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Abstract ; 

A method for solving the SahrSdinger equation for 
the ground state of any number of bosons or for the trinueleon 
system or a-particle is formulated in the framework of the 
hyperspherical harmonic expansion method. It is applied to the 
trinucleon system for nucléons interacting through realistic 
soft core potentials. The convergence of the method is carefully 
studied. Binding energies, electric form factors, one body 
densities r two body correlation functions and two body photo-
desintegration are calculated for various potentials. 



1. 

T. INTRODrCTION 

'n studying the three body system we are confronted with a problem very much 

more difficult than for the two body system because : 

1) The three body problem cannot be solved exactly in the state of the modern 

computational facilities 

ii)The full two body nuclear potential contributes to the motion. 

The evolution of the methods enabling to solve the many body problem has been 

strongly related to the computers capabilities and the quality of the two body interactions. 

At the beginning simple standard variational methods and more sophisticated including 

Monte Carlo integrations were used (3). But only the ao called completely symmetric state 

was used. On the other hand during the 60th the Faddeev equations were tractable only for 

separatable potentials. 

In the first introduction of the hyper spherical harmonics (H. H) expansion method 

Delves <1,2) had in mind to describe the three body channels in nuclear reactions. 

Banville (4) in bis attempt to solve the trlnucleon bound state with an H. H expansion, has 

been confronted with the difficulty arising from the large degeneracy of the H. H basis 

preventing to obtain a satisfactory convergence with realistic potentials without a suitable 

selection of the H. H involved in a specific problem. To avoid this difficulty Stmonov (6) 

introduced a set of H. H Including the symmetry required to construct a complete H. H basis 

antisymmetric with respect to the exchange of a pair of fermions. The number of independent 

Slmonov harmonics necessary to solve the trinucleon boun-J state with a good enough 

accuracy has been studied by Erens and Van Wageningen (54). They found that the convergence 

was still to slow for enabling the treat realistic potentials with a tractable number of coupled 

equations. The number of H. H needed to treat the problem has been reduced again by 

Fabre (10), who introduced the potential basis and the related optimal subset. These 
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subsets select out of the complete H. H basis the elements giving non negligible contribu­

tions to the -wave functions. 

The convergence rate of the H. H expansion method using the optimal subsets 

has been studied with various kinds of potentials by Erens et al (66), by Bel ne r and 

Fabre (12) and by Ballot et al (13, 41, 53). Erens (4) has shown that for central potentials 

the H.H orthogonal to the elements of the optimal subset bring negligible contributions to 

the wave function and the binding energy of the trlnucleon. 

This method has been subsequently applied to the calculation of the properties 

of the trlnucleon bound state with realistic N-N potentials by .T, Bruinsma et al (52) and 

by Demln and Efros (16). At the same time Glgnoux and Laverne 04» 21) solved Faddeev 

equations in configuration space with realistic local potentials and carefull variational 

calculations with a harmonic oscillator basis was also performed by Sauer and Strayer (56 ) 

with realistic potentials. 

Our aim In this work is to give a comprehensive survey of the H. H expansion 

method applied to the trinucleon, 

Tbis paper Is divided into four parts. 

The first part is a general review of the bypersphertcal formalism in which 

some mathematical properties of hyperspherical functions are discussed and general 

formulas related to the expansion of local realistic potentials into hyperspherlcal harmonics 

are derived. 

In the second part devoted to the three body bound systems we are confronted 

to the problem of determining an optimal subset in order to reduce the number of significant 

terms in the hyperspherical expansion of the wave function. A side of the local potential, 

the velocity dependent potential Is also studied. 



The third part is devoted to the applications of the formalism to the calculation 

of electric charge form factors, one body density, two body correlation functions and two 

body photodeslntegratlon of He. 

In the last part we discuss the results obtained in three-nucleon observables and 

we emphasis their sensitivity to the details of nuclear forces in analyzing various s-wave 

potentials and also realistic potentials. 



II. General features 

II.1 Jacobl coordinates 

Let a be a system of A Identical particles with spatial 

coordinates x, (1-1,...A). The system Is described in the centre 

of mass frame of reference by a set of N-A-l coordinates 

tt U'lrM.KI which are linear combinations of the x.. One chooses 

these linear combinations In such a way that the Laplace operator 

becomes i 

A N=A-1 

EVE ÎS VE v = * 
i * * 

where X - 7- 2 x< * s t f t e centre of mass coordinate. Among'various 
A 1=1 1 

possibilities one chooses to use the Jacobi coordinates defined 

by : 

vte;Ki-î* + ...+X..)) . (II.2) 

The evolution of the system a can be studied by following 

the motion of one point in the D=3N dimensional space in polar 

coordinates. The polar coordinates of this point are given by 

a set (R) of 3N-1 angles which in the F. Zernike and U.C.. Brinkman 

( 17) representation are : 

1) the 2N polar angles Ç. of each vector tj, 

ii) the N-l hyperspherical angles $., defined in terms 

of the length £. of ?. by 



Ç-j - S s i n $ i r . . s i n < | > : j + 1 . c o s + j ( II .3) 

with <ti s 0 and 0 < ç, < - . 
3 2 

The hyperradial coordinate Ç is defined by : 

H A A 

j-i i-i A f>3 

Mote that S is symmetric with respect to all permutation of the 

particle coordinates. 

11,2 The kinematic rotation vector 

In order to study the effect of the permutation opera­

tors on the coordinates, we introduce a tridimensional vector 

N 

z(*>> = ^ sin* N... sin »>j + 1 cos *>j |^ (II.5) 

j=l 

called the "kinematic rotation vector" (36) which is a linear 

combination of the vectors {fi, £2••>£»}> These vectors are func­

tion of N-l angular parameter ». (j=2...N), ^1 5 0. 

Thus any linear combination of the vectors {Ç.) 

H 

Alt) = S aj ̂ j ' (II.6) 
j = l 

can be expressed in terms of the kinematic rotation vector 

A(Ç) = C Z(»>) , (II.7) 

L 



H 

C - £ a* , (II.8) 

i-i 

the angular parameter being determined by 

a' 
c o s 2 ^ - -T-J— . (II.9) 

The notations v and ^* r^' will be used for the set 

of parameters (W for which, 

(II.9bis) 

?(, ( i ' j ) > = v ^ 

II.3 Kinetic energy and hyperspherical harmonics 

In polar coordinates,'the kinetic energy operator 

T Ç i s ' 

(11.10) 

where L2(fl) is an angular operator in the 3N dimensional space ( 36!. 

Its analytical expression depends o the specific choice made 

for the angular coordinates. The eleinents of the complete basis 



elgenf unctions of L ! (8) and the quantum numbers involved in its 

definitions will also depend on the choice of these coordinates. 

Yu. A. simonov (6,7,37 ) has used for example in the six dimen­

sional space one of the possible basis defined in terms of the 

specific symmetries of the three body problem. Vilenkin, 

Kouznetzov and smorodlnsky have given a general prescription to 

construct the eigenfunctions of the operator L*(B) (5) 

In this work we use the Zernike, Brinkman represen­

tation (17} in terms of which the operator L 2 (ÎÎ) is : 

L*<n) = V ITT sin 2*, J .! — + (<3i-4)cotg*.-2tg$.) -Î-

w'iii+1 > <3*j 3*i 

(11.11) 
cos 2 

where l2 (Ï,) is the usual angular momentum operator corresponding 

to the vector t^. The eigenf unctions of the operator L 2 (B) are 

the hyperspherical harmonics (H.H.) 

X L I » » =Y™! ( * i ) : i ï y™ j <5 3 >. < i ) p* T

r L j "'* J

î '<"- i z ' 
3=2 3 L 3 

solut ion of the equation, 

{L 2(B) + LtIH-3H-2)}/jL ] (B) - 0. (11.13) 

In the expression of the H.H. (11.12) , / t U.>) are the spherical 

harmonics and 



«tow» ? 2Vj r(u,)-n,.)r(n.. + I) 

n ^ - n j + l ^ j)r(n.j+iJ+ §) 

(cos*.) (sinifi.) 
4-1 

P'; ^ 1 ' * i + * 
<cos2(t>.) (11.14) 

with 

„a.B 

.+ a i . 

L j " z 3 ( 2 n i + * i ' ni=0 

i=l 

p , B stands for the Jacobl polynomial, 
n 

The set [ L] of the 3N-1 quantum numbers defining a 

H.H. in our choice of angular coordinates (ÏÎ) is constituted by 

i) the 2N orbital and magnetic quantum numbers l. and 

mj for each vector f. (j=l,...N), 

ii) the N-l hyperspherical quantum numbers n. r (j=2,..N) 

related to the hyperspherical angle 4.. 

L is the grand orbital related to the £. and n. quantum numbers by 

N 
L - £ ( 2 n i + v 

i = i 
(n! = 0) (II.IS) 

The parity of a H.H. in the change of ? into -? is 
N 

(-1) = ( - 1 ) ' (11.16) 



II-4 Expansion of a plana wave in hyperspherical harmonics 

One starts from the expansion of a plane wave in 

spherical harmonics, 

j-l j=i n,m, 3 3 

Jv itM-i» 
3 • J— (11.17) 

where k. and k., (£. and £•) are respectively the length and polar 

angles of the vector k j, (?. ) . Using eqs. (II.3) one express the 

components k. and Ç. respectively in terms of a length k and £ 

and N-l hyperspherlcal angles (t>.) and {*.,). Inserting these 

expressions in (11.17) and using the Bateman formula (48 ) one 

finds, 

M 3K " » v/ J L + M ilK£> 

expu^.^) = (2») 2 2L ^yiLi'V/m»' ITT ' 
i-1 IU-0 (k£) 2 " X , I I 1 8 ) 

in which (kr SL) are the polar coordinates of the vector ïc (îti.. .ÏCj.) 

in the 3N dimensional space defined by the 2N polar angles it., 

of each vector k 4 and the N-l hyperspherical angles ($. } 
3 k j 

k.. = k sin (|iv ...sin <jv .cos*., $ s 0-
3 *N Rj+1 K j k l 

The symbol £ denotes a summation over all the quantum numbers 
ID N 

iLl for which V (2n,+4.)= L, (n, = 0). 

Now let us turn all the vector k. in the same direction 



k. = q sin *N... sin fj+l cos «K 

2^j"^j = 2 s i™ ,jj--- s l n*'j +i cos*.. q.?j = q.z(C) . (XX.19) 
j=l ]=1 

For any linear combination z(v>) of the vectors £ r the expansion 

of the plane wave exp(i q.z(*)) in the 3M dimensional space is : 

expti 4.2(«>)) = (2,r)
 2 ^ i /[i,i«»^)/t Li«o) sl 

iLl (q?) 2 - 1 

(11.20) 

V * - V m * - TT V r ai - ( i )DV LJ-l 
j=2 3 L j 

is a function of V and of the angular coordinates q of the vector 

q only. 

II.S The multipoles of realistic local N-N potentials 

For realistic local soft core two body potentials, 

the following interactions are used( 20.22,35,38.40) ; 

a) V(î 1 3) = V c<r ± j> + V^Cr..).**. + V ^ t r ^ . . ^ + 
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6) v ir^) = V ^ l + V^lPylLLy • V L S ( r l j ) î i j . S i j + v T ( r l j ) S l j ( ; i j ) 

7) vtf i a ) = v c <r t j ) + v 1 2 ( r i j i ^ + v L S < r l j ) * l j . s i j + v T < r i j > . i i j < r i j ) 

ai.22) 

with 

r u 
L t i j - « s i - 3 j» ï î j -« î i j - 3 i>« t i i - s j> - , «» l j j 1 J +»îr 3 > 1 î j 

Oij " 3(3 1 . î i j )(3 r î i j )-(î 1 .S j )ÎJ j =2(2 S J.-3,ÎJ.-3LL i j 

(11.23) 

where for the pair (ij) 

î,. is the angular momentum vector 

S, j is the spin vector 

J,., is the total spin vector 

while 3. are the Fauli matrix of the particle i. 

In order to perform the expansion of the potential in 

H.H. one writes the components in terms of spherical harmonics 

v ?ij> - iTa iw> yr <fid> i / X j > <"-24» 
4m 

where a labels the various components (central, LS, tensor...) 

of the interaction, 1=0 for (C, LS, LL r Q, L
2} components and 1=2 

for the tensor force. All orbital and spin operators of each a 
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component are contained in the operator Q,. (ij). 

For the components a»(C, LS, LL, Q, L 2) we have 

a 0 , ;d j ) - / Ï Ï . s° , 

where S°"{1, Î J J . S J ^ . , LI^j > Q^ • Î | J ) respect ive ly , while 

TQ,T<ij> - / n » 2 "î"1"'1» (""^ * - " ) °7V<J>< 
V (11.26) 

for tenBor force and where a^tk) is the Pauli tensor of rank one 

in the standard representation. 

The Fourier transform ^ a<5) of the two body potential 

V'ij* "J d > q V a(q)exp(i q.z(v>
U , 3 )) , (11.27) 

Is defined by 

1/^(3) = <2ir> ^ ( - i ) 1 Q™(ij) y™(qiy dx x2V*(x) - ^ - r .(11.28) 

Introducing this expression in (11.27) in which the plane wave 

has been expanded into H.H. according (11.20), one finds 

v a ( r t j ) - 2 it 2 ^dl'^'E'-1' K 

K=O r u + | ) r t K + ^ | - | ) 

1 3W-5 
, . . . 2 , 2 5 ^ Y (SI) /"dqY™(q)Y *(*>C 1' j ,,S) / vSuO.u 

r (-K,I+K + 
2 l 1 

(11.29) 



where as usual the sum S] is taken over all the quantum 
[ 2K+i] 

numbers excluding the grand orbital 2K+Î. 

Introducing the multipoles 

a, ,(3N,D r (A + ^5) r<K+*+ |> / , 
V (£) - 2. —2 - - / V*(5u)u 

2K r ( i±2>r<K + 2 | - f ) r < * + f ) tf ' 

jt*! (-K.I+K + -3 | -1,1+ -| ; u: ) du , (11.30) 

with the normalisation 

a <3N,«J 
v . «» " v «<°) ' (11.31) 

a s imilar expression i s obtained for the interact ion V (r,.= ) 

3 < M " 1 > a m a (3N,t) l,m E a r n a uw,«,| i , i M j . 

I , » ) ) V 2 R (Ç). A 2 R ( # U , ] I , W (11.32) K 

where 

A - ' V 1 ' 1 ' . » ) - --.M 2 . /"dqV?(q) T^ Y (*> 1 1 , 3Jq)V (0) (11.33) 
2 K r ( 3 | + f ) y / * | 2 S t l I » + I l l '(2K+11 

i s a l inear combination of H.H. / (fl) . In t h i s l inear combi-
' [2K+M 

nation the quantum numbers I and m are re lated to the nature of 

the a component of the po ten t ia l . The hyperangular functions 
a ' m ( i i ) A2K ( * , n ) w i l l be used in the construction of the optimal 

subset. Integrating over the angles q in eqs . (11.33) one obtains, 



A ' (<Pii'i) ,0) 
r(iS + | > 

(2)~*2X, 

r <•» 
1 2K+JI 

sym 

*,X 

- 1 ) * 

. l i ) 

+ >l! 
MO,X2) 

2K 

(2) rjXaXi 

2K+* 

r(iS + | > 

(2)~*2X, 

r <•» 
1 2K+JI 

sym 

*,X 

- 1 ) * 

. l i ) 

+ >l! 

/4ir(2î+l) 

(II. 3' 

where A is given in terms of tie 3J symbols by 

A(U|Ai) - [ tH+l)(2X,+l)(2*2+l)]} (* J1 H (11.35) 

while 

fer 2 ^ •«-»»— (i; P 1^7>y>-
P l M * (11.36) 

a (3N,i) 
The multipoles V2 K'£) given by egs. (11.30) have 

the following properties s 

i) When the potential V ( J(r ij) has a Fourier transform 

regular near the origin the multipoles behave asympto­

tically like 

(3N,0) IMK+ l)r(^S) V (0) 
V (Ç1 * 1611 i- i- -2 (11.37) 

2K ç*. rlKt^=îi., 5' 

with V (0) » -î- / v„(x)x2dx 
° 2ir2 J a 

a (3N,0) 
ii) The multipole Vg (Ç) has the behavior of the 

potential V ( J(r i.) near the origin, for instance 

aooording to (11.30) a potential (r,j) n generates 

Coulomb potential). 



iii) When v
wlr.i.iî is finite at the origin then accor-lij a (3Nrl) 

ding to (11.31) V, (0) = V (0) and V,„<!) -•• 0. 



III. Bound states of three body systems 

XII.1 Basic equations 

For describing the position of three identical particles 

with respect to the centre of mass one uses the Jacobi coordinates 

ti and £2 given in terms of the coordinates x, of the particles 

(i-1,2,3) by 

5i • x 2-x, 

t i » — txi- - (x7+x*n - /î (xj-S) (111.1) 
/3 2 

S = - (Xi+X2+Xj) 
3 

We introduce the hyperspherical coordinates (Ç,fl) of 

the six dimensional vector t like in (II.3). The hyperradius is 

%\ +t\ 0 < Ç < - , (III.2) 

8 is a set of five angular coordinates : one hyperspherical angle 

$ (tg$ = SJ-) and the four angular coordinates Ci and £2 in the 

three dimensional space. With this choice the kinetic energy 

operator is 

ii /_!!• i i_ + £UaiL\ UII.3) 
m \ 3Ç 2 Ç 3î Ç* / 

S» 8 ^ ( 5 . ) î|Ûî> 
L2(S!) = -2— + 4cotg2* -2 ! . (III.4) 

it1 3$ sin 2* cos'* 



The eigenfunctions of this "grand angular" operator are the 

orthonormalized hyperspherical harmonics (H.H) 

The symbol I L] stands for the five angular quantum numbers 

{n li l 2 mi mi) appearing in (III.5). Mote that for a grand 

orbital L (L=2n+&i+«2) the degeneracy is 

. JS±21i . (in,6) 
12 LI 

The SchrSdinger equation written in hyperspherical coordinates 

becomes : 

(H-E) Tle,0, J-ÎLi(âL + iâ_ + idiniL V( Ç, n)- E } f ( s , a ) = 0 

I » l « ! E « 5 ! I J ( I I I. 7 ) 

where V(Ç,(!) is the interaction. 

In expanding the wave function ¥(£,!!) in the H.H basis 

ï(Çrîl)=22r2 ^[LjUJ.y^j (S) , (III.8) 
[L] 

and integrating over the angular set ft one transforms the 

Schrodinger equation (III.7) into an infinite Bet of second order 

coupled differential equations : 

'Xl-l1 H - B 'Z Ç~ 5 ^l I/](Ç> / [ L ' ] ( n ) > " ° (III-9) 

[L'l 
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+ H "XLI^^'^'IXLM^L'I' 5 1 = ° • ("t.io) 

IL') 

The radial partial waves u, ,(Ç) are normalized according to 
^ _ _ eft 

X/y^^L)' 5 '! 2 •* • (m.m 
[L] 0 

For large values of the grand orbital L the number DIL) of 

independent H.H is very large. In order to solve numerically 

the three body problem we have to reduce the number of partial 

waves involved in the expansion of the wave function Y(£,ft) to 

the minimum number of significant terms. 

The first step is to couple the spherical harmonics in order to 

obtain a basis of definite total angular momentum il of projection 

m. it is made as usual with the 3J coefficients : 

The ground state of the trinucleon system for a potential without 

tensor force is completely described by the elements A=m-0 only. 

In this case the number of H.H of grand orbital L=2K is K+l 

because the parity conservâticn selects only the even values 

of L. In section III.2 it will be shown how to select an optimal 

subset of the complete H.H basis taking into account the most 

important features of a given potential and including the permu­

tation symmetry of the three particles introduced by the Fauli 

principle. 



III.2 Antisymmetrization of the wave function 

The spatial wave function of the three body system 

f(z<*) ,Z(<P-TT/2)J is written in terms of the kinematic rotation 

vector, 

zfo>) • ?i sin V + f 2 cos v . (III.13) 

For ^=Ti/2r •n/2-2ii/3,ir/2+2
,ir/3, one obtains respectively the inter-

distances between two particles (x2-xj , itj-xj, X)-xj) and, for 

the same values of *fi, z(^-ir/2) give /3(x 3-x), /3(xi-£) and /3{x 2-5). 

We define two types of wave functions y~(z(<P), zte-ir/2)) 

(anti]symmetric (superscript (-J, +) according to the parity with 

respect to 2 to) •* -z(^). Since the cyclic permutation operator 

acting on a symmetric (or antisymmetric) function under the 

exchange of two particles produces a fully symmetric (or antisymme­

tric) function under the exchange of any particle, we construct 

the completely antisymmetric states by taking the cyclic permuta­

tion of the isospin-spin state with the spatial function exhibiting 

two conjugate symmetry features. For convenience we construct 

the fully antisymmetric state from wave functions exhibiting defi­

nite symmetries in the pair (1,2) i.e. for ?=TT/2. 

The antisymmetric wave function has the general form : 

p mT r aS r n lT mS 
4-U,fi)=r < A ) £ ^ ( z t * ) , ^ * - £))+| (S) £ l^" 1 (*<*),«<*- £)) 

^, C rVs PVS , (+? ̂  ^ „ 
+ 2-*{sin2* 1 |M+)-cos2* I tjM-) J Ç ' t z t v ) ^ ^ - |) J 

r r a T m s p m T m s 
- £ { s i n 2 * F]M-)+COs2v> I JM+) J V^ (Z{*),Z(>P- f ) ) 

+ 2J{s inv> I (M-)+COS^> j ) ¥ * t J (a<^) f î ( f f - •?)) 
C < Ji U ' 2 



f-.™yns 1 - . m T m s 
+ £ {-cos* IjM-l+sln* | (M+) J 4^7' dit) ,î(*>- | ) ) 

r' V s T-PVS 

(M-)+cos* F <M+) 1 v ' * 1 (z<¥>) ,?(*>- 7 ) ) 
Jf ' i f ' M 2 

• r .
m T m s r W s 

+ £ {-COS* | (M-)+siW 1 <M+> } '"M"' ^ W '* < v ~ f ' ' r ' V s 
(S) E t i ï ' l î t v l . z l * - f>). (III.14) 

•II- c " 

In t h i s expression, JT i s the c y c l i c permutation operator and 

tJVs c 

1 (k) are the nine orthonooial irréductible representation of 
TS 
spin isospin states for trinucleon system. 

We define three operators So E + £_ acting on a function of the 

angular parameter f via the relations : 

S Df(#) = - (f(»> + f(V- — ) + f(*+ — ) ) 
3 3 3 

Sj.fi (?) = - {2f (*> - f (*- — ) - f (*>+ — ) ) (III.15) 
3 3 3 

£_f(*> = -*- {f<¥>- ̂ L) 
/3 3 

We perform the cyclic permutation in (III. 14) by usi:\g (111.15). 

The completely antisymmetric wave function becomes : 

(0,+) (0,-) 

y(ç,n) = r H(A).* s(ç,n) + r J }<s) *A<ç,n> 
(++) (-.-) 

+ rH(M-){o>H(ç,n> + * M (ç,f!>) 

(-,+) (+,-) 
+ r H(M+)( -* M <Ç,!2) + •„ (Î,IJ)} 

(+,+) (-.-) 
+ r A j(M-){* n (ç,n) - * M (ç,a)) 

(-,+) (+,-) 
+ r A !(M+)U M a,a) + * M <ç,a>> 

http://Sj.fi


(+,+) <-,-) 
+ r^M-) U M u,R) - +H <e,o)} 

(-,+) <+,-> 
+ r j a(M+) (*M u , n ) + « H (ç,fl)) 

(0,-) 

(III.16) 

with the de f in i t i ons 

(0 ,e ) 
(Ç,S!) - 3E0 V™ {*<*),*{*- §)) 

* 0 (Ï .0) = - £ E ^ e '(ziv-S.zlV- §>>. e ' - i 

(III.17) 

III.3 General method for the construction of the hyperspherical 

basis 

To calculate the completely antisymmetric wave func­

tion *(Ç,S!) (eq. III. 16), we have to construct a function 

ï ' e l (z(»>) ,z(¥>- î)) which has a definite symmetry (e ) in the 

z(^) + -Z(K>) . Since according to (II.4) the hyperradius Ç is 

symmetric, the symmetry characters of the wave function is 

contained in the angular part which can be extracted from a 

Fourier transform analysis. Let be 0(k\fic;) the Fourier transform 

V(z(*),£(»- !))=Jdsk,dsk24><Ki,ic2)exp<i[ic1.î<,i>)+k'a.z*<*- 1)1) (III. 18) 

s("P) - ti s in <e + \z cos tp - Zi 

s(*- j) - - î i cos <p + î 2 s in # = z 2 . ( I I I . 19) 



We introduce two six dimensional vectors k and z constructed 

from the vectors (it) ,8a) and (zi, zs> respectively. The vector is 

has for components k=[k*5+is|]* and the five angles Bfc»(ki rkz,4k) 

with tg*v « I ' ' . The hyperspherical coordinates of the vector z 
tic I 

are const i tuted by Ç-IssJ+z*]'- UJ+Çjl J and the f ive angles 

n - ( z i , i s , + z ) with tg(>2 

He expand <Mki,k2) and the plane wave in liyperspherical harmonics, 

exP «s,.».* ic s.î i } =(2,)' y ; I L Y* L ] ( V y [ L ] »,> i ^ £ 
(III.20) 

MÎ1.S.) = 2 ] *[L'] ( k ) Y[L'] ( nk _ 

The wave function (III.18) becomes : 

JT.,(kO 

( k Ç Î (III.22) 
f<s„t.j = < 2 " ! , z ) i L y i D ( ! î z ' / k S d k *[L] 

where all the angular dépendance is contained in Y_i(ÎÎ ). The 

H.H / fri W O m a V b e projected (appendix 2) on the complete H.H 

basis tYfj.,1 (®)} a s follows : 

/ [ii <V = 1 3 Cm' '*" YIL-] ( n ) - ( I I I - 2 3 ) 

IL'I 

where 

X ' < c o s ¥ > ) A ' . ( s i w > A < - l > n ' + X ' c <«\ = * (21.)- y 

L=A+A' 

(L+4)I 
(L-A+21KA+2)] {/ a ! ,kyûi ( nk»y*A'] ( nk'y[Li (v(-

• / a n y ûM'^yiLi^ytAM"»- ( I I I - 2 4 > 



By coupling the two angular momenta fci and fca contained in the 

set I Lj to the angular momentum A* the coefficients \^ , L» (p) 

becomes indépendant of the magnetic quantum nurcbers leading to 

y ,m ^-\ (Li <2!r>,J!ti' »,m . . 

m,*) » N y , n <»' r <+' / ui ,«! ) an .25) 
L i t i i i i t frf, u * ; t ; J L / <ij*;)i 

where H is a normalization factor and 

Vm,- - , V • M-'W1! K l V'"1 V™* 
(III.26) 

The c o e f f i c i e n t s a re 

l i » i X| 

4a Xa X2 

A A ~ X i ( L - A + 2 ) M A + 2 > . 

MXiXJJ.jlMXaXaHaJMJtJX.XJHr.JXaX;). 

PX2X1 p . X a X1 _̂ £ a £ 1 —.2-2*1 p . £ 2 fc 1 — X : X a 

A I T A ' P L > <J L T L - I P A . > «»1-"» 

with a(abc) = [ (2a+l) (2b+l)(2c+l>] ' ( * £ ° 1 

and 

P i j n i ' i ' Pi ( « / * 2 < 2 ) | V X « (2)rNX|'Xa(2)r\Jtiia 

A l X l I P A? X ' | P L 2 l > = y « | J

A W ) ] J

A , ( * > P W > (sin*) ! <cos») t, 
(III.26) 

The coefficients Ç\o £ are known as Raynal-Kevai coefficients 
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The expansion of the wave function becomes 

»<£(#).«(*--))- 7 +,,, (Ç) Y m,v>) . (in.29) 
2 ,4-i I L ! / L ( * I * 2 > H L4il 2 

Jim 

The expansion of 1M-z(v>) ,z(v>- ̂ )) Is deduced from (III.29) by 

replacing the coefficients Q ' ^ , (V) by (-l)'i Q , l

tV'ti <»>. Accor­

ding to the parity with respect to z(v)one defines the wave func­

tion 

U) V-» (ek.m 
IMil*) ,z<«>--)) = ^ * ( L 1 < 5 1 / ( n , v , ) ' f 1 1 1 - 3 0 ' 

2 Ltitj t(tita)» 
Jim 

(e) v /m v ^ *.'L' (2)r-s HJ1 ! . ,m 
with Y (S!,*) = N > , H ( ï" F , !*) Y (Ci,!») (III.31) 

where E=± according to the even or odd parity of JtJ. To obtain the 

expression of the completely antisymmetric wave function (III. 16) 

it is sufficient to know the effect of the operators la, Z, and Z_ 

on the coefficients Q.iitt*). One finds 
*! 2 

i.aijljc*) -* .£ I.*)1-*' w » 1 Diftf 

AA* 

A' A'Aeven^O 

A'Aeven 

1 ' A'Aodd ' 2 
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in terms of the coefficients (see eqs. III.27) 

D t V A ' = J L T ! t - D n ' + ^ — ^ ± ^ — i t ! xi xlLcx.A.-DAu.xii,) 
U 4 , * ! 2i?tf< ( L - A + 2 ) 1 ( A + 2 ) . | , ,, ,.( 

X,X, 

* « : . . x j ) * ( t j x , . { > « p i « » M p . i A ! i P * ' * ' » < ^ i l ! i P * i 1 M P i S 1 { » . 
(III.32) 

III.4 The optimal subset and potential basis 

A potential independent of II is hypercentral. It is a 

function of coordinate the Ç only. A sum of two body interactions is 

not hypercentral in the six dimensional space (except for harmonic 

oscillator potential) because it contains hyperspherical defor­

mations described by the various components of the H.H expansion 

of the potential. These components in turn generate hyperspherical 

deformations in the wave function. When the deformation of the 

potential is small with respect to the hypercentral term, it 

seems justified to use a perturbation expansion of the wave func­

tion in terms of the deformed part of the potential. Assume that 

a state y{f/S,t) is described to a good approximation by a wave 

function Vo (|rs,tï in such a way that <i^| D̂> = l. One defines an 

optimal subset with respect to this state by stating that any 

element I* (f,s,t) orthogonal to 0o(f,s,t) must fulfill the 



<ï v l \}~<tw,> - / d n ï * ( î , i , t ) V'(î)1t(î,a,t) t 0 . ( i l l . 3 4 ) " / d n *fc 

In this case the exclusive use of the f. (?,s,t) subset enables 

one to take completely into account a perturbative calculation 

up to the third order included. In the hyperspherical formalism 

'MffS.t) is the product of <*i(ï) and a H.H B«(îî,s,t) fully 

antisymmetric. The slsments Bfc(fi,B,t) of a hyperspherical optimal 

subset with respect to Bo(!),s,t) must fulfill the conditions : 

Jàn BJ|(n,s,t>. Bk,(n,s,t) - « k k , 

Ida aj|(fl(s,t) v(ço)Bo<n.s,t) f o. 
(III.35) 

For determining the "hyperspherical state" B0(fi,s,t,) describing 

the ground state one uses the general theorem which states, that 

in the case of hypercentral potentials the grand orbital L is 

minimal for the ground state. This property remains valid when 

the potential is slightly deformed i.e. when the first term K=o 

in the expansion (11.32) of the potentials is largely predominant. 

Zn the trinucleon system the minimal value of L is reached when 

all the nucléons are in the S state. In this case L .„-0 and 
min 

the hyperspherical ground state Bo(n,s,t) is a product of the 

completely antisymmetric spin-isospin state and V ( n ) i.e. : 

MO] 

Bo(B,s,t) = TjjIA) y ( 0 ] <
n > = f " 3 / 2 TjjfA). (III.36) 

It is clear from the conditions (III.35) that the optimal subset 

depends essentially upon the nature of the interaction (i.e. two 

body or m?.ny body forces with or without exchange properties. 



central or tensor Interaction...). The potential is an even 

function therefore the H.H expansion, 

vts.n) - 2 Q 2 K P2K<n> lX2^V (in.37) 
K-0 

contains only even H.H (i.e with grand orbital even), Q- 2K
 a r e 

constants. The H.H J^_K(i)) of grand orbital 2K which include 

spin-isospin operators (O,T) is an elarent of the so called "potential 

basis" and V ,„<£), the multipoles of the potential are scalar 

functions of Ç. 

The conditions (III.35) lead immediately for the 

ground state r,,(J) V [ Q] < n) t o t h e H-H optimal subset, 

B2K(i!,s,t) > C 2 R ^ 2 K ( n • S ' : ! , r , j ( A ) (III.38) 

III.5 Optimal subsets for central and tensor forces 

The H.H expansion of the completely antisymmetric wave 
TMj 

function ''(T.RIJM *£»0> O £ t*16 trinucleon is made by using the 
J 

potential H.H operator (11.34) symmetric under the interchange 

i -*- j for £ even U=0 and fc«"2 respectively for central and tensor 

potentials) therefore the completely antisymmetric wave function 

(III.14] is restricted to the components, 



(0,+) (+,+) (-,+) 

*!C,a>= r,,'.A) *s(çn) + r H(M-) * M (ça) - r u(M+) * M <çn> 

(+,+) (-,+) (+,+) 

+ r}J.(M-) *M, urn + rjj.(M+] •M,(çn) + rAJ(K-) * M„un) 

(-,+) 

an.39) 

The isospin-spin functions r(R) for R«(A,M+,M-) must 

be combined with spatial wave functions of conjugate symmetry 

R*=(0,-,+) generated by the operator defined by eq, (III.13). Then 

we define the orthonormalized elements of the optimal subset, 

till R* ^ K +* 

IHP)l!li v/m . . 
r (•). Y (£.,£!) , (in.40) 
i 2x+* / a,ii) i 

R* 
where y] 2K+S. l s a n o rmalization factor. In the (£S)JM subspace 

the completely antisymmetric function becomes 

TIL V-» K I S -5/2 R * D MJ 
Y T U,s>)=>, pTS(R)«2v+i,(Ç) 5

 v lrTS(R)<8 i3'
n> Ij « H - * » 

•»• (ÎS1JM- ~ T S 2 K " T S 2K+1 J 

the coefficient p g(R)=±l according to the construction (III.39). 

To explicit the tensorial product appearing in eq. (III.41), we 

use the following expansion of the isospin-spin states r_z ;R) 

r T S(R) = 2 J
 ba' R'l (si)sms>| (tJ)TmT> (III.42) 

st 



The elements of the optimal subset In the (£S)JM subspace take 

the general form : 

R- Mr R"r _ , . S-M. . . . 

I ' r w«w« B «» 'a y~ Uzw X, b9(R> ( _ 1 ) " l J l 2 j 

( ) )<2-i r !v ( i , j ) ) .J PwiKîiHîitaîis) 
\0 0 0 Am m s -Mj/I^I ' 2K+JI J ' 2K+* 

)Sm_ 

The use of this optimal subset enables one to calculate the tri-

nucléon states ' S , for 1=0 and D. for 11=2. 

2 1 
The contribution of the two components of the ' S, state procee­

ding from the space completely symmetric and mixed symmetry states 

(in choosing the pair (1,2) as a reference * l ' '=n/21 is : 

^ ( ' • • T g 1 - r H ( M + ) r ^ ' j u 2 K

( 5 ) « ! 

K (III.44) 

in terms of the orthonormal H.H 

P | - (E,E2K-4f2K E T»"» P # ?W>y f , ?» 
(III.45) 

in which the symmetry is introduced by the function 

E n l , l _ (2).-» 1,1 
<<>) . (III.46) 

2K " 1 21 

(III.47) 



is a normalization constant. 

A similar expression is obtained for the wave function of the 
2 A 

+ MM) |(lJ)Jm„>} (III .48) 

with 

^ïïi.-Kawg'.t.ys'S1) Fsg> Pau™'1 

[ U I * 2 > 2 ; ( 1 * ) T < * H > - ( I I I . 49) 

and the normalization factor. 

"N 2»2 = £ «*.+» (".+» (o o1 o ) E Fjj f> i 2 "«-so» 

I I I . 6 The coupled equations for loca l r e a l i s t i c potent ia l s 

RTS 
The part ia l waves u (Ç: of the H.H expansion of the 

2K+i 
trinucleon wave function 

rMj(çn)= V Y ^ . j M (C«)= Y] P T S

( R > "E(C).r*.[r(R>® R(a> ] . ' 
r , 1 U S I J H J vtSL T S 2K+1 TS " î W 1 

J 

(III.51) 



SI. 

are solution of the coupled differential equations (III.n) 

j . hi fdj_ . taw+at'-i 1 . E | a

R T S

( ç ) + 

l m L d Ç ! Ç J J ) 2K+H 

E p l R l p ( R ' ) < [ r ( R i ® R i v ( Ç f l ) | i r ( R ' ) ® R B Î I ' + I - ' T » 
K ' R ' T ' S ' * ' T S ' t ' S ' T S J - , 2 K + * J

 T - S ' W " Î K ' + l J 
R'T'S' 

•U, (Ï) (III .52) 
2K ,+l' 

" V s " r\ The expressions of r_i ° (R) , W (fl) and V(Ç,!Î) given respect ively -
1 3 2K+* 

by equations (III.42), (III.40), (11.32) lead to the set of coupled , 

equations 

{.tiraL-(«***»'-»].«[ u ™, t 

( III LdÇ» Ç 2 J ) ^ K + t 

E „„ _ (2K'+*')R'J , .Tfr*" R'T'S' 

(-J* ( !K",Y,«")V (Ç,R,R'> U U) = 0 (III.53) 
K'^'R'T'S' (2K+t)RJ 2K" ^ H ' t * 1 

a t a ' t , l " Y n (2K'+H')R's ,S ,J 
in terms of the coupling coefficients I (K",Y,&") given 

^(2K+l)RsSJ 

in appendix B. The potential matrix 1/JK" " ( 5 , R , R'' l s 9 i v e n i n 

appendix C. 



III.7 Coupled equations for a velocity-dependent potential 

During the past and more recently in Orsay several 

authors (40) have shown that velocity dependent poten­

tials could give as good fit in the relevant two body data and 

nuclear matter in nuclear physics as the hard core potentials 

( 38,35) and also the class of super soft core potentials 

(35,22,20). It is then interesting to analyse the static and 

dynamic properties of the three body problem with these less 

conventional interactions. However the corresponding equations 

in the hyperspherical formalism are not obvious. 

In the general case we must determine the matrix 

elements of the two body interaction V(Ç,fl) appearing in the 

equation (III.52) with a velocity dependent term which reads : 

?ij u ( r i j ! + " l rij !'ij • (III.54) 

To avoid cumbersome calculations we give the method for the part 

of the optimal subset corresponding to a central potential 

(111.45). Then we have to analyze the action of the operator 

(III.54) on the set of hyperspherical harmonics contained in 

the V " (Q) : 
/ 2K(U)0 

... , (2i nu ^ W 1 - V"1*-
V ' (a) - — — Pi*) > Y ,«o / ,(ti).(iii.55) 
/ 2K(U)0 /2Ï+T J 2K 4r4 J * ' * 

m=~* 

Choosing the particles 1 and 2 as reference pair, *i«=X2-xi the 

velocity dependent operator becomes, 

V\ u(e,)+w(Çiïv"î - âîfi + 2_ ËS- + â « _ i _ +2 U(ç.)*î . (HI.56Ï 
K l Ç l dÇ? Ci dÇi dÇï 8Çi Ç l 



We symmetrize the two last terms of the previous formula accor­

ding, 

a»- * - •*(«,>»» = i a—«,> s, j / i - a - • i- s - + i- s - - i- a-} 

dç, 3Ç, "•' 2 dïi (Ui dÇi ç, dfc ç, dç, ç2 « ^ 

+ u(S,) I ''î/'Éj'^'îr'ti" * (III.57) 

With this expression the action of the operator (III.56) on the 

H.H (III.55) is : 

\/ JZ V (2)i-,oo 
[7i lo(Ç,)+u(Ç,)7f ] Y 0 (f!) = — 7 , (K'+l) H (•). 

4 1 5' 2K(«)0 i jfT^ 2K' 

fy. », L2!«)*£!«) c ^*£«i ( t t i L -«(5m)] 
I m u o o L Z K Z K ae 2 K Vac 2 ç 3ç e 2 /J 

- a i v ° (m fu>_^,(?)/« — +2x)+«,K,(«) |^-
K / 2(K+1) ( t t )0 I 2 K \ 3Ç ' 2 K ( 3Ç* s 

_ 4K+1 3 _ + 4K(K+1) M 

- a i , V * m) \",*<w (e — - 2(K+2)) + u (ç)^li- + M L 
K * ' 2 ( K - 1 ) ( U ) 0 L Z K V 3£ / 2X V 8 ç 2 ç 3 Ç _ 

l l K ± i b i ^ £ i j |J ( i l l . 5 8 ) 

a ! = i riK+^2)(K-^i)f K „ t 
K 2 L (K+l) (K+2) J 

(0) 
u <5i> - " ( 5 i ) 

(1) , A (0) 
a) t£i) «= — 2— « (Ci) 

2ç, dSi î i dÇ 

« I / „ * , i \ 10) < 2 ' / r i 2 3 fl \ l U » 
" <«i> «=( — + — S — ]•> (Ci) 

VdÇ? « , d ? l / 
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(i) 
uhereo-„(£) are the multipoles of the corresponding potentials 

m '(Ci). The matrix elements of the velocity dependent potential 

are ! 

' 2 1 t ( l l ) 0 4 1 4 l / 2 K ' ( J U ) 0 * R 

; . s r > ( (0) r ( 2 ) ^ 1 * ( 2 ) - . 00 ( 2 ) n U 

« • 2 - «• •» »2K-(«» I" ?a\ P 2 K »I J.2K 
4 K»-0 < L 

1 ( 2 ) p U _ 1 (2) p « S J ( 2 ) Q « ( 2 ) Q O 0 

~ Q K ' 1 2 ( K ' + 1 ) " ( - ' K , - 1 J 2 ( K ' - 1 ) > 7^7 + ' J ~ 2 K I r 2 K " l 

« t ( 2 ) n H l * ( 2 ) n 4 1 , 
Q K , (2b K . + 3) P a a t . + 1 , - Q x . . 1 C 2 l > k , - l ) J J

2 ( K . - 1 ) > ^ 

- < r 2 K i r 2 K " i b

K ' t b K ' + 1 ) r 2 K - + a K ( b K , + i ) ( b K , + 3 ) p 2 ( K . + 1 ) 

/v"' <2> n*! ! -| <2)rj!U <2!o<10 
+ û K ' - l b K - ( b K ' - 2 ) F 2 ( K - - l ) > 7 r J * ^ K i ( Ç ' < P 2 K I " „ . I 

( 2 > p M 1 ( 2 ) p l l t - t ( 2 ) p t i g_ 
* 2 K ' K' ^ Î I K ' + D ' ^ K ' - l • r 2 ( K ' - l i Ç

 a £ 

( 2 ) r \ U ( 2 ) p , 0 0 , <2)p . !U . J . < 2 ) n U 

"« 12KI r2K- l f P 2 K ' + û K . < b K ' - 4 î F2tt'+1)-

-Q(K' - l ) ( b K' + S ' r2(K'-l)>J 

2 ) r \ « ( 2 ) n 0 0 ( 2 > n " ) 

F 2K1 r 2 K"l r 2 K ' > ( U

2 K' ( * 
(2) (2) 

' ( I I I . 5 9 ) 

"K 2' 

To obtain the coupled equations one reconstructs the 

optimal subset (III.45) in terms of the V (8) 
/ 2K(M)0 



Pie) n < E ' ' - s 

min(K,K') U E ' U 

%* e'N2K- E «»+1» F2K F 2*. «YKUDOI'S,»"'» + 

1-0 

"'«'•'çiyjK'UDO* î _ f U2K'<«> ' (111.60) 

leading to new coupled equations • 



IV,1 Convergence of the hyperspharleal harmonic expansion 

The convergence trend depends on the nature of the 

shape of the N-SÏ Interaction. For studying the convergence in 

terms of the number of solved coupled equations, the completely 

symmetric S state only will be investigated for the sake of 

simplicity. It can be extended without ambiguity to the other 

S' and D states. In the coupled equations (III. S3) relative to 

a central two body potential with the fully symmetric wave func­

tion only, we separate out the main K=0 equation writting : 

>_ HlPâ!— i i r i l + t X t o - E } u „ ( ç ) + ^ <-I) K CK|K|O> l^ K (Ou 2 K (ç )=o 
l mLdC ? Ç J ) K J Q 

{-[— — " — l + l f j { ) - E u, K(0 + V (-l)K"<K|K"|K"> 1 K̂„(Ç)u(Ç)=0 
I U dt! V J ) K ^ 2 2K' 

K" • (IV.1) 

while <K|K": 

~\\ K'f.!= H <-1) K"<K[K"|K> V 2 K „ ( 0 is a diagonal term of the poten­

tial matrix. One introduces the change of function 

(IV.2) 

with Go(Ç)=l 

leading to the new equation equivalent to (IV.1) 



+ ^ <K|K-|K'>l^ K.«)a 2 R,«) J -o . (iv.3) 
K" 

where W(Ç) is an effective potential acting on the main K=0 

partial wave according to 

j-îig|_.vl=l]« < î l. BJ l l i ( t ) =o 

In the equation (IV.3) one makes the following approximations : 

i) the term - ^jj- |y G

2 K

( 5 ) • ft u ° < 5 ) i s " e 5 l e c t e d 

(IV.4) 

the vicinity of the point Ç where the partial wave 

u 0(Ç) is maximum i.e. where gr uo(£)=0, (notice 

that according to the numerical analysis the partial 

wave u o U ) contributes around 98% to the total wave 

function). 

.• the terms |p- G 2 K(ç) and ( U K15) -W(5) >
G

2 K

( 5 ) a r e 

neglected with respect to the centrifugal term 

gi for large K values. 

Taking into account these two approximations (IV.3) 

becomes 

>! (VJI-V2,) _ _ «}-

S - - i .G2KU> + £ <K|K-|K-> V2K.<e>G2K,<C> = 0 (IV.5) 
m % 

with 

K" 

G„(£) =• 1 and vjj-vj = 4K(K+2). 



If one neglects G.j.,(Ç) in the last term of the previous equation 

with respect to the unity, one obtains : 

,,, . _n_ S.3!M»> V, K(ï). (IV.6) 
2 K h» 4KIK+2) 2 K 

introducing G 2 R ( 0 in (IV.3) one obtains (IV.4) where the effective 

potential, 

it.! *—« Ifllll V 2 K 

4 1 , 3 s i « < K + 2 > 
) (IV.7) 

contains an estimate of the effect of the partial waves K^O on 

the binding energy E and on the main partial wave u 0 U ) . 

Assuming that the system of coupled equations has been 

solved numerically up to a value K , the missing energy with 

respect to the exact value is given by : 

A E = -< U o|_!L_ V <K',*|0>' ( tf (t)).|0|> . uv.8, 
4tiz

 Vmf* .. K(K+2) 2 K 

K *W + 1 

V <KM2ii (ç lL( t ))« «v.») 
K=K + 1

 K ( K + 2 ) 

max 

which depends on the shape of the two body interaction through 

the multipoles 

U>K(" " Jr / »2 K +2«« ^'^ 

where 

V(q) 
is the Fourier transform of the two body potential 

(IV.10) 



Yukawa potential and Coulomb potential 

The Fourier transform, 

V f q ) . Vi- . — ^ . V l _ i _ ( 1 - H i + . . . ) (IV.ll) 
x 2* 1 q*+u 2 2n 2 q* q 1 

of the Yukawa potential 

e _ | j rij 
V y ( r i j ' * V ° ~ (IV.12) 

rij 

generates an expansion of the multipole in term of u 

,vty) 
ç v__ (?) ( 1 «!£î + ...J 

l(K+f)(K+i) 4(K+ f) CK+ |)(K+J) (K-J) ) 
(IV. 13) 

which in turn provide a convergence trend 

« 2 

S tHlKlO* 16VJ I" 1 ui î f 1 

K=K +1 K ' K + 2 ) ** L <K+ | ) (K+!) 4(K+ f) (K+ f((K+l) (K-i) J 
" " * (IV. 14) 

the f i r s t term corresponds to a Coulomb contribution because 

V c ( r i : ) ) - Lim V y ( r i : j ) . 

The convergence trend of Yukawa potentials is therefore very 

similar to the one of the Coulomb potential because the second 

—4 

term proportional to K decrease like K and gives weak correc­

tion with regard to the Coulomb term. The coupling coefficient 

between the first and the K equation is roughly (12) 



<K|K|O> ! = - (K+i)2 

3 

leading to an extrapolated missing energy 

4E = - ML- <u,|Uo>= J2 — <IV.15) 

« w « ( K + 1 )' 

G - Gaussian potential 

The multipole 

( G Î 2V -0 
V2K { £ ) = e 1 K + l t p > (IV.X6Ï 

P 

of the Gaussian potential 

-r° /b 2 

V G(r i : j) = v. e " (IV.17) 

is expressed in terms of a modified Bessel function of the first 

kind l„. , (p) with p = -*- . 
K + 1 2b a 

The potential proceeding from the terms K > K m a x in the 

main equation is 

E <K|K|0>» u v

( G )

) 2 . V * <K|K|0>' 
K(K+U-) 2 K _4-* . K(K+2) 

.8b'^-e ' Ml' + 1(p> 
K(K+\I2) «" „_*-' K(K+2) P 

,Vj_ „-2p T ! 

K-t 

(IV.18) 



using the approximate ratio 

<KlKlO>' „ X 

KIK+2) 3 

and the relation 

i(2p) - Io(p) + 2 ̂  I^Ip) , (IV.19) 

the convergence trend becomes 

w 
AE = - - -2 b'Vj <uo|l 0(2p)-l5(p)|uo>-2<u 0|^ In(2p)|u,,> 

n=l 

(IV.20) 

y - Shell 6 potential 

The shell 6 potential ( 52 ) 

V r i j > = v « »««' i j -" ' 

generates multipoles 

0 
(6) 

V2K «> 

for r < , 

-S £L_ VciaÇ-^lî-aH"2) 
ft (f +K) 

PI 
(IV.21) 

,1 
(l-2a2ç"2> 

r > a 



which contain a Jacobi polynomialP^'* . 

Por l a r y e value of K one uses the asymptotic expansion of the 

Jacobi polynomial, 

P K ' (UaV 2> • 2JÏ sin 2K a f . _j_ L s i n 2 K a r / l . ( I V . 
K»» Jit 2aK Ç /K? a 

Therefore for K l a rge enough the mul t ipoles become 

lira (f.V, ( O ) ' " — l - . / f i ï i M ( « r V u - a ' T ' l s i n ^ K a f , " ' . 
K „ , iK+iiK v it y 

Using s i n 2 2 a K Î _ I = i ( l - c o s 4 K a ç " 1 ) , one no t i ces t h a t the l a s t 
2 

o s c i l l a t i n g term does not give any s i g n i f i c a n t con t r ibu t ion in 

the average . The convergence t rend i s given by t h e f i r s t term 

only . 

lira (<:v,„ ( U ) ~ ( H s a 1 ) ( a f f V u - a T 2 ) UV. 
K „ 2K(K+1) \ Tl / 

-(^f)2 <«-1)»ll-.«r2) j | \ (2)-, (3)1-

where C(N) i s the Riemann funct ion . 

The missing energy i s 

2 " 
AE = - s ( ^ \ < u „ | ( a r 2 ) M l - a 2 f , " 2 ) | u o > y iS-

U / v ^ - K 
iKlO> 

v . , . , ( K + 2 ) K ( K + 1 ) 
x n>ax + 1 

6 E , - S / Y î a \ 2

 < U o | ( a Ç - l ) ! ( 1 _ a J j . - 2 ) | u o > y > , K+l ^ (IV.25) 
3 Vïh / „ * < , K2(K+2) 

W 1 



6 - Practical extrapolated missing energy formula 

In order to estimate the extrapolated binding energy, 

we denote by E(K) tiie energy corresponding to the integration of 

coupled equations up to L=2K. It has been shown (12) that the 

behaviour of the hyperspherical coefficients generates an increa­

sing of the binding energy which is of the same order of magnitude 

for the K=3n+1, K=3n+2 and K=3n+3 partial waves. Then we define 

the increase of binding energy 

AE(K) = E(K) - E(K-3) 

For Gaussian potential G2, GPDT,...) the exponen­

tial trend of convergence is (13) 

ÛE(K) = E(K) - E(K-3) = C e " a K 

leading to extrapolation formula 

S A E ( K m a x ~ 3 ) I _ 1 

E = E < K

m = v ) " A E ' K m a v M — l \ - (IV.20bis) 
max max ( A E(K m a x) ' 

For the Coulomb and Yukawa potentials, the increase 

of binding energy behaves like (13,53) 

leading again to the binding energy 

E = E< K

m*v>
 + — Û E < K

m a v > (1-P)~1ll- £ ) " 3 (IV.15bis) 
nia A —. m ax — 



IV.2 one body density and two body correlations 

26) 

The one body density R,(î 2) and the two body correla­

tion function Rzt^i) are respectively given by 

V V - y I * c? i,?» » | *a • e A i/i <i,j-i,2). (iv. 

? 2 

One uses the trinucleon wave function with ' S, and 

D, states. Taking into account the orthogonality of the spin-

isospin state of the trinucleon wave function one writes the 

densities Rj(5J as the sum of five components, 

Ri(ïj)=Rl°
) <tj)+ ± | R | + 1 it JI+RJ" 1 (? j)+R|

D + ) (tjl+R^"' it J (IV.27) 

mln(K,K') 
2E+I 

"{"•ty"/^**! S e N2K £N2K' «"* »»^>»M' (» Ë 

e r U E-, U (2)p.t,t (2)p.l,l 
U (TT/2) (« (TT/2J P (•) K (*) , (IV.28) 
1 2K ' 2K' ' 2K * 2K1 

for the S and 5 a states in which the parity of fc in the sum is 

even for e=0,+ and odd for e--; a=s for e=0 and o=m for e»±. 

The contributions o£ the D states to the densities are, 

R I D " ' ( Î ) -A 'df y v v , y* (2*i+i><".+!) h *• M 
i 4 j 7 i i Z-( M2K+2 N2K'+2 Z-l ,c„i H 0 1 

0 KK' t i l , l a i 1 

n p tjS.i n p , l 2 l i . c m{i raji ( 2 )p ,» J r J l i (2),-JU ,1] 
V- (ir/2) L (ii/2) £ = U (Ç) U (£) H (•) P (+) ,<IV.29) 

2K+2 ' 2K'+2 2K+2 2K'+2 l 2K+2 * 2K'+2 

for n= +, - . 



Introducing the two integrals, 

*lrl2 r (2)|-\fcl,&2 ,r2 (2)r\ll,tl , p 2 r r * - f M " a 

Ha.U)- / P . (***-!) P L , (î i -i)l^ ?*' u(;)u(g)df. , 
S3 

(IV.30) 

the components of the one body density and two body correlations 

functions become. 

<*> i v « « ," i nV'' K , , c v 1 ' 1 er*' 1 T " 

KK fcj it 2 

nn *2.ti T ***' 
L tir/2) 1 (MJi.-Ç^ (IV. 31) 
1 2K'+2 <J 2K+2,2K'+2 

S 

J till till 

&2&1 v . v l K I * * 2 J * 2 * l V4.1M * I * * 2 

L / L , ( o , t l ) = ( - D I L | L , ( 0 , | i ) . ( IV.32) 



IV.3 The electromagnetic form factors of H and He 

The non r e l a t i v i s t i c charge and magnetic nuclear 

form factor F c (g ) and Fm(g) are given by 

T 3 
(§ +T z )P c

Z (q)=<*| É ( | ( l + T z ( l ! ! £ P ( q ! + 5 ( 1 - T z ( i ! ) f ^ ( q ) l . e x p iqlXj-fol'F 
1 - 1 (IV.33) 

T 3 
rT • F

m

z ( ' î ' = < ' l ' I . É i i < ' z <
i i < 1 + ' t

z < i " r

p

 f S<^' + 

* 2 « , ( 1 ] d - T z ( i ) ) r n f ^ ( q ) ] e x p i qlx^-x) | V> (IV.34) 

where T = •= for He and T 2 =- i for H. r i s the magnetic moment 
p(n) z 

of the nucleus.fç(mjg are the charge (magnetic) proton (neutron) frann factors. 

The e l e c t r i c form factor i s given in terms of the 

3 T z , i q . ! » / / 3 
(4 +T ) F „ Z ( q > = 3 < y | ( G (q) + G ( q ) T ( 3 ) ) e \f>, ( IV .35 ) 

where q(Xs-x) = q.|j//3 . 

Using the completely antisymmetric normalized wave function (III.44) 

0!i . r + H -ii -i 
ï(f,,fi)= • <£!!).Tjj (A) + — * (ÇS!) rjj(M-)-4> US1) rj,(M+) 

* ! (CRiij., (M-) + » ! (çR)rs,(M+)J + 
2> 2Î J 

i ( + !* _'i ) 
+ — { <J (ï.nir.siM-) + * (5,n)r,.(M+)} . (iv.36) 

/2 ( s* i T J 
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The electric form factor becomes, 

T JL. 
( 1 + T

z )
p

c

Z ( ' î > " l 3 < 3 E S ( q ) + 2 T z - G E V ( , 3 , ) < * l e ^ l * " 
iMi. . «Si 

_ +1) 1 « OH +lj L = +Ji 
-2T zG E V(q) (2/2 <* |e ' 3| * > - <• |e ' 3|* > 

. $*• , Jls. 
+ «t> e "J|* >)-2T,Gpv(q)(2/2<i)1 e /3<fi > 

iSLL . jais. 
-2<d. |e "*| « > + 2<$ |e '* I* >». (IV.37) 

The two last brackets of this formula contributes only to the He 

* iSi , 
electric form factor. The various amplitudes <4> |e '3\çR"t's'> 

are simple expressions of the hyperspherlcal coefficients calcu­

lated previously for central forces (B14). 

* iSli- * 
R IS -1, JT E'^T'S" V-» »» ,. (2K'+H)R'SSi 

<• |e "J|* > = 8 > (-1)* Ç (K",C,0) 
,*-T̂ „ ^UK+ORsS} 

R*TS J ,XV R'Vs 
« U2K+* l-^ff- | U 2 K ' + * » 'IV-38' 

where q'= 3— a n ( j 
•3 

2K+1 ( q l ç ) ! 2K +* J 2 K + 1 2 K , + i ( 1 Ç ) 1 

0 (IV.39) 

It is worthwhile to notice that in (IV. 35) only the spherical 

term £=0 of the expansion of the plane wave in spherical harmonics 

contribute. 
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IV.4 Two body photodesintegration of the three body system 

The two body photodesintegration in which the trinucleon 

is broken into a deuteron and a nucléon is breated in the dipole 

approximation. In the Born approximation the final state w. ve 

function is the product of a deuteron wave function and a plane 

wave describing the outgoing nucléon. When the tensor force is 

taken into account the deuteron wave function contains a D state 

coupled in the final state with the spin of the single nucléon 

to generate a J-i total angular momentum. In the plane wave appro­

ximation the final state in the CM. system is : 

C C I *'ij 

mm' H j 

.exp(i ît,?k) r (IV.40) 

where Ç*-;-x<~x- and tr,= /3 (x.-x) . The sum is taken over the cyclic 

permutation of (ijk) and the final wave function is normalized 

asymptotically to one free particle per unit volume. 

The dipole operator written in Jacobi coordinates is 

D = ie —J- e.U 2T + + £IT_Ï <IV.41) 

where the isospin operators T + are combinations of the individual 

i„ of the nucléons 



X+ = l z(k) - i(T z(i) +T z(j,) 

T. - — (T.(j) - T (i)) , 
2 Z Z 

(IV.42) 

e is the proton charge and e is the polarization vector which is 

taken along the z axis. The initial state is fully antiaymmetrized 

therefore the final state wave function may be specified for 

the couple (1-1, j=2) which corresponds to the Jacobl coordinates 

tt and ti . 

The dipole photodesintegration differential cross 

section is 

do = ^ ! D,. | !p(E) = Eïâî | D f i |
2 , (IV.43) 

he £ i 8n!ch» " 

where D f i is the dipole matrix element between the initial tri­

nucleon ground state and the final D+N state. The energy density 

of final states 13 

p ( E ) = _J*i* ÏÏMÎL. , f (iv.44) 
(2TT) M E 2hz(27i)3 

and the total energy of the system is conserved according to 

E = E d + ^ ^ = E_ + E , (IV.45) 

m x r 

h z k 2 

«here E d is the deuteron binding energy and — — is the Kinetic 

energy of the outgoing nucieon in the center of mass while E„ 

is the binding energy of the trinucleon at rest and E the photon 



The effect of the dipole operator D on the function 

* f(tir?s) is s 

W,(£i,?j)=6T : e [̂ w '̂+^^y -̂-

mm' * J L d J 

>>'>|j.exp(i it.?!). (UN (IV.46) 

where u(£i) and w(Çi) are respectively the S and D state deuteron 

wave function. ' ne trinucleon wave function contains the fully 

symmetric s state, the mixed symmetry S f state and the mixed symme­

try D state. It -nay be written in the simplified form : 

'.r(?nti)=r(A) « (Çi,?2)+ i- jr(M-) •<îi,ç2)-r(M+) *<5i.«i>} 

+ - U |(0S).mT>+D*i.î2) + |(l!)JmT>. •D(î,,f,)j , (IV.47) 

leading to the f diowing expressions of the dipole matrix elements : 

<ïT|D|ïf>=3(2T2)ie [^Y j«*,l« a,l» f» • ̂  «*Tl* x -lj 

a ^ i y:<ê,>l(i:ii^>UBniK>+XJ / î (* J. 1M) (-«* " " ^ ( c . ) ^ 

i 1È.? 2 1 
I !mT>| (li)J- m'> j e > j . 1(0!) Si» (IV.46) 

A more compact ft rmula is obtained in terms of overlaping functions : 

0/T\D\Vf>=v2 -± y°(k) ï^7Ë^.(2Tz).y U dï 2 j,(kÇ2) K <Çs) (IV.49) 
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A U*> - R 5 t i 2 ) - — ( R Î U Z > + R 7 ( Ç ! ) + R Î U Î > > (IV.50) 

Is a sum of the overlapping functions between the deuteron and 

the trlnucleon system : 

/ 4 Ï J Ci 

> V ^ n V M / ( 2 ) n ° ' ° pH - i. 
• - = ^ N2K F ( ' " ' 2 ) / Ç , d Ç l f <*' u ( Ç l , u 2 K < Ç U ' ,H«4KW*1 

/4Ï K = 0 2K 0 2K 

- * 1 * - i . - 1 - 1 , 1 ^ < 2 ) ( - U , l m i i . 5. 

Cî/ÏT * f 2 K I 2K j ' ' 2K 2 K 

+ * i v ^ + + r 0 ' 2 ? (2)r,o,2 m ! * 
Ri<S.)- — > . N , K + , U (ii/2) / ç,dç, H(*) u (5) w ( ï , ) ï 

4u ~ T 2K+2 / 2K+2 2K+2 
(IV.51) 

The differential dipole photodesintegration cross section in the 

Born approximation becomes : 

a . L / i W a l iY?(k)i2f /e;ae,j.<k4,iRce.>l\ tiv.52) 
dk h ' V h c / Y 3 L -£ J 

The tota l cross section i s deduced by integrating over k , 

° = 5 T ( ~ ) k E Y — [y"5iaç«j,(kei>R (52)1 (IV.53) 



V. Results and discussion 

A large number of trinucleon calculations have been 
done with wave functions extracted by various accurate numerical 
method from the non relativistic Schrb'dinger or Faddeev equation? 
using realistic conventional two body forces. The various 
"realistic" wave functions obtained by this model are not similar 
and do not reproduce accurately the experimental binding energies 

3 3 
and r.m.s. radii of H and He. The most accurate test of the 
quality of a wave function may be provided by the comparison 
between the Fourier transform of the charge density and the 
experimental form factor in spite that it does not give any infor­
mation about the two body correlations. It is difficult to 
decide whether the discrepancy with experimental data is due to 
the unability of the non relativistic SchrBdinger equation to 
describe the nature or to the conventional approach of the two 
body interaction. 

For these reasons a part of this section is devoted 
to an analysis of the influence of the strength of the repulsive 
soft core upon the form factor, the charge density, the two body 
correlation function and the photodesintegration cross section. 
For this purpose two body model interactions with quite different 
soft core have been chosen giving the experimental binding energy 
and the size of the trinucleon. Doing this way we do not expect 
to deal with interaction in agreement with the two body data 
nevertheless our model potentials are close enough to the realis­
tic interaction to be able to predict the effect of a similar 
variation of the core occuring for realistic potentials. 



53. 

The other part of this section is devoted to an 
analysis of the binding energies, sizes, charge form factors 
and dipole photonuclear effects provided by the wave functions 
extracted from conventional realistic soft core potentials (20,22). 

V.1 Wave functions and electric form factors 

V.l.l S wave potentials G2 and V* 

To study the influence of the core we have chosen 
the model potentials G2 and V* ( 13 ) ; both potentials are 
central and constituted by a sum of two gaussians for each of 
the triplet and singlet even states (fig,l). In contrast to the 
V potential, the G2 interaction has a very strong repulsive core 
and to simplify the three body calculations, the tensor component 
is omitted. The H.H. expansion is limited to the use of the 
optimal subset including only the first partial wave of the mixed 
symmetry state (L=2J. This restriction leads to neglect about 
0.1% of the mixed symmetry state. A total of 13 coupled equations 
have been solved in order to obtain the three body binding energy 

within and accuracy of less than .1 Mev . 
3 3 In fig.2 and fig.3, the H and He charge form factors 

are plotted for botr» potentials. The slope of the form factors 
for 2ero momentum transfer (q=0) and therefore the r.m.s. radii 
are in good agreement with experimental data. However the core 

of V x is too weak to enable one to reproduce the first minimum 
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of the charge form factor at the experimental point in contrast 
with the result obtained with G2 potential. We have to notice 
that the good order of magnitude of the second maximum (around 

_2 q-16 fm ) is not obtained. Nevertheless the stronger is the 
core the smaller is the position of the minimum and the larger 
is the magnitude of the second maximum of the charge form factor. 

In fig.4, the partial wave L=0 (fully space symmetric) 
and L=2 (mixed symmetric) for G2 and v x are shown together. The 
asymptotic behavior determined only by the binding energy is 
the same for all these partial waves which are also very similar 
around the maximum near 3 fra, probably because both potentials 
produce the same mean square radius. The difference appearing 
for small Ç proceeds from the strength of the core. 

The very similar behavior of both the L=0 and L=2 
partial waves subjected to the constraints of the binding energy 
and of the size of the trinucleon system suggest that the diffe­
rence between the wave functions proceeds from the higher order 
partial waves L>2. Indeed the contribution in the ground state 
wave function of the two first partial waves amount 99% for V x 

and 96% only for G2. It is therefore expected that the differences 
between the results obtained with potentials giving the same 
binding energy and r.m.s. radii will be sensitive to the core of 
the interaction when in the analyzed phenomenon the contribution 
of the cross terms between the small (L^O) and the main (L=0) 
partial waves will be significant. In order to show clearly this 
effect we have choosen to calculate the one body densities and the two body 
correlations functions in which cross terms exist for both poten­
tials and on the other hand the dipole photodesintégrâtion in 



Born approximation for which the cross terms are excluded by the 

dipole selection rule. 

v.1.2 Have functions and elastic electron scattering with 

shell £ potentials 

In order to compare the previous results to those 

obtained with a simple central potential giving accurately the 

S 1 and S_ phase shifts and the correct deuteron binding energy 

we have constructed a shell 6 potential, 

VjUi) = A j ^ . e t Ç , - ^ ) (V.1) 

with A, = - — -± 
1 I t[ 

The triplet even (1-t) and singlet even (i=s) para­

meters are given in table ( 2). The n-p phase shifts S Q and s 1 

are plotted together with Mac Gregor et al. (47,60) phase shifts 

in fig. 6,7. The agreement up to E l a b=300 Hev is quite good and 

similar to those obtained with realistic potentials but we have 

to notice that the tensor force has not been included in our 

analysis. 

The convergence of the H and He binding energies 

has been investigated by integrating up to 14 coupled equations 

for the completely symmetric S states and 10 coupled equations 

for the mixed symmetric S' states. Table ( 3, 4) gives the 3R 
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R, - 1,478 fm and R, « 1.5 fm 
JH He 

are too small. The first minimum of the He charge form factor 
around q ! = 19 fm"2 (fig. 8 ) is too far. 

The shell 5 potential provides an example of interac­
tion giving quite good two body s phase shifts but poor results in 
the trinucleon system. One can of course argue that the intro­
duction of a tensor force should improve our results. 

V.1.3 Soft core realistic potentials 

The potential models have shown that the calculated 
trinucleon observables are sensitive to the characteristics of 
the two body interaction. To exhibit this aspect we have chosen 
to investigate the trinucleon static and dynamic properties with 
four realistic local interactions proposed by Gogny-Pires-
de Tourreil (GPDT) (22), and by Sprung and de Tourreil (SSCA, 
SSCB, SSCC) (20). These four potentials reproduce quite well 
the two-nucleon data and are classified as super soft core 
potentials. However they differs from each other by the relative 
strength of the centrait LS, Tensor or L 2 components. He have 
nevertheless to notice that the GPDT potential overbind the 
deuteron. This property affect strongly the trinucleon binding 
energy which then becomes in agreement with the experimental 
value. 
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In table < 5 , 6 ) we give the static results for 
3 3 H and He nuclei compared to the experimental ones. Our results 
(see Table ( 7 )) are in close agreement with those of 
Laverne and Gignoux (34) and Kim and Tubis (31). 
However we note that our P<S') is always weaker than their ones, 
but in agreement with those of Demin-Efros { 15, 16 ) whose 
calculations have been done with the hyperspherical formalism. 

•a 3 

The tri nucléon binding energies E C H ) and E( He) 
depend strongly on the two nucléon interaction in the SQ and 
S - D. partial waves. However the contribution from higher partial 
waves is not negligible and increase the binding energy by about 
0.4 Mev, In our formalism nearly all the partial waves of the 
two body interaction are taken into account. Indeed in integrating 
coupled equations up to K=14 we use two-nucleon orbitals up to 
*•« „=16 in * n e Di trinucleon state for instance, max i 

The importance of the non potential harmonics has 
been analyzed. The first non potential partial waves appear at 
different values of K following the symmetry of the state. For 
instance in the fully symmetric state it appears from K=6,8..., 
in the mixed symmetry S' from K=4 and in mixed symmetry D state 
from K=2. In his thesis Erens ( 14 ) has shown that the 
first non potential partial waves in S and S' state contribute 
by about 0.1 Kev . We calculated the contribution of the first 
non potential partial wave (K»2,3) in D, state and found 
AE = 7- Kev for GPDT and AE=37 Kev for SSCC potentials. 

The electric form factors generated by realistic He 
wave functions obtained in solving either the Faddeev equations 
or the coupled equations of the hyperspherical formalism fig. 
have a too small secondary maximum and a too far minimum. Phenome-
nologically this dicrepancy proceed from realistic N-N interac-
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tions which are not repulsive enough at short distance. The 
introduction of meson exchange current corrections tend to 
improve the position of the dip and the magnitude of the second 
maximum* However these corrections are not large enough to agree 
with experiments. 

V.1.4 The 3H- 3He energy difference 

The Coulomb energy E =E( He)-E{ H) is given in the 
last column of Table < 5 ). it has been shown previously C 58 ) 
that the Coulomb energy proceeding from the Coulomb interaction 
e 2/r between the two protons can be obtained in a nearly model 
independent way in starting from the trinucléon charge form 
factors. The close relation between the proton distribution and 
the Coulomb energy is responsible for the sensitivity of E c to 
the trinucleon r.m.s. radius. Practically two waves functions 
generating the same radius lead to the same Coulomb energy there­
fore the difference between our results and those obtained for 
the same potentials with other methods reflect the difference 
in radii proceeding from the wave functions. The model independent 
formula has been obtained in assuming the same wave function 
for both elements of the iso doublet. In fact the repulsive Coulomb 
interaction in reducing the binding energy of He increase its 
radius of about .03 fm with respect to the one of H. An estimate 
of the Coulomb energy correction for He is given by 

C R 2 

w i t h ^ * E i.e. AB < - E iS = - i- E 
R C C C R 50 C 

which is a negligible percentage of E . 



V.2 One body density and two body correlation functions 

The one body density R>!Çî) and the two body correla­

tion functions R^iti) are respectively given by eg. (IV.26) 

V Î j ) ->/|f(?i,?sl|
sdlçi i*j (i,j-l,2) . 

The densities Ri (ï2) and Ra(?i) are the same when the 

two first partial waves are used only fig. (10) . The difference 

proceeds from the cross term between the higher partial waves 

and the first wave L=0. For wave functions described by the 

first fully symmetric term L=0 only, like for the early Irving 

( 61 ) , Irving-Gunn or Gaussian functions ( 5 7 ), the 

first derivative, 

/
-J. 

(5Î+5!) * |n.([€»+^]')|*aç 
u 1 3 3 

is always negative. The densities are smoothly decreasing func­

tions. The first term cannot therefore take the correlation 

originating from a strong repulsive core into account. This 

core should indeed prevent two nucléons to come close together 

and generate a hole into the two b^dy correlation function. 

In figures 11, 12, 13 one shows the two densities 

calculated with the full wave function for S wave potentials 

G2 and v x a n d for the realistic GPDT potential. 

For each potential the two densities have the same asymptotic 

tail for C 1~
H n> The influence of the core is clearly seen. The 



stronger is the core the deeper is the hole in the correlation func­
tion. The one body density does not exhibit any minimum near the 
origin. In terms of a H.H expansion only the partial waves u-wU) 
for odd K values contribute to the difference between the one 
body density and the correlation function as a consequence of eqs. 
(IV.31) and (IV.32), because \ 2K<()) (eq. III.45) have (-1) 
parity in the exchange of the set (Xj-x.) and /Ilx^-S) (Mj^i) . 
The differences appearing in fig. 11,12 proceed from the odd K 
partial waves which contribute only 0.2% and 1.6% to the ground 
state for V* and G2 potential respectively, one sees how large 
can be the effect of small components of the wave function on 
the behaviour of the correlation function at short distance. The 
comparison between the one body densities shows that the stronger 
is the core the flatter is the density near the origin which in 
turn produces a minimum of the form factor for smaller momentum. 
The proton density differs from the matter density by a cross term 
between the S and S f symmetry components generated by the T (3) 
operator occuring in the proton density p (r) 

p (r) = 3/3 R p(/3 Î) 

" i t h * C . » * 4-» < 1 + % ' 3 " * * 
P J jîf 2 

the density R p U ) is plotted in fig. (14,15) for the potentials 
v", G2 and GPDT. For the G2 potential the contribution of the 
S-S' terms flattens strongly the density at small distances but 
asymptotically the proton and the matter densities are the same. 



V.3 Photodesintegration of the three body system 

Concerning the two body photodesintegration 

ï + 3He •*• p + 0 

Y + 3H + n + D 

at low photon energies E <100 Mev many calculations have been 

done 141, 42, A3, 44, 45, 46 ). In this energy range the 

reactions proceed mainly from an electric dipole transition 

and most of the studies were done in this approximation. However 

the earlier calculations were restricted to phenomenological 

wave functions and approximate treatment of final state. Only 

recently the solution of the three body problem with realistic 

potential has been used to calculate the photodesintegration 

cross section. In this section we discuss the results obtained 

with our S wave potential models and with realistic local poten­

tials . 

The effect of the core on the two body dipole photo-

desintegration has been studied in keeping the same deuteron wave 

function (40) and the Born approximation for the final state. 

The overlapping functions between the deuteron and the trinucleon 

i.e RJ<ÇI), RT(ÇI) and R7tÇa) (egs. IV.51) are shown in figs. 

( 16 ) for G2 and V x potentials. These overlapping functions 

are nearly the same and lead to very similar dipole photodesinte­

gration cross sections as it is shown on fig. ( 1 7 ). For both 

potentials the calculated cross sections underestimate the data 

up to E=14 Mev and overestimate the data for E >14 Mev. We 

clearly see the influence of the core at low energies. The 
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calculated cross section in fig. ( 18 ) using the three body 
wave function corresponding to the GPDT interaction show expli-
citely the contributions of the s-s transitions (total symmetry 
and mixed symmetry) and the contributions of the d-D transitions. 
The s-S transitions with the S symmetry state gives a cross 
section which underestimate the data. The contribution of the 
mixed symmetry is large and generates together with the total 
symmetry a crosB section which overestimates the data. The 
introduction of the d-D transitions is quite necessary to repro­
duce the experimental data. The d-D transitions strongly affects 
the magnitude of the cross section, but does not change its 
shape. We do not find the "effect" of Craver et al. ( 45, 46 ) 
producing a peak very flat. In our calculations the d-D transi­
tions have a destructive effect on the total cross section contra­
ry to the result obtained by Craver. 

In fig. ( 19 ) the cross sections calculated with 
the Sprung-de Tourreil super soft core potentials are given. 
The agreement with experimental data is good for all these local 
potentials the results of which are very similar. 
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VI. Comments and conclusion 

We have developed a method enabling to solve the 
Schrfidinger equation for any number of bosons in the ground state. 
This method can also be applied for fermion systems when all 
particles are in the Is state like for the ground state of He, 
3H, 4He or helium like atom ( 53 ). In this work the three 
nucléon bound system has been analyzed. We found by comparison 
with other method for local realistic N-N potential that the 
hyperspherical harmonic expansion method is at least as well 
reliable than the numerical solutions obtained with the Faddeev 
equations. Our binding energies are sometimes over and sometimes 
under the values obtained in solving the Faddeev equation. 
But one must notice that in constrast to the Faddeev equation 
our method fulfill the Rayleigh^Rits variational principle which 
state that in solving a truncated system of equations one obtains 
a binding energy situated over the exact value . The contribu­
tion of the various terms of the wave function (symmetry S, S' 
and D state) are roughly similar to those given by Gignoux-Laverne 
( 34 ) except for the weight of the 5' state which is always 
about half the percentage of their solutions.lt is to some extend 
surprising to find the percentage of the S' state given by the 
variational method quite smaller than the one given by the Faddeev 
equations. At this point one must stress that our basis is comple­
tely antisymmetric and that no ambiguity can arise from the 
symmetrization process. The convergence of the method has been 
carefully analyzed and a consequence of eq. (IV.2,IV.6) is that the 
partial wave u~K(Ç) should vanish together with the multipole 
V2„(Ç). The exact numerical analysis is in agreement with this 

http://solutions.lt
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prediction giving confidence to our approximation (eq.lV.8 1. 
In the framework of the optimal subset all the two body orbitals 
î,. has been taken into account in our analysis of the two body 

potential till the valuB t,,-K .„, (K . »14 in our calculation). * 13 max max 
This means in particular that the odd states have been taken 
into account. By omitting the odd potentials in the coupled 
equations we found that the contribution of the odd waves amounts 
to -0.6 HeV in the hinging energy calculated with the GPDT 
potential. 

In order to reduce the number of significant coupled 
equations we assumed that -he contribution of the H.H orthogonal 
to the optimal subset are negligible. The smallness of this 
contribution has been previously shown by G. Erens (Thesis) for 
the S and S* state. Including the D state we found an increase 
of binding of a few ten of keV proceeding from the "non-potential" 
elements. 

Practically the wave function is concentrated in a 
small number of partial waves but the amount of binding procee­
ding trom high r partial wave are not negligible because they 
contribute to the energy through the cross terms with the main 
partial wave K=0. It is therefore a mistake to use the partial 
waves of the solution of a truncated problem which is not yet 
completely converged. This is especially true when we are dealing 
with a phenomenon in which the tail brings a large contribution 
like for the photodesintegration, because then the exponential 
asymptotic behaviour exp -*/"— E r of the wave function is 
reproduced with the inaccuracy of E and the tail can extend very 
much farther that it actually do when the experimental value 
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(-8.48 MeV) is used. From this point of view the wave functions 
solution of realistic potentials are not accurately "realistic 
wave functionsn because their tail {except for the GPDT potential "> 
extend to far away. We have shown in our analysis with the model 
potentials V* and G2 that the shape of the two first partial 
waves K-0 (full symmetry) and K-l (mixed symmetry) are to 
some extend insensitive to the strength of the core except at 
small distances when the potential has been chosen in such a 
way to produce the same binding energy and the same size of the 
trinucleon. Therefore one can guess that many differences between 
results obtained with various potentials proceed from discre­
pancies between binding energies and radii produced by these 
interactions. 

The best probe to test the quality of a wave func­
tion solution of the SchrGdinger equation may be the comparison 
between the Fourier transform of the charge density and the 

3 3 charge form factor of the iso doublet H- He. Tte found with 

our model potential that even with a very strong repulsive core 
which produce a zero of the form factor at the right value 
(q2 » li.s fm ) the amplitude of the second maximum of the form 
factor is missed by a factor 2. This effect is still more 
pronounced with the super soft core realistic potentials analyzed, 
in which neither the position of the zero nor the amplitude of 
the maximum are obtained. 

Even the difference between the form factors of H 
and He at small momentum transfer which is related to the charge 
radii is not obtained. This last result proceed from a too small 
amount of mixed symmetry component in the wave function which 
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in turn results mainly from a too small difference between the 

singlet and triplet even potentials which generate this compo­

nent. 

All the realistic potential giving the same result 

a question arises about either the accuracy of the experiment 

on H or the behaviour of the realistic even central potentials. 

An accord with the experimental charge form factor 

has been found by Sick with a charge density exhibiting a hole 

near the origin. On the fig.14 we have plotted the point like 

proton density for the G2 potential together with the same 

density deduced by Sick ( 59 ) from the experimental charge 

form factors, in spite of a good agreement between the two 

densities at large enough distances we did not find any hole 

in the proton density. We therefore believe that the hole 

simulate effects proceeding from other physical contributions 

including exchange currents in nuclei. 

An attempt has been done to introduce a three 

body force in order to see the influence on the form factor. 

This force has been approximated by its first hyperspherical 

term, function of Ç only, and we retained the asymptotical shape 

in £ cut by a repulsive core at a distance chosen in such a way 

to obtain the experimental binding energy. The effect on the 

amplitude of the second maximum is not sufficient to give a 

result better than the one obtained with the G2 potential. 

Brayshaw (63 j ^id a calculation from which he claims the 

existence of a strong three body force. In his calculation he 

retained only the terms K=0, 1, 2 in the H.H expansion missing 

completely a converged solution. This kind of calculation is a 



typical example of what is forbidden to do with the 
expansion method. Firstly in neglecting the H.H for K > 3 one 
miss the correlations generated by the odd X harmonics . On 
the other hand to the truncation of the wave function corres­
ponds similar truncation in the expansion of the potential 
which then cannot longer represent the expansion of two body 
potential especially when the truncation is done for too snail 
K. It is then not surprising to find a large missing part in 
the interaction which can be misinterpreted as a three body 
force, indeed writting the first of the coupled equations for K=0 

t - -^ ||j- + W(r)-E ]u 0(r>-0 with 

W(r) = i 5 — + V . ( r ) + — i — 53 of'(r)u_.,tr) 
4 mr 2 uj(r) K'-l *"• 

Ui(r) 
K=3 -<*> 

may be also wrongly identified to a three body central force. 
He want to stress the efficiency of the small 

components K odd of the wave function responsible for the corre­
lations, indeed these components contribute respectively 0.33 % 
and 0.53 % to the norm of the wave function for the GPDT 
and supersoft core Sprung-de Tourreil potentials- The photodesin-
tegration is another example in which small components cannot 
be neglected. We have seen that for a contribution of about 
0.B t in the wave function the S' state increases by 20% the two 
body He photodesintegration cross section. As a consequence of 
the tensortal character of the dipole operator which is a vector 
in the 6 dimensional space only a small number of H.H is needed 
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In order to obtain a good accuracy in the calculated cross 
section. Nevertheless most of the magnitude of the cross section 

3 proceed from the overlap of the tail of He wave function with 
the final state. The tail is clearly well described only in a 

completely converged solution. Therefore the claim of 
Jibuti ( 5 0 ) , that it is a good approximation to use wave 
functions integrated with a truncation at K-4 for nuclear reactions 
is certainly quite unreasonable, because the higher partial 
waves modify the shape of the first partial waves during the 
process of integration in which the binding energy, and 
consequently the tail, decrease. 

We found that the introduction of the D state has 
a destructive effect on the photodesintégrâtion cross section. 
This result is in contradiction with the Caver, Kim and 
Tubis ( 46 ) calculations. Especially we did not find the 
flattening effect of the D state on the cross section described 
by these authors « 

The H.H expansion method appears to be a power full 
mean for integrating the Schro'dinger equation for bound states, 
but one must be carefull to include a large enough number of 
partial waves in order to obtained a reliable solution, A guide 
to this truncation is given by the trend of the convergence 
which is quite definite by the shape of the potential. In contrast 
to the integral equations, it is not more difficult to apply 

4 the H.H expansion method to the four nucléon bound state ( He). 
It requires only the calculation of other coupling coefficients. 

This method seems therefore promissing for solving at least the 
few-body bound state problems. 
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Appendix A 

Antisymmetrization of three body isospin-spin states 

He use the normalized spin functions in which the 

total spin s^. of a pair of nucléons (i,j) is coupled to the 

spin of the last nucléon k in order to give a total spin S with 

projection m g : 

VlVjVj 

ajMi l s^ lJ l s l ' lk ) (A.l) 

with S = /2S+Ï . 

A similar treatment of the isospin functions leads to 

a state of total isospin T with projection su : 

(-1) « T T t ± i(
 i : I l 3 Jt(i)t(j> t(k) 

(A.2) 

where the subscript k of the ket labels the single particle coupled 

to the pair (i,j). 

a) - S=i T=i states 

In eqs. A.l or A.2, the two normalized spin (or isospin) 

states |(0})im>k and |(!S)Jn». are respectively antisymmetric and 

symmetric for the exchange i <* j. We introduce the spin (or isospin) 

vector. 
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|W<¥>)> = siw| <01)}m>k + cosy| (li) im> k (A.3) 

similar to the kinematic rotation vector (II.5). A suitable set 
of angles >fi can simulate the effects of spin (or isospin) exchange 
operators. He have the relations : 

|w(j)> * I(OJ)im>k = |->k Antisym. In i » J 

|W(| - ^§>> - I (OJ)lin l - i {S3\+\-\-\> Antisym. in j - k 

|W(§ + ^j>> » |(0i)im>j - - - (^l+'jt+l-'it' Antisym. in k » i 

|W(0)> = I <liHm> k = |+>k sym. in 1 » j 

|w(- 2i)> = I(li)Jm>1 = - - {|+>k + /3|-> k) sym. in j • k 

|W(^j)> = |(lj)!m > = - i-\+*k * / 5 l - >
k ' ***• in k » i 

(A.4) 

In order to construct the basic functions of isospin-spin, we 
consider linear combinations of products |M(pi)w(Pi)> where the 

left and right part of the ket stand for isospin and spin func­
tions respectively. Using egs. (A.4) we construct two isospin-
spin vectors, 

\wifWlv- j)> =-sinpcos^{|-,->-]+,+>}+sin2*| -,+>-cosV|+ ,-> (A.5) 

|W(*- |lw(¥>)> =-sin»icosp{|-<~>-|+>+>} +sinJ*|+,->-cos2v|-,+> (A.6) 

which for values of *>= 3» § " ^f > ? + ^§ a r e antisymmetric in the 
corresponding interchange (i«*j) , ( j*k), (k»i) . The two isospin-
spin vectors 

file:///wifWlv-


|W(*IW(*)> = s i r w c o s p { | + , - > + | - , + > ) + s i n 2 ^ | - / - > + c o s V | + , + > (A.7) 

|W(«>- — IW(¥>- - ) > = - s i i w > c o s ^ { | + , - > + | - , + > ) + s i n 2 ¥ > | + , + > + c o s 2 » > | - » - > 
2 2 (A.8) 

are symmetric in the interchange (i*»j, j-*»k, k**i) for the same 

values of * = \ , | - ̂ j-, \ + ̂  respectively. 

From these vectors two linear orthonormal combinations independent 

of <fi can be constructed. The first 

— H w t n w i v - 1 ) > + | W ( < P - -),w(*>)>}= — { |+ , -> - | - r +>} = r , , (A) (A.9) 
J% 2 2 / 2 ** 

is completely antisymmetric under any exchange of nucléons, while 

— {|w(*)w(y}>+ w(*>- -)w<v- - )>} = — {|+,+>+!-,->} = r , , ( s ) ( A . I O ) 
/2~ 2 2 / 2 3 i 

i s c o m p l e t e l y s y m m e t r i c . 

We now c o n s t r u c t two mixed symmetry c o m b i n a t i o n s : 

— {|W(¥>),W<tf>- £ )> + |W(^--);W(\p)>}=—- { | - , - > - | + , + > } s i n 2 ^ - { | + , - > + | - , + > } 
Sï l 2 / 2 / T _ . , „ 

and 

— {-|WW>)W(*»>+ w<*- i ) W ( * - - ) > } = - — { | + , - > + | - , + > } s i n 2 * - — { | + , + > - [ - , - > } 
/ 2 2 2 / 2 / 2 

.cos2v> 

=-sin2*> r , 1 ( M - ) - c o s 2 ( P r i 1 ( M + ) , (A. 12) 

which l i k e p r e v i o u s l y f o r V ~ \> \ \» 1" + ~T a r e i e s P e c ^ v e ^ y 

a n t i s y m m e t r i c and symmetr ic under t h e i - » j , j**k* k-»i e x c h a n g e . We 

have d e n o t e d by r_„(R) t h e or thonormal i r r é d u c t i b l e r e p r e s e n t a t i o n s 

o f t h e i s o s p i n - s p i n s t a t e s f o r t r i n u c l e o n s y s t e m s . 



B) s=i T= T states 

The isospin states | (1J)£ m>y completely symmetric 

under any exchange of two nucléons is denoted by |0>. The symmetry 

properties with respect to isospin spin are fixed by the spin 

function only. Two kinds of functions can be constructed 

!0,W(#)>- sim>|0,-> + cos*|0,+> * sin* r., (M-) + cos* r,, («+) (A.13) 

|o,w(*- -)>=-cos¥>|o,->+simf>|o,+>=-cos# rj.(M-)+aiiw r.,<M+) (A.I4) 
2 T> T* . 

They are respectively antisymmetric and symmetric according to * 

in the exchange (i«*j, j»k, k*i). 

Y) S= 4- T=j states 

In a quite similar way two kinds of isospin-spin func­

tions are constructed : 

|W(*),0> = sin*|-,0>+co5*|+,0> = sin* r,»(M-)+cos* r,.(M+) '.A.15) 

|W(*- -) ,0>=-cos*|-,(»+siro>|+,0>=-cos* r,3(M-)+sin»l r,,(M+) (A.16) 

They are respectively antisymmetric and symmetric for suitable * 

in the exchange (i»j, j-«*k, k«»i). 



S) S= -f V= -f states 

There is only one state 

| 0,0 >- ?± j,<S) (A.17) 

fully symmetric under any exchange. 
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Appendix B 

Derivation of the hyperspherlcal coefficients 

When we expand the trinucleon wave function in the 

potential basis, the elements of the potential matrix are : 

R* R'* 

< l r T S < J O ® B [ 2 K t i l 1 j l v < s ' ° > l I r T ' s ' I R , > 9 B ( 2 K . + r ) 1 J > t B - l ) 

where * 

i>J l> j K"*"m"a * 2 K " 2 K " 
(B.2) 

r i 
The s t a t e s II r

T S<R)® fir 2 K + J | ' J > a r e completely antisymmetric and so 

1 ^ R'* 

<[r c m ® g , , ] | v<ç ,a> | i r<R'>« £> J, > = 

R* R'* 

= 3<[rTS(R)® B[»t«>j!*<*«>I' '»;»• B [ 2 K ' + i ' ) ' i ! 

(B.3) • 

Introducing (B.2) into (B.3) one must calculate 

R " 

T'S' <[r T S( R)« B 12K +tl
1jl v < e- f l )l , r^;'.« B i a ' + f i ' j » -

x -r-> K" a m " o 16.*") .*".»",, 4. 
*« X , t-i) <l Ijl <Xdj). V (Ç) . A ftc( ,:i).a)|[ lj>, 



where 

A l " , m " M ., r(«,"+ f) \ " ^ A,+X2 . . „. . . ( 2 ) n .X ! X 1 . . 

2K" r F i r + 3 ) f "T /4ïï(2H"+l) 2K"+l" 
2 A I A2 

(2)p* X2 A 1 \ / m " . 
• P ( + ) Y <Çl£s> (B.5) 

' 2K"+Jl" / U i A 2 ) l " 

Choosing for (i,j) the pair (lr2) eq. (B.5) becomes 

. S",m" m»+f>^-» ,,,,,„ (2)~XX (2)p.XX nT . 
A (V 1 , 2,n)' ,,1 /_,— ' P(IT/2) P (+) Y<Ç,,Ç2>. 

2K" n-^ +3)*T-/4JI(2IL"+1) J 2K"+(L" ' 2K"+W (XX) 1" 
(B.6) 

Performing the opera t ions proceeding from the t e n s o r i a l product 
R* M 

contained in the vec tors | [ r (R)(8 £3 2K+J.'? ' ' w e h a v e : 

«J < [ r T S ( R ) ® X 3 2 K + l ] j | v ( ç , n ) | [ r ( R ' ) » J j : 

E K-+M-*' x „* „ , * ^"N . . . . 

i" 1» ** N2K +£
 N 2 K ' + l ' Z ^ * ' l > * i ^ 

K ' T ' o s s ' t t " m" i !Z£^ ; i 2 

R*pH 2H, H ' î , l 2 i ; /«. I , l 2 \ / n ' î ! J^ \ .. ,., 

KK + * • F2K. + i. •(„„ J ( 0 „ J * » > * < » • 

T , s , _ 2 K ' + J l ' J J 

a. (.6,1") (2> £ 2 î i a m " l"m" , . 
: ( t ! )Tl lL, | V ' 5 ) | ( t ' j ) T m l > . < D (titOMsjlSJMjl Q ( i j ) A ( i* 1 3 , !?) 

1 2K" T J 2K+J l" 2K" 

( 2 ) ^ 1 : 1 ; 
I ( t J I J l t ' f s S J S ' J M j J ^ J K . + J , > • (B.7) 

C ( 2 K ' + H ' ) R ' s ' S , J 
( K " , a f I " ) 
(2K+2)RsSJ 

appearing in the previous formula by : 



L, J D o «J*»*»"'- F*+i F„.„.*'Qii 1^ 'n,l> 

(B.8) 

For ^"=0, m"-0 g-(C,LS,LL,L2,Q) 

"Q.'ujj = m za 

(1, î u - S y L L ^ . Q i j ( î'j). 

We deal with the coupling coefficients 

^, ( 2 K ' + H ' ) R ' a ' S 1 J R*., R.'r* [ . 1 ) t + * ' V « V i 1 » * ' 

C U K ^ ; ^ 0 ' -*' *»». tf™.-^ i i t S i { F 2 K +»-

R ' V * * 1 ' f h< « A ° ' ° i-i 
1 2 * ' + * ' i ( l l J 1 ! t > » l i ; « ; i l b £ ( R ) b £ , ( R ' ) < | 5 A 2 K , , ( * 0 , l > . (B.9) 

The ca lculat ion of the matrix elements < |= B A | > leads to the deter­

mination of the two following matrix elements : 

<U 2 i , )MsJ>SJM T | A (V-'nil ( t i t ! ) l , ( sM)S , J 'Mi>=(4 i t ) T _ — i _ 
J 2K" J r<£-+3) 

i;+t;+n•+S+J+J•-M-
1 Z J A « S S . « S S , 5 J ' J ] (-U J â(x 1 A 2 î" )A(t ,x 1 i ; )A( t ! i 2 i ; ) i î ' 

A l ^ 2 

( j ' I» J 1 ( i i X, «,' > / J- t" J \ (2) X 2»i , ... (2)_ X 2», 

It S l't (& l" i ' J \-M' -ra" MT/ 1 2K"+H" J 2K"+fc' 

(B .10) 



and 

< U2»i)*i (s)>S!JMJ|S
0|U:,,iJ>t";<s"!)s";J"MJ>-

^•- ' ••• < M- < j j ' ' iui 'T < i>*T < '>t ;E ~il'ilSH* ! ? ' ! ' ? ! s ° u , 9 j l ) 

J 1 3 2 (B.u) 

where ="Uisj,> - <U,s) j, |sa| U,s) j,>. IB.12) 

3 ! = (23+1) . 

Using B.IO for t"=m"=0 one finds : 

.0,0 H H , 
<U,l:)*l (SDSIJMJI.AJJJ.HI1-3) | UJÎjmO'ilS'.-JMj^-i- 6 s g. u , « s s , 

32TT 

(-1) S - V m i H l J a U j A l J ) J , J H O f 1 1 ' 3 ' 1 H (*) 
x (Hz i j I J J 2K" J 2K" 

(B.13) 

- U K ' + i ' l R ' s ' S ' J R * . H ' * r 

f (K",r ,o) = — <5 .« s , < 5 , , , M , , M , V 
^ <2K+*)RsSJ 16 S S S S " J 1 1 2 K M J 2 K + * , - 7 < , . 

J l 3 = A 

*+* . _ „ , (2) l-,** M <\ 
( -1 ) 4 ( l i X » 1 ' ) 4 ( H 2 X * 2 ) 4 ( l 1 i 2 l l ) o ( > . J i l ' t ) j f j l s 2 X * Y ( « l 1 1 ' 3 ' ) 

, » 2 K" 
f t , « 2 i ) .. „, f t , l," X) RV> z t , R l * l _ , t i l ' 

2 Y U l S J i ) 

2K+*I r2K"l f a ' + l ' • (B.14) 
( 2 ) ^ , 1 1 , (2)pXX ( 2 ) Q Ï Î t ; 

2K" ' l2K'+l 

, ( 1 , 2 ) . I f we c h o o s e t h e p a i r ( 1 , 2 ) a s a r e f e r e n c e , 4 l 

<2)r\X,X n 0 , 0 
' (ir/2) = 6 , „ P ' ( n / 2 ) 
2K" A 0 * 2K" 



^ ( 2 K l + i ' ) R ' s ' S , J R" R'.*r « 0 , 0 

C ( 2 K + ! & ° ' - T i ' » 1 4 - ' » 1 N»« N 2 K . + l P2cv« 
•T-» / * , £ 2 l \ 2 t t . 
> (2JI+1/I I b (R)b ,(K' 

R * r l ! « l K'Vi IjJli ( 2 ) p i j i , ( 2 ) p 0 , 0 ( 2 ) Q H 2 « . I 

I* 2K+1 r 2K'+H ' r 2 K + « . l r 2 K " l f a K ' + l ' " 

)E;ïi i '3î5iï Y (t isj i) la ' s' s 

( B . 1 5 ) 

8- For tensor forces t"=2 

We must consider the coefficients 

- U K ' + f c ' J R ' s ' S ' J _> R »r R »r l + I ' V 

C ( 2 K + J [ ) R S S J , 2 ) = " W 2 K + i N 2 K - + i - ' - 1 ' z , 
^ (2K+JDRSSJ m " » , * , i ; t j 

iran'niqinl 

R* p H2Hi R' fn « i * ! . . . . S-1-M.+ 

r 2K + H r 2 K . + 1 . * .» .» i*{ 5U-D 

f ' M ) ( ' ! l j I ' ) ( , ! 'N1""" JW«> 
V) 0 0 / VO 0 0 Am B s - M j / W m^ -MJ 

t t 1 ( 2 ) n , A 2 , m " (i i) , U ' D l ! * 1 

b («h (R'i < i - ' j g ^ t i J i . j t o i ^ ^ ^ ^ ' j ' i K t j i i i i ' i a ' » r 2 K , + ! . 

S-l-M^+S'-H'-Mj 

Tdm" 

» . g | 

. t . _ . . t ' . . . . ,< 2>D _, A 2 ' m " . ( i . i ) _ . . . < 2 , D l ! * ' 

(B.16) 

A 2,m" M ., . ^—, i+m+i'.+S.', 

( o 1 1 * 3 ' ) | U H 2 U ' m ' > = - 2 — V (-1) 
2K" 128ir fi~„ 

/VS. 2 \ I t , %"i Ij <2>r«.t;tJ ( i i 
â u ; i ; 2 ) 4 ( * i t i , t ; > A U j i î * j ) I t ' [ i, d'il H (# l l , J 

\ - m ' IT. -m"/ |fc 2 I ' J 2K"+2 

( 2 i n t ; t ; 



and 

<(s))Sm s | Q 2 ( i j ) | ( s l i )S'H'>=24/2? ss 'SS' 

. ( - I ) 

5 

2S-J-I 

! i s'ils' 2 i l l s 2 S 

I! i 1 
m' / S 2 S ' \ 

V m_ m" -ml / 

i j - ] [ s ' ) s 

(B.18) 
"S " ""S' 

Inserting these expressions In eg . B.16, one finds 

. , (2K'+*')R's'S'J ^ R* R>* ^ 

C (2K +„ (^' 2 1 = 1 f f * N ™ JJ».«. *•» — »•» Ç 
M M *a *z 

R p H 2 i l R ' f . l j t ; t f (2) r .Jt;tJ . , 
r*2K+Jl r 2K'+Z- b

s

( R , b

s ' ( R ' 1 r „ W • , )A(«-i*aa>A(*}*Jl , )At*it;i;i 

S-S'-j+J 
A ( * ! i ; i j ) ( - i ) 

( 2 ) p i 2 i , ( 2 )p t ; i ; ( 2 ! p x j i ; 
* ' 2K+l ' r 2 K " + 2 l I 2 K ' + » ' > 

i j - s ' 

i i i 

2K"+2 

s' 2 1 

5 i 4 

i 2 S ' i l s ' J *• I l l i il' l\ 

;< 1 s t 2 s l 2 '*' * 5 

' I t 2 I ' 

( B . 1 9 ) 
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Appendix C 

-, Multipole matrix elements 

#•' ' Tlï'e multipoles of the two body potential appearing 

in the coupled equations (ill.53) are defined by : 

V (5,R,R')=6 * b*(R) b;,(R') / du(l-u) J 

m. r (£_±i) r ( K « + i)r(««+ J.; o 

i"+2 P H" 
u 2 1 1(-K",t ,+K"+5,»"+ ^ u ' K ^ s U S S g . t t J l T m j I V U u J l (a 1 ! ) s'm^lt ' f) 

T ( C . l ) 

For Jt"=Of

 v

Y<^i*î which contains all the exchange terms 

may be written as follow 

+ ^«ïj 'V'V • < c - 2 > 

where P and p T are the usual Bartlett and Heisenberg exchange 

operators while 

<C3) 

where V"* (*̂ j> and v

Y"(
r

i :tï refers respectively to the triplet and 

singlet even or odd potentials. 



The matrix elements of the exchange operators are 

< ( s J ) 8 m s | p ? , | ( * , » ) S ^ > - « s s . « n „ . « s s . ( - l ) S + 1 

/ 

< ( s ) ) S n s | P ? , | ( s M ) S - m - > = « . . . « ^ g g . | | ' 

< ( s J ) S m s | P ? 1 | ( s ' i > S ' m s > = & s a , S v k S s s , l j , j " 

( - 1 ) S ' (C.4) 

and analogous expressions for the i sospin . 

Since we have chosen the reference pair (1.2) for the ca lcu lat ions , 

the matrix elements of the interact ion become : 

<(sj)Sm s ,(t{)Tm T |v°(Çu)| ( s 1 ! )S'm s , (t ' i)T'ir^> = 

, s+t+1 s+t 
i « « . « ^ . « M . 4

w . « - m . « - „ . l « 1 + < - 1 > )V*(«u) + ( i + ( - l ) )V-(€u) + s s ' t t ' SS' TT" m_m, i s m s nynj" 

( ( - l ) t + ( - l ) s + 1 ) 0*(Çu) + ( ( - l ) t + 1 + ( - l ) s + 1 ) U~«iu>l , (C.5) 
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Table Captions 

Tahlo I VaLues of the coefficients occuring in eq. B12 

(appendix). 

Tabic 2 Parameters of the shell 5 even central potentials 

fitted to the S 0 and
 J S . phase shifts according 

to fig 

Table 3 (4) Convergence of the solutions obtained in integrating 

the coupled equations for the shell S potential up 

to a maximum K value for H ( He). Mnding energies, 

percentage of the S and S 1 symmetry states and 

matber radiu . are given. 

Talile 5 a) Bindinq energies c ained in solving the coupled 

equations up to L=2K=24, extrapolated binding 

energies, H- He enerqy differences, percentage of 

the S, S' and D components of the wave functions 

and matter radius for the realistic potentials. 

b) Charge radii, position of the zeros and amplitude 

of the maxima of the charge form factors for H and 

V. 
Table b Convergence of the solutions in terms of the maximum 

grand orbital L=2K used : 

a) For G2 only one s" term is used, the extrapolated 

enerqy is given 

bï For CPDT and SSCB potentials, together with the 

matter radius R . 

Table 7 Comparison between our results and those obtained 

by Demin-Kfros (15,16) and by Laveme-Gignoux (34) 

in solving the Faddeev equation for the same potentials. 



s=0 s = l 

X l = t ' = j t = 4 ' = j î = { ' = j - l l = j - l , l ' = j + l l = t . ' = j + l 

Sî ? 0 2 . 2 ( i - U 
2 j + l 

- 2 ( 1 + 2 Î 
2 j + , 

Sî ? 0 2 . 2 ( i - U 
2 j + l 2 j + l 

- 2 ( 1 + 2 Î 
2 j + , 

I,-' 1 (1+1) 1 ( 1 + 1) J C S + i ) 0 (1 + D ( 1 + 2 ) 

L.S 0 - 1 j - 1 0 - ( 1 + 2 ) 

T.L - 2 j ( j + l ) 2 j ( j + l ) - l j - 1 0 - ( j + 2 ) 

0 0 3 - 4 j ( j + l ) ( j - 1 ) ( 2 j - 3 ) 0 ( j + 2 ) ( 2 J - 5 ) 



Potential 
Triplet 

or 
Singlet 

r a -ED(MeV! a r» 

Shell 6 
t 1.S0B 1.3875 2.202 5.40 1.73 

Shell 6 
s 1.508 0.93 -21.54 2.24 

Table 3 

K NS NS1 -E, (MeV) PIS) P(S') \ 

3 3 3 8.231 99.49 .507 1.522 
6 6 6 9.219 99.41 .584 1.497 
9 9 9 9.706 99.37 .628 1.488 
12 12 10 10.010 99.36 .637 1.48 

14 14 10 10.141 99.36 .636 1.478 

Table 3 

K NS US' -E, (MeV) 
JHe 

PIS) P(S') \ 

3 3 3 7.435 99.4 .596 1.54 

6 6 6 8.416 99.32 .68 1.52 

9 9 9 8.902 99.27 .73 1.51 
12 12 10 9.202 99.26 .73 1.5 
14 14 10 9.332 99.26 .735 1.5 

Table 4 



? 
Potent ial - E ( 3 H ) Mev 

c a l c u x e d 
- E ( 3 H ) Mev 
e x t r a p o l a t e d 

E c PIS) P I S ' ) P(D) v 3«> 
GPDT 8 . 5 8 8 . 5 8 . 6 6 9 4 . 3 . 9 7 4 . 7 2 1 .77 

SSC.A 7 . 4 4 7 . 5 1 . 6 4 5 9 3 . 5 . 7 6 5 . 7 1.76 

SSC.B 7 . 3 4 7 . 4 1 . 6 5 9 3 . 8 . 8 1 5 . 4 1 .78 

SSC.C 7 . 0 1 7 . 1 3 . 6 8 9 2 . 2 . 8 5 6 . 9 8 1 .81 

Exper iment 8 48 1 .7 

T a b l e 5 . a 

P o t e n t i a l W» F i r s t d i p |F J 
q 2 ( f m ') 

F i r s t maj 
q 2 ( f m ~ 2 > 

[ ! p ™ ( q ? ! 3 
F ( a 2 ) xlO- 3 

CH * 

2 n d a i p l F c „ ! 2 n d max| 
q M f t l f 2 ) 

F C H ( g 2 ) i 2 3 
| F C H < q 2 ) | 2 x l 0 3 

F (1) 
CH 

3 He GPDT , 1 .93 
1 .77 

1 5 . 5 
1 5 . 4 

20 
20 

0 . 7 8 
1 .10 

5B 7 2 . 0 . 0 0 7 5 .538 
. 574 

3 He 
SSC.A 3 H 

1 .95 
1 . 7 8 

1 5 . 5 
15 

2 0 . 
20 

1 . 1 8 
1 . 4 8 

6 4 . 8 
6 3 . S 

84 
78 

0 . 0 1 6 
0 . 0 2 5 

. 5 4 1 : 

. 5 6 5 : 

3 H e 
SSC.B 3 H 

1 .95 
1 . 7 8 

1 4 . 7 
1 5 . 2 

2 0 . 
20 

1 . 1 3 
1 . 3 8 

6 1 . 4 
6 5 . 7 

82 
82 

0 . 0 1 5 
0 . 0 1 8 

. 5 3 5 ! 

. 5 6 5 ! 

3 H e 
SSC.C 3 H 

1 .96 
1 . 7 8 

1 5 . 
1 4 . 7 

2 0 . 
20 

1 . 1 5 
1 . 3 8 

6 2 . 
6 4 . 7 

80 
78 

0 . 0 1 5 
0 . 0 6 5 

. 5 2 j 
. 551 j 

3 He 
Exp 3 H 

1 . 8 7 ± . 0 5 
1.7 ± . 0 5 

1 1 . 6 1 8 . 6 . 68 78 0 . 0 3 .567±.004 ' 
.622+.007 j 

i 

Table 5 . b 



G2 (3H) 

L=2K N(S) N(s') -E (MeV) 6E 

4 2 1.752 

6 3 3.610 1.858 
8 4 5.236 1.626 

10 5 6.564 1.328 
12 6 7.525 .961 

14 7 7.829 .304 

16 8 8.046 .217 

18 9 8.218 .172 

20 10 8.284 .066 

22 11 8.334 .050 

24 12 8.370 .036 

Ext : 8.41 

Exp : 8.48 

Table 6.a 



GPDT ( * •) SSC.B 

l=2K -E ÛE "m -E ÛE R m 

4 6 . 6 1 4 1 . 7 3 

6 7 . S 0 9 . 8 9 4 1 .70 4 . 1 1 1 1 .784 

8 7 . 9 7 7 . 4 6 9 1 . 7 0 

10 8 . 2 4 8 . 2 7 1 1 .717 2 . 5 5 3 

12 8 . 3 9 5 . 1 4 6 1 .727 6 .664 1 .688 

14 8 . 4 6 8 . 074 1 .737 

16 8 . 5 1 5 .047 1 .745 1 . 4 1 7 

16 8 . 5 4 3 . 0 2 8 1 .752 7 . 1 8 1 1 .73 

20 8 . 5 5 9 .016 1 . 7 5 7 

22 8 . 5 6 9 . 0 1 0 1 .761 0 . 1 3 4 

24 8 . 5 7 5 . 0 0 6 1 .764 7 . 3 1 5 1 .762 

26 8 . 5 7 9 . 0 0 4 1 . 7 6 6 7 . 3 3 2 1 .769 

28 8 . 5 8 . 0 0 3 1 .767 7 . 3 4 5 1 .774 

Table 6 . b 



V 

Potent ia ls Authors -E( 3 H)Hew P(S) P ( S ' ) P(D) R C H ( 3 H e ) 

GPDT 
Laverne-Glgnoux 
Demin e t a l . 
B a l l o t - F a b r e 

S.2S 
6 . 5 0 
8 . 5 8 

9 4 . 6 5 
9 4 . 6 
9 4 . 3 

1 . 2 8 
. 6 
. 97 

4 . 0 7 
4 . 7 
4 . 7 2 

1.87 

1 .93 

SSC.A 
L a v e m e - G i g n o u x 
Demin e t a l . 
B a l l o t - F a b r e 

7 . 5 8 
7 . 3 8 
7 . 5 1 

9 2 . 
9 3 . 2 
9 3 . 5 

1 . 5 
. 5 8 
. 7 6 

6 . 5 
6 . 2 5 
5 . 7 

1 .85 
1 .94 
1.95 

SSC.B 
Laverne-Glgnoux 
Demin e t a l . 
B a l l o t - F a b r e 

7 . 6 0 
7 . 5 3 
7 . 4 1 

9 2 . 3 
9 3 . 2 5 
9 3 . e 

1 .4 
0 . 7 9 
0 . 8 1 

6 . 3 
5 . 9 6 
5 . 4 

1 . 8 2 
1 .96 
1 .95 

ssc.c 
Laverne -Gignoux 
B a l l o t - F a b r e 

7 . 3 4 
7 . 1 3 

9 0 . 6 
9 2 . 2 

1 .4 
. 8 5 

8 . 
6 . 9 8 

1 .83 
1 .96 

Table 7 



Figure Captions 

Figure 1 Radial shape of local two-nucleon interaction combi­
nation i (V 3 ++V 1 +) for (31 and V* potentials. 

Figure 2 The H charge form factor for the two body interactions 
02 (continuous line) and V* (dotted line). The 
experimental data are from Ref. 64. 

Figure 3 The He charge form factor for the two body interactions 
G2 (continuous line) and V* (dotted line). The 
experimental data are from Ref. 65. 

Figure 4 First two s and s' partial waves u 2 K f O > K=0,1 calcu­
lated with G2 (continuous lines) and V* (dotted line) 
potentials. 

Figure 5 First three s partial waves u 2 K ( Ç ) , K=0,2,3 calculated 
with V* potential. 

Figure 6 The N-N S, phase shifts of the shell S potential. The 
points correspond to the single energy phase shift of 
Arndt-Mac Gregor-Wright Ref. 60. 

Figure 7 The N-M S 0 phase shifts of the shell 6 potential. 

Figure 8 The He charge form factor using the shell 5 potential. 

Figure 9 The He charge form factor calculated with realistic 
potentials, GPDT (1 dot-dashed line), SSCA (dashed 
line;, SSCB (continuous line), SSCC (4 dot-dashed line). 
The experimental data are from Ref. 65. 

Figure 10 one body density and two body correlation functions 
using the two first partial waves (K=0,2) calculated 
for G2 (continuous line), V* (dashed line), GPDT 
(dotted line). 



Figure 11 One body density (continuous line) and two body 
correlation function (dashed line) calculated with 
V* potential. 

Figure 12 one body density (continuous line) and two body 
correlation function (dashed line) calculated with 
G2 potential. 

Figure 13 One body density R,(Ç) and two body correlation func­
tion R 2 ( O of H and 3He calculated with GPDT poten­
tial. 

Figure 14 
line) and (dashed line) potentials. The points 
correspond to the Sick analysis given in Ref. 59. 

Figure 15 He proton density calculated with GPDT potential. 

Figure 16 The overlapping functions R?(Ç) between the deuteron 
3 wave function from Ref. 40 and He wave function calc 

lated for G2 (continuous line), V* (dashed line) 
and GPDT (dot-dashed line) potentials. 

Figure 17 Total cross section of the reaction He (y,p)d. The 
theoretical curves are obtained with G2 (continuous 
line) and V (dashed line) potentials. The experimen­
tal data are from Ref. 62. 

Figure 18 
lated using the He wave function corresponding to the 
GPDT interaction. The continuous line is the cross 
section calculated with the complete wave function. 
The two dot-dashed curve is the cross section calcula­
ted with the total symmetric S wave function. The 
dashed line is the cross section calculated with the 
total and mixed symmetric S' wave functions. 



Figure 19 Total cross section of the reaction He (Y,p)d cal­
culated using the He wave function corresponding 
to the GPDT (continuous line), SSCA (dashed line), 
SSCB (dot-dashed line), SSCC (dotted-line) potential. 
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