.

(A.17)



Appendix B

Derivation of the hyperspherical coefficients

When we expand the trinucleon wave function in the

potential basis, the elements of the potential matrix are :

"* .
<| PTS(R) @ B[2K+Z]IJIV(EIQ)IIFT|51(R'JQ B[zK'+l'l]J> (B.1)

where .
2 K"a m" o (6,1") !-'m“(i )

vig,2=Y vz, 0=) 7 -1) (13) (€). w' e .
’ ¥ ’ (B.2)

*
R
The states |{ I‘TS(R)@ B[ 2K+HJJ> are completely antisymmetric and so

o r'?
<l I-TS(R)® B[ ZK*I]]JIV(E'H)HP.FI‘SZ@ B[zmzlll‘y >
* r'*
= 1Ty (RV@ B[zm,l‘,lv(:”u[rg;ga B fzxrern)s

(B.3) ~

>

Introducing (B,2) into (B.3) one must calculate
R’ R‘*
ATy (RIO® B(2K+tllle‘E'9),[r,l‘.lfs'20 B (el =

K" e m* a (6,2") A".m" . .
=ad 3 en iAoV LA e e,
K®L7m"a 2 K K (B.4)

—



where

ny A1
Rhamtey gy L, DO M gy @pRed gy
(w Q)= —————1.. (-1) rne. widy,
zx FE7 +3) 3 /AT 2T+ 1) 2K
(2)y 222y m
. () (E1£2) (B.5)
IR 4L (A1h2)2"

Choosing for (i,3) the pair (1,2) eq. (B.5) becomes :

T+ ) (2) A2 (2) A2 m”

2",m" " . .
A Tettas —q — (1/2) @) Y&
2K" I‘(— +3) V4T (22"+1) 2K"4+2" 2K"+2" 1 (A"

(B.6)

Performing the operations proceeding ;rom the tensorial product

contained in the vectors |[ Ts(R)@ BZKH;] > , we have :

r% My R'® My
Tes @ Byl - wemlirene B o,ls™ -

K"+2+2' » R* r'® . a e
3 (-1) LI P Nogoag? 210,002
K""uss'tt’ m"Ly 82808
R*F.lzh R, erg) (1 2, zz)(z' I 25) . o
. rpgr o b (R)b_, (R) .
2K+2 2K'+1 00 0 0 0 0 S s

w (6,2 (2) 222 grmt
) )T ; 3
<(tp)Tm \/z(lg() [ e 5 Thp < szﬂ(zmz)z(s 35 Ia(ij)A w ,9)

(Z)P L3y

I3 ' 1 L} L}

1”112” {s'§)s aM . R 4t 7 - {B.7)
(2K'+2')R's'S'Y

Let us define the coupling coefficlents (K",a,2")
(2K+2)RsSJ

appearing in the previous formula by :
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(2K'+2IR'8'6'T 5 o R AL . w oaray
(K", 0,27 = w2 TNoe, 0 N ageanr (V) Z Lit.tik.
(2K+2) R8SJ 4 N ITY
Y AT Y LI T U S L I L AT
L]
( Xv )b:mb;'m"' Fae  Foagean Q04 $700
oL 0 )
(B.8)

- For i"=0, m"=0 a=(C,LS,LL,L2,0)

Q.1 = AW °

).

=0 T
2=, PLLyse Qg50 4

15513
We deal with the coupling coefficients

x 33 244"

(2K'+2")R'8'S'J R R R® 2,2
C (k",0,00 =21t N _N ey SH Z F oy
(2K+2) Rs6J 2R+l T2RTHLY gy 2K+t

R'*®~eie] . e a A0 4y
szuzl A(R1228) A(L]834) b (RIbS, (R')<|Z AZK..w > . (B.9)

The calculation of the matrix elements <|3% A|> leads to the deter-

mination of the two following matrix elements :

Lhme -pratd
<220 2lsISIMGI A v o) 2421t (s IS T M= (am) T T
2K" I‘('—2 +3)
—n Jl.;+1l.;+v.'+s+.7+.7'-MJ ——
GSB.GSS,JJ'Z (=11 A(X,A;z")A(hhl;)A(hhl;)M'
A1de

Jen g 21 Ay 2y Trem g\ (2)\ A2 (2}~ Az},

{ }{1: Az z,}.( ) P ptiadly, P 0

L 8 & oo 4 -I.\‘l‘.'J -m" MJ 2K +L" 2K"+R!
(B.10)
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and

<18:2)) 21 {818 3IM |E%] (2220 2%; (87 ) B ;0" My >=

L 2, 23 &
SaandsgnduanOarnty made, 0p8e, 0y 3, F1IEE°E? {? } 5} = (21932)
3132 LU L
(B.11)

where E*(2183)) = <(2:8)3,[2%]|(2,8) 3>, {8,12)
32 = 23+ .

Using B.10 for L"sm"=0 one finds :

0.0 i3 1
<(20:) 07 (54)S33My | Apra (v V(525" 1S M= g 4510501

A2 21 2] A} (2)~AA 5y (2 AA
Ten ST2amae])aaany { o } P et (9)
Y 2K" 2K"

L) %2 8
(B.13)
Then
(2K'+2")R's'S'S 2 ar®
A o,
C (2,(,,“‘;':8&}'“ " Te Sgst0gge8ygn Nzxu N 2K 4

L1020{27
JidaA

A+L saramar-2 IO 4,y
(-1) A(L1AR1)A(22002)A (2 220)A (2] 230)3753s2) (¢ 4

izs
v 8ot 2)2 L L 2, &5 2} R~ 22, R'® 238
= . .
£ (hsdy) ;l gzg bg (RIbg: (R') Wt 2K+ 2K+
(2)P1.z, (2)yAX  (2)~RER]
< 2K+2 2K" 2K'+8 7 ° (8.14)
If we choose the pair (1,2) as a reference, o178l %

(22,2 P 0,0
(m/2) =8 (n/2)
K" A0 L gge



(2K'+2")R'8'S'T iR 0,0
" = _—'
C (K10l = = Sgge8ageyq N2x+1 N axras P e

(2K+2) RsST
2, % L\2 Ve 1,1,1:
(zz+1;( ) b:(R)b:,(R') 222352313227 (1153,) )8
2223132 o0 J: 2 3
22 r\"p 201 (2)py 22ty (2)y 0,0 () L2ty
2K+1 2K+ € 2Kz 2K" 2K+ (B.15)
B- For tensor forces R"=2 -
We must consilder the coefficients -
C(2K'+z')n's's'a N R*N RT\I Lee?
(K",T,2) =72 (-1)
2K+2 2K 42!
(2K+2)RsSJ meiTatie]
mm ms S
RS 201 R"I:\ 222, . \ SmRM S 1oL "M
2K+8 axran Bilali) 31
Ry L2 L\ /21 23 2'\/e 8 O '8 J qmn"
. tshysmgl 2 [(s'3)S'm}>
0 0 o 0 o0 mms-MJ mms-M
- (2) 2" s ‘ (2) 228
By Ribg R < P asgttatarml A o9 jaszpiames 2K 42t
(B.16)
B We have
L+m+R 4L
< (2122) Im| A P I e 2 E(~1) e
1287 2yey
L e nyo2f af (2py ey .
AUL7232)A(L1232]) 8 (22252} B2 ( 1 23 1.‘ _P Fleed)y,
-m’' m -m" r o2 2K"+2
(2) 2080
ZKH+2(¢) (B.17)

I
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and

T n" an aa i3 sfer21){s 28
<tshismgl (1, (13)](s'4)8"My>=24/27 53°55" 1
J 2

141 8' {8
ZS-l-mé 8 2 8!
A1) . (8.18)
mg B -mg

Inserting these expressions in eq. B.16, one finds

(2K'+2')R's'S'T R'®
15 -2
C (R",T7,2) = N N vupy J3ES1EE L z:
2K+R 2K'+L
(2R+2)R8ST TS
42y

¢.3 ® v,
Rp222; R';2 222 t t! (2)py 2527 1,3
2xss [ 2miaps BLRIB, (RY szl_g 18 (211228 (L]23L)A(L120L])

or ss'-1+7 [ #s') [s' 21 )8 2s[st T ) 2t g
8(%22002 -1
(2225231 (-1) Vi1 s 13)e 1s ,Ezhlzf
(2) 1211 (2)py 232Y (237 2512}
‘P 2K+1 P 2K"+2 2R"+40” (B, 19)
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Appendix C

Multiggle matrix elements

.

are,

‘ 'rﬁ'e multipoles of the two body potential appearing

in the coupled equations (III.53) are defined by :

Yo" rédg 4 rKmers 3 . e ;
0 (5.a,n')-=s pEr) BS, (R [ Su(1-w
2K i *J)P(K"+ l)r(n" _ o
2n42 F v
u (=K",2'+K"45,8"+ %-u ). <(8i)5hs,(t7)Tmm|V(Eu)](3")5 msﬂt 1)
T'
T

(C.1)
For L"=0, VS(rlj) which contains all the exchange terms

may be written as follow

vO(r, 25 (11> SO MEIRE -(1+1> IV (x5 —(P % )utr, )

¥'i) ij i3 i) iJ i3 437y i)

1 -
2‘P13+Pi3)"‘1 “'1;’.’ f (c.2)

where P° and P are the usual Bartlett and Heisenberg exchange

operators while

=1
V. (rij) °5 (V (riJ) + V (rtj))
(c.3)
D WP _oglt
U (rij) P (VY (rij) VY (rij))

where V (rij) and V (:1j) refers respectively to the triplet and

singlet even or odd potentials.
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The matrix elements of the exchange operators are

<(s4)8mg|BY2 ] (s' )8 me> = 6 08, 1i8gg.(-1) 5
s's

o sl i sl

<(S!)5msll’zs| (S'Q)S'mé> =

6ss'{smsméﬁss' L 4 i

8 {8
<(si)emg|PYa|(s' 1B 'ME> = Sa8'SmemySss? Ja' - ‘ '

and analogous expressions for the isospin.

Since we have chosen the referaence pair (1,2) for the calculations,

the matrix elements of the interaction become :

<(83)8mg,(e4) Mg | VD (£u) | (' 1)E'mY, (') T'mp>=
Bogi8omib 48
§s' TT msmé oy,

s+1

ss'ctt'

D SHED S gt e+ (0 DSt o),

‘ =1 €.

sHb+l s+t _
o (14¢-1) )VY(Eu)+(1+(-1) )VY(EuH
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Table Captions

Table 1 Values of the coefficients occuring in eq. Bl2
(appendix) .

Table 2 Parameters of the shell § even central potentials
fitted to the 1S0 and JS1 phase shifts accurding
to fiq .

Table 3 (4) Convergence of the solutions obtained in integrating
the coupled equations for the shell 5 potential up

to a maximum K valuce for 3H (JHe). Rinding energies,

N percentage of the S and §' symmetry states and
matter radiu. are given.

TaLle 5 a) Binding energies ¢ alned in solvirg the coupled
equations up to L=2K=24, extrapolat~d binding
energles, 3H-3He enerqy differences, percentage of
the S, 8' and D components of the wave functions
and matter radius for the realistic potentials.

b) Charge radii, position of the 2zeros and amplitude
gf the maxima of the charge ferm factors for 3H and
He.

‘Table 6 Convergence of the solutions in terms of the maximum
grand orbital [=2K used :
a) Por G2 only one 5' term is used, the extrapolated
enerqy 1s given
b} For CPDT and SSCB potentials, together with the
matter radius Ry-

Table 7 Comparison between our results and those obtained
by Demin-Efros (15,16) and by Laverne-Gignoux (34)
in solving the Faddeev equation for the same potentials.



s=0 s=1
R I e e e e Y
515 0 ) | 2(3-1) ¢ Y1) _p li*2)
23+1 23+1 235+,
L7 3(3+) Jti+1) 3(3+1) 0 (3+1) (1+2)
R
L.§ 0 ~1 j=1 0 -(j+2)
L =23 {j+1) 25 (j+1) -] j-1 "] -(3+2)
o] 0 3-45(3+1) {(3-1) (23-3) 0 (3+2) (23=5)
Table 1




I

Triplet
Potential or r a -ED(MeV) ¢} P
Singlet
1.508 1.3875 2.202 5.40 1.73
Shell &
1.508 0.93 -21.54 2.24
Table 2
' -
K N& NS EBH(MeV) P(s) P(S') Rm -
|
3 3 3 8.231 99.49 +507 1.522
6 6 6 9.219 99.41 .584 1.497
] 9 9 9,708 99,37 .628 1.488
12 12 10 10.010 99.36 637 1.48
14 14 10 10.141 99.36 .636 1.478
Table 3
K NS NS* -Ezﬂ (MeV P (S) P({S") Rm .
e
3 3 3 7.435 99.4 596 1.54
6 6 6 8.416 99,32 .68 1.52
9 9 9 8.902 99,27 .73 1.51
12 12 10 9.202 99.26 .73 1.5
14 14 | 10 9.332 99.26 .735 1.5
Table 4



: ,
Potential [E(C’H) Mev -E(0) Mev E, P} | s | e |,y
calcured extrapolated
GEDT 8.58 8.58 .66 94.3 | .97 4.72 | 1.77
SSC.A 7.44 7.51 . 645 93.5 | .76 5.7 1.76
$SC.B 7.34 7.41 .65 93.e | .81 5.4 1.78
gsc.c 7.01 7.13 .68 92.2 | .85 6.98 | 1.81
Expeximent 8.48 1.7
Table S.a
Potential | R__ (fm) First dip [F_ | | First max|F_ (a?) ] 2™aiplr | (2™ max|F (q?){? (1y
CH 2 -2 CH 2 -2 3 2, —2CH -2 3 cHo
g? (fm ©) q?{fm ) 1FCH(q1)] ‘%107 g {Em ©) q? (fm )IFCH(q’)szIO
ooy He 1.93 15.5 20 0.78 58 72. 0.0075 .538
3
H 1.77 15.4 20 1.10 .574
e 1.95 15.5 20. 1.18 64.8 84 0.016 541
sSsc.A 3 c :
H 1.78 15 20 1.48 61.5 78 0.025 565
3he 1.95 14.7 20. 1.13 61.4 82 0.015 535 |
SSC.B 3y 1.78 15.2 20 1.38 65.7 a2 0.018 .565
3te 1.96 15. 20. 1.15 62. €0 0.015 52
ssc.c 3y 1.78 14.7 20 1.38 64.7 78 0.065 .551 |
He |1.87:.05 11.6 18. 5. 68 78 0.03 .567:.004 |
EXP 3y 1.7 s.05 ) .622¢.007 |
Ml
Table 5.b



62 (3w
L=2K N(s) N{s') ~E (MeV) AE

4 2 1 1.752
6 3 1 3,610 1.858
8 4 1 5.236 1,626
10 5 1 6.564 1,328
| 12 [ 1 7.525 .961
14 7 1 7.829 .304
16 8 1 8.046 .217
18 9 1 8.218 172
20 10 1 8.284 .066
22 11 1 8.334 . 050
24 12 1 8.370 .036

Ext 8.41

Exp 8.48

Table 6.a

e




GPDT ( N 8sc.B
L=2K -E AE R, -E aB R,
4 6.614 1.73
6 7.509 | .8%4 |1.70 |[4.111 1.784
8 7.977 | .469 | 1.70
10 8.248 | .21 |1.717 2.553
12 8,395 | .146 ] 1.727 ||6.664 1.688
14 8.468 | .074 [1.737
16 8,515 | 047 | 1.745 1.417
18 8.543 | .028 |1.752 |[7.181 1.73
20 8.s50 | 016 [ 1.757
22 8.s63 | .o10 [ 1.761 0.134
24 8.575 | .006 | 1.764 {[7.215 1.762
26 8.579 | .004 | 1.766 |{7.332 1.769
28 8.58 003 | 1.767 {|7.345 1.774

Table 6.b




—

Potentlals Authors -2 Hev p(s) p(s*)| p(») RCH(sﬂe)
Laverne-Gignoux 8.28 94.65 1.28 } 4,07 1.87

GPDT Demin et al. B.50 94.6 .6 4.7 -
Ballot~Fabre 8,58 94.3 .97 | 4.72 1,93
Laverne-ilgnoux 7.58 92. 1.5 6.5 1.85

SSC.A Demin et al. 7.38 93.2 .58 [ 6.25 1.94
Ballot-Fabre 7.51 93.5 .76 [ 5.7 1.95
Laverne-Gignoux 7.60 92.3 1.4 6.3 1.82

SSC.B Demin et al. 7.53 93.25 0.79 15,96 1.96
Ballot-Fabre 7.41 93.¢8 0.81 |5.4 1.95
Laverne-Glgnoux 7.34 90.6 1.4 8. 1.83

5scC.C Ballot-Fabre 7.13 92.2 .85 1 6.98B 1.96

Table 7
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Figure Captioas

Radial shape of local two-nucleon interaction combi-
nation % v¥*+v!*) for G2 and V¥ potentials.

The 3H charge form factor for the two body interactions
G2 (continuous line) and V" (dotted line). The
experimental data are from Ref. 64.

The 3He charge form factor for the two body interactions
G2 (contimious line) and V* (dotted line). The
experimental data are from Ref. 65.

First two S and §' partial waves uZK(E). X=0,1 calcu=-
lated with G2 (continuous lines) and V* (dotted line)
potentials.

First three S partial waves u,.(£), K=0,2,3 calculated
with v* potential.

The N-N 3s1 phase shifts of the shell § potential. The
points correspond to the single energy phase shift of
Arndt-Mac Gregor-Wright Ref. 60,

]

The N-M so phase shifts of the shell § potential,

The 3He charge form factor using the shell § potential.
The ne charge form factor calculated with realistic
potentials, GPDT (1 dot-dashed line), SSCA (dashed
line;, S8SCB (continuous line), S8CC (4 dot-dashed line).
The experimental data are from Ref. 6S.

one body density and two body correlation functions
using the two first partial waves (K=0,2) calculated
for G2 (continuous line), V™ (dashed line), GPDT
(dotted line).
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

11

One body density (continuous line) and two body
correlation function (dashed line) calculated with
v potential.

one body density (continuous line) and two body
correlation function (dashed line) calculated with
G2 potential.

One body density Ry ({) and two bedy correlatien func-
tion R, (£) of "H and 3He calculated with GPDT poten-

tial.

3He proton densities calculated with G2 (continuous
line) and v* (dashed line) potentials. The points
correspond to the Sick analysis given in Ref. 59.

3He proton density calculated with GPDT potential,

The overlapping functions R?(E) between the deuteren
wave function from Ref. 40 and 3He wave functlion calcu-
lated for G2 (continuous line), v* (dashed line)

and GPDT (dot~dashed line) potentials.

Total cross section of the reaction 3He (v,p)d. The
theoretical curves are obtained with G2 (continuous
line) and V¥ (dashed line) potentials. The experimen-
tal data are from Ref. 62.

Total cross section of the reaction 3He {y,p}d calcu-
lated using the 3He wave function corresponding to the
GPDT interaction. The continuous line is the cross
section calculated with the complete wave function.
The two dot—dashed curve is the cross section calcula-
ted with the total symmetric S wave function. The
dzshed line is the cross section calcnlated with the
total and mixed symmetric S' wave functions.
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Figure 19

Total cross sectlion of the reaction 3He (v,p)d cal-
culated using the 3l-le wave function corresponding

to the GPDT (continuous line), SSCA (dashed line),
SSCB (dot-dashed line), 88CC (dotted-line) potential.
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