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A GRAPHICAL APPROACH OF THE VECTOR ANALYSIS
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The Graphical Spin Algebra has been shown to be applicable in a cartesian
coordinate system without major modification. Then the (G.S.A.) allows a new
and very easy approach of the usual vector analysis. Some examples of application

are given,



I INTRODUCTION

The Graphical Spin Algebra (G.S.4.) D is now well-known as a useful

group. Different extension have been

2
given for the SU3 group or even for all compact grouns 2-5).

tool to handle the Racah algebra of the SU

The G.S.A. lies on a one-to-one diagrammatic representation of the ele~
ments of the group and on some fundamental rules of transformation based on the
rotational invariance orthogonality and completeness relations. For the purpose

of this paper only some basic aspects of the G.S.A. have to be known 1). On the

other hand6)

we have shown that one could define a graphical representation of the
vectors or vector operators in a spherical coordinate system. When a graphical
representation of the metric tensor i Ej (r]s) is given one can use the G.S.A.
without alteration in a spherical coordinate system as usual or even in a cartesian

system.
The choice of a proper convention to link cartesian and spherical systems

was then important and it appeared thatthe use of the Biedenharn-Rose convention
allowed and identical graphical representation of the scalar and dot products of

" coefficients are scalars, inde~

two vector operators, Moreover since the " 3nj
pendent of the coordinate system, one could use the G.S.A. without specifying

the reference frame and defining it only at convenience.

Such a result was sufficiently intringuing to reconsider the graphical repre-
sentation of the vector operators. It appeared effectively that the usual graphical
rules of the G.S.A, and the knowledge of two special cartesian Clebsch~Gordan

coefficients gave immediately all the usual results known as the vector analysis.

2. DIAGRAMMATIC REPRESENTATION OF VECTOR OPERATORS

2.1 Standardization of vector operators :

Using the Biedenharn-Rose convention 8) for the atandardization of vector
operators, the linear relation between the cartesian (AxAy Az) components of the

-ty
A vector operator and its Am standard components can be written
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2.2 Spherical (standard) coordinates :

Using the G.S.A. diagrams 6), we define a spherical , or standard basis

Ap
| > = ——
.2
dn (2.2)
<ll’-l = p—t——
which verifies completeness and orthonormalization relations
4
£ )u><lp) = p———y =1 (2.3)
"
'
TR I .
<> = Sr—frt— = o> =8 (2.4)

In such a basis a vector operator Z wil be defined by its components

”
¥) A A
A
A1u= <A ]l> =-‘§-°.L t A pn (2.5)
A
4 A
A A > o
A"l'“=<lu.lA>=-4"']—-"—~' -ﬂl———«—-—f (2. 6)
The scalar product is introduced through
A ~
A A A B A A A A N
<alB>=-"-4-"= - =z <A > <wB>-aA-2®
1 (2.7)
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3.
and the standardization gives with the Biedenharn-Rose convention
AGA
<aAl|B>= X.B (2. 8)

2,3 Cartesian coordinates :
One introduces the cartesian vector basis e. and for the sake of simplicity

we set

Je > = [1z> = |-—5"’—- -] l—ﬁ-'"—— (2.9

with r=1,2,3 = %, ¥y, z. They form a complete orthonormal basis

4
£ Jir> <ir] = p———mm— =1
r
An Aa (z.10)

<1rlls>= —»—i-—»— = &8

At this stage, one muat point out that the above relations are particular cases of
the description of tensors in cartesian coordinates. ‘
G,) m,
If A (ml) defines a tensor of rank m, (3 components) and of order
jl ( (2j1+ 1) independent components), a Cartesian Clebsch-Gordan coefficient defi-

J J
nes the decomposition of two irreducible spaces H ! and H 2 into a sum of sub-

J
space H 3.7 '
iy iz i5P : i i . .
(A (ml) ®B (mz)) — A (ml) B (mz) <Jlm1_]2mz] J3m3>P
3 m_m
12
(2.11)
m1+ m2 m3
where 3 = 3 is the dimension of the product space, and p is the
multiplicity,
One then defines the metric tensor 7
} ’ .
b J‘} & J3
PPp—————— = E7(t]t) (2.12)

and the closure relation becomes



P
e : .
J 3
1 2
z = = F (rlr') E (s)s')
JaP PP A
4 L A (2.13)
Since El(rls) = 61_ we find the (2.10) relation.
The cartesian components of vector operators are then
n
A A A A Ap
A= <A|ir> = <Afe > = dbobr— = Ab—— (219
T

with r=x,vy,2z = 1,2, 3

.

The scalar product is now

AL A A A A 4 n
<A|B>=E<A]h’><1i[B>= a l————-iﬁ =z:AiB;L (2.15)
i i

: 1o +
when dealing with hermitian operators Bi =

ALA -
<a|B> = X.3 (2. 16)

2.4 Cartesian spherical transformation coefficients

We can express a spherical component Alu- of the A vector operator in
a cartesian coordinate system

AA=<£II|.|.>=Z<£le><ellu>=2A<e}l|&>. (2.17)
b . i i , i i :

Graphically it follows that

<eillp.> = -»—l—-r-'i

(2.18)
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It defines the matrix element of the unitary U-transformation matrix

A, = UiAi= 8i<ei]u>- A, (2.19)
with
<e ]1> <e 1> < |12 -—-i—z- —1T2.,— 0
. <e/]o0> <ezlo> <e3[o> . 0 0 i (2. 20)
<e |-1> <e,]-1> < o ] -1> Tz‘" l_fz-' 0

3. TENSOR PRODUCT IN SPHERICAL COORDINATES

The Au considered as ITO of rank 1 allows the determination of the ten-~

sorial product (Ap x B,) Xq a nd graphically it immediately follows that

A
)

- (3.1)

The tensorial product of zero rank is related to the scalar product since

A A

(A, xB,) R A -~ — (X.3)
x e - - = — (A.B
BT Voo EX B (3.2)
and the rank one to the cross-product
A
]
4
(A xB) =-—= (AAD), - a - (3. 3)
i v 1q J’Z_ 1q .
A
N2

or equivalently



D>

(anB) = o6 - (3.4)
A
3
One can then obtain the graphical representation in spherical coordinates of more

complex products like

(3.5)
and
4
4 ’
((AAB) A C)1q= 2 A (3. 6)
~
\4\' X
or even construct other tensors of rank one. We have for instance
43 4 A
Ap————] e
(X E) El = -Z
T a4 X
1 (3.7)

We then express the sumover X =0, 1, 2 to get with (3. 6)



A
f
2
A
6
1
2,
lq (A, B! C) = 2! 4 . 41 = [(A-C) qu
Lz 8¢ L (ZaB)ad, ]
] . 1q° 2 1q

(3.8)
One can also determine the k = 2 tensor components of the tensorial product

ot two vector operators

N
4 A
%
(Aux Bv )Zq = - (3.9)
4N8

and its spherical components which can be found in the literature ?)

4. SCALAR AND CROSS PRODUCTS IN CARTESIAN COORDINATES

Liet us construct the tensor product of two vector operators in cartesian

coordinates

= - = 8 .

(oA_® B ) s 5 <ir, 11-2] Se>A B,

1 2 8 r.r 1 "2
4 A 172
8

(4.1)
In order to obtain the scalar and the cross-product we have to evaluate two
particular cartesian Clebsch-Gordan coefficients <Ir lrzl 00> and

<1r, 1r2| s> ,

1

It can be easily found that



<lr 1r2| 00>

< < > < >

z lrl’lu1> ir, | 1u, I, luzloo »
ik (4.2)
£ <ir )i, > <ir [1-p > —1()1-u1-——1—-6
Tty T2l ik : =

) ﬁ—' Y3 1%

n

since

<t )1ep > (o) *lo < i > 4.3
B lew> (= <]y, (4.3)
It follows that .
1 - —
A & B ) = —= A.B (4. 4)
r1 r2 oo v3

and a comparison with (2.8) shows that the Biedenharn's convention leads to the

same value of the tensor product of zero order in spherical and cartesian coordinates.
Let us now evaluate the cartesian Clebsch-Gordan coefficient
< > = z < >
Ir 1z, | 1s Ir) J g > <1r, |18, > < 1, [1s )
RN .
< B>
. 1k, 1u, [ 1,

N
The use of the Url matrix elements gives without difficulty the value
1
<lir Ir, |1s> = - L ¢ (4.'6)
1 2 {2-, T T,8

4 is the Levi-Civittd antisymmetric tensor .

r 1‘2 8

1 if T Ty 8 is an even permutation of 1, 2, 3 indices

E = =11if rir, s is an odd permutation

nnb

0 elsewhere

In cartesian coordinates one thus finds that

(Arlx Brz) = - {2.., (A/\B)s (4.7)
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It is exactly the result obtained in spherical coordinates. We have then

-

A—t 48 .z 38

ESS

(4. 8)

in any reference frame. When working in spherical coordinates q=u =1, 0, -1

and in cartesian coordinates q=8=1,2,3=x,v,2.

5. VECTOR ANALYSIS

Let us first recall some obvious but useful results. The cross-product of

two vector operators reads now

4 AR
(AAB) = Jé— % (5.1)
q = - .
. N

e
If the components of A operator commute, one can change the lecture order of the

diagram without affecting the result ; one knows however that such a change mul-

1+1+1

tiplies the result by (-) . It then follows
A
4
- 4q .
[a,a)=0 <= - =0 {5.2)
1
)

We obtain for instance



10.

Vel
r
4
4q - =0 equivalentto TAT = 0 {5.3)
17\, 2
i
while with the Pauli matrices
o
4 4q
4q . 2 — T (5.4)
e
4
A
>

. - = (5.5)
equivalent to the commutation AT 5 200

An other interesting result is obtain with the cartesian coordinates coeffi-

cients
I}
4T, gr) A, Ak,
£f4 4f; ! e
s £ = - (5. 6)
¢ > A an 4rl ar, e
:
ar, : iyt ¥ e
since )
T s ¢ ., =8 v B U ) 5 - 5,7
s T1T2® T2 ? 1M1 T2t RRERN (5.7)

We shall denote this rule as the ' crossing rule "
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5.1 The triple scalar product :

(5. 8)

Due to the symmetry property of the " 3jn " coefficient one can start the lecture

from any vector operator and thus obtain

w

A.(BAC) = B. (CAR) = C. (BrB)

5,2 Scalar products of two dot products :

(5.9)

The use of (5.6) gives an interesting expression of the scalar products of

two dot products

1 A
A
ANy 2 y I}
(AAB). (CAD) = 6 oH—2 (- =
A a4 A
N/ ANa B—2 3
3 3

(AAB).(CAD) = (A.C)(B.D) - (R.D) (3. )

(5.10)

(5. 11)

When dealing with vector operators which do not necessarily commute, one must

take care of the order of the operator in the left and right hand sides. When the

above are only vectors the order is unimportant,
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5.3 The double cross-product @

: + 4
R B . b
4 (]
Bt 4
(KA(BAcnq= 6 I//// = 6 + -
14 4 1 1N3 a2

One can consider that one works in cartesian coordinates and uses (5.6) to imme-

diately obtain the well-known relation

324
(AA(BAC)), = -
q Aq
2 —
AAM(BAT) (5. 13)

One can use now the graphical representation of the double cross-product and the

usual rules of the G.S.A. to get the analytical expression of a particular tensor

4 + A
frt bt

o)
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(AA(BAC))q- 6; X° () {llx
(5. 14)

One can develop that expression since X =0, }, 2 and the corresponding " 6j"

coefficient take the values - ;— » —fl; ’ —2 . One then obtains
- —- 2 = 1 - - - -
AA(BAC = -—(A.B)C - — (CA(AAB + A,B W1
(BA(BAC)) = -5 (B.B)c - 5 (TA(EAE)) + T (X, B,8) (5. 15)
with

/. 4
k1 q
T, (X5, &) = +»—2—-
9 (5.16)
a/? 1
3 A
and it follows that
T, (A,B,C) = (AA(BAC + = (A.B) C + — (CA(AAB
1q ) ( ( ))q 3 ( ) ot 2 ( ( ))q 5.17)
or with (5, 13)
T =+ (X8 -+ @.Bc + L1 (3 (5.18
g 2 q” 3% gt 2 BG4y - 18)
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6. SOME EXAMPLES OF APPLICATION

One can use (2.15) to show that for the & Pauli matrices considered as

vector operators
T e, = 0 6.

One can then easily obtain the following

—_
(7.%) (. B) = .Zﬁ“
—ry

We use the X=0, 1, 2 and (5.5}, (6.1) to get

and since ez =3

(¢.A) (¢.B) = (A.B) + iv.(AAB) (6.2)
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One can obtain a more general expression when starting with the product

of two scalar products of vector operators

A A 2 A
O —y R 4 L AC
— - — — ~
(A.C)(B.D) = o 4 A -z %% 4 % ~
& 2 X
A Sl a4\, A (6.3)
() >
We set
(6.4)
and one easily obtains the well-known form
T,(X, ). T,(C, D) = (X.T)(B.D) - - (X.B) (C. B)
(6.5)

If C=D= 9, onerefinds (6.2). If all the vector operators are different, one
can express the scalar product of the two dot products with (5. 6) getting
T

A,B), T (C,D) = T(A.C)(B.D) + —%‘(A.D) (B.C

~—

2| 2 |
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A comparison with (5.16) and (5.18) shows that

2 2 1
(6.7)
or equivalently
T,(4,8). 1,(C,B) = 7,(C,B.B).% - T, (C.,D.%). B
= T (A,B,D). ¢ (6. 8)

since the above diagram can be cut by isolating any component,

We note that when C = D = @ one can reach the dot product
(64 ZX). (7 B)

Let us finish by an example in which both cartesian and spherical aspects of

the G.S.A. have to be used

(3.7 (Ez. (6. 10)




and gince X=0,1,2

(6.11)

5 (8:5,). T, (¥, 7F) (6. 12)

-

We divide the two sides by the length r2 of the T vector and set

(6.13)

A

in order to have -‘—"-I T = Yd.m (?) and

Since the only directi of the T vector are now involved in the diagram,
one can normalize it by "%

use the usual technique of the G.S.A. on the two spherical harmonics thus left



18.

A
S
s N (Sl.r)( 2-1‘) ) _1 g _g _ 8n A [y A (6.14)
12 2 3 1" T 3 I
a 1
S,
where —z:‘—]? = YZm (,1:) the usual spherical harmonic in the /r\ direction,
A 4
and S = Slu is the standard form of the spin vector operator.

7. CONCLUSION

W have shown in this paper the following results, First if we use the
Biedenharn-Rose convention for the transformation of the cartesian basis into a
standard (spherical) basis, the G.S.A. is applicable without modification in carte-
sian coordinates. Moreover, the graphical representations of the scalar and dot
products and of the scalar " 3nj " coefficients in the two coordinates are identical.
One can thus work without specifying a priori the coordinate system, The second
result is that the G.S.A. can give a new useful approach of the vector analysis
in its more usual aspect, In that case one can deal with the only few graphical
representations and rules (2.15), (2.16)and (2.17), (4.8), (5.6). One note
that when dealing with these rules only, one can avoid the 6 numerical coeffi-
cient in the dot product, but the use of the other rules of the G.S.A. makes this

coefficient indispensable.
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