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The Graphical Spin Algebra has been shown to be applicable in a cartes ian 

coordinate sys tem without major modification. Then the (G. S. A. ) a l lows a new 

and very easy approach of the usual vector analys i s . Some examples of application 

are given. 
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1. INTRODUCTION 

The Graphical Spin Algebra (G. S.A. ) i s now well-known as a useful 

tool to handle the Racah algebra of the SU_ group. Different extension have been 
2-5) given for the SU, group or even for all compact groups 

The G. S. A. l i e s on a one-to-one diagrammatic representation of the e l e 

ments of the group and on some fundamental rules of transformation based on the 

rotational invariance orthogonality and completeness relations. For the purpose 

of this paper only some basic aspects of the G. S..A. have to be known . On the 

other hand we have shown that one could define a graphical representation of the 

vectors or vector operators in a spherical coordinate sys tem. When a graphical 

representation of the metr ic tensor E ( r I s ) i s given one can use the G. S.A. 

without alteration in a spherical coordinate sys tem as usual or even in a cartes ian 

sys tem. 

The choice of a proper convention to link cartesian and spherical s y s t e m s 

was then important and it appeared that the use of the Biedenharn-Rose convention 

allowed and identical graphical representation of the scalar and dot products of 

two vector operators . Moreover s ince the " 3nj " coefficients are sca lars , inde

pendent of the coordinate sys tem, one could use the G. S. A. without specifying 

the reference frame and defining it only at convenience. 

Such a result was sufficiently intringuing to reconsider the graphical repre

sentation of the vector operators . It appeared effectively that the usual graphical 

rules of the G. S.A. and the knowledge of two special cartes ian Clebsch-Gordan 

coefficients gave immediately all the usual resul ts known as the vector analys i s . 

2. DIAGRAMMATIC REPRESENTATION OF VECTOR OPERATORS 

2. 1 Standardization of vector operators : 

Using the Biedenharn-Rose convention ' for the standardization of vector 

operators, the l inear relation between the cartes ian ( A A A ) components of the 

A vector operator and its A. standard components can be written 
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2. 2 Spherical (standard) coordinates : 

Using the G. S.A. diagrams , we define a spherical , or standard basis 

i(i > = I — » — 

4*-
< i n ) = i - ««-• 

(2.2) 

which veri f ies completeness and orthonormalization relations 

S ] l H > < l p , | = ) » 1 = 1 

< 1(1 I V > = *-**—1 *• ' " * —» *— = 6 
HU 

(Z.3) 

(2.4) 

In such a basis a vector operator A wil be defined by i ts components 

A ç, 4k. A. •*/>. 
Aj = < A ] l n > = - » - I—9 S A I i r — (2. 5) 

+ A A Z1 A "*A 
AT = < lp, { A > =— •«• - j — * ^ - - « fl J ic* (2 .6 ; 

The scalar product i s introduced through 

6 A -A 
< A | B > = - - -j - . - - = 2 <A Jln><l(i|B> =fl | {& 

M. (2 .7) 

£ A B + = S ( - ) 1 _ l l A B 
l i p , |l -H p, p, 
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and the standardization gives with the Biedenharn-Rose convention 

< A ( B > = A . B (2 .8) 

2. 3 Cartesian coordinates : 

One introduces the cartesian vector basis e and for the sake of s implic i ty 

we set 

Je r> = |lr> = 1 î * S j > r (2.9) 

with r = 1, 2, 3 = x , y , z . They form a complete orthonormal basis 

Z | l r > < l r | = | 1 = 1 

* A » ( 2 - , 0 ) 

< Ir J l s > = —*» 1 » = 6 
' » r s 

At this stage, one must point out that the above relations are particular c a s e s of 

the description of tensors in cartesian coordinates. 

(jj) n>j 
If A (m ) defines a tensor of rank m ( 3 components) and of order 

j , ( (2j,+ 1) independent components), a Cartesian Clebsch-Gordan coefficient defi-
1 Jl J2 

nes the decomposition of two irreducible spaces H and H into a sum of sub-
u

j 3 7) space H , 

( A n y * B V 2 ) ) ^ = £ A V J ) BJ2(m2) <J 1 » I J 2 » 2 ] J3»3> 
3 m i m 2 

(2 .11) 
m + m m_ 

where 3 = 3 is the dimension of the product space, and p is the 

multiplicity. 

7) 
One then defines the metric tensor 

* k y h . 
• » > - = E J ( t l f ) (2 .12) 

and the c losure relation becomes 
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J** / } > ' •• J< r' 
• * » • -

'* \i>' 

j l i j 2 • 
= E ' ( r j r 1 ) E ^ ( s j s ' ) 

J 3 P / 13 X ; J ** 
A \u *' (2 .13) 

Since E ( r | s ) = & we find the (2.10) relation. 

The cartesian components of vector operators are then 

A A, ft "̂ ï* A -^'* 
A = < A I l r > = < A | e > = -*•>- J — * — » fl I *— (2. 14) 

r • r 

with r = x, y, z = 1, 2, 3 . 

The scalar product i s now 

< A | B > = £ < A | U > < l i J B > = fl | J & = S A. B T (2. 15) 
i l 

l 

when dealing with hermitian operators B. = B. and 

A.A - _ 
< A | B > = A . B (2. 16) 

2. 4 Cartesian spherical transformation coefficients : 

We can express a spherical component A of the A vector operator in 

a cartesian coordinate system 

A . < A | lp, > = S < A | e. > < e. J In > = £ A. < e. J l(i > (2. 17) 
i i 

Graphically it follows that 

B J lp, > = - » * 1 *!— (2. 18) 



It defines the matrix element of the unitary U-transformation matrix 

A„ = U1 A. = E < e . 1 (i > A. (2.19) 
V- \L 1 1 ' 1 

with 

<e 

a i = I < 6 l l 0 > < e 2 | 0 > < e 3 | 0 > J _ I 0 0 * 1 ( 2 . 

\ < e , | - l > < e l - l > < e J - 1 > ' V _ i _ _ L _ „ ' 

0 

1 

/? 
0 

i 1 

3. TENSOR PRODUCT IN SPHERICAL COORDINATES 

The A considered as ITO of rank 1 allows the determination of the ten-V-
sorial product (A x B ), a nd graphically it immediately follows that \1* v Kq 

( A . X B V , k q = fc« &- (3-D 

The tensorial product of zero rank is related to the scalar product since 

1 fl -* £ l - -~ 

^ ° ° P / ? (3.2) 

and the rank one to the cross-product 

( V B v \ = " ~JT ( t A f ) l q = "~:*~^~ ( 3 ' 3 ) 

or equivalently 
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(A A B) = f / T 
4 | 

—*- ( 3 . 4 ) 

One can then obtain the graphical representation in spherical coordinates of more 

complex products l ike 

(A A B ) . C = ( B A C ) . A 

and 

( C i l A ) . B = JI ci — 

4 A 

4. a 

( ( A A B ) A C ) , = 2 
iq 

* -iS 

4 X. 'v 

or even construct other tensors of rank one. We have for instance 

( 3 . 5 ) 

(3 .6) 

2 * fi\ A 

( A . C) B 
iq 

6J fc-L 
-£ 

, A 

( 3 . 7 ) 

We then express the sum ovei X = 0, 1, 2 to get with (3. 6) 
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Br-

T ( A , B , C) = 
l\-

= [ ( A . C) B l c 

T ( A * - i ) C l q - i ( ( A A B ) A C ) ] 

(3 .8) 

One can a lso determine the k = 2 tensor components of the tensorial product 

ot two vector operators 

(A x B L 
v H v 2q (3.9) 

and its spherical components which can be found in the l i terature 9) 

4. SCALAR AND CROSS PRODUCTS IN CARTESIAN COORDINATES 

Let us construct the tensor product of two vector operators in cartesian 

coordinates 

(A ® B ) 
r l r 2 Ss •S* 

= 2 < l r , l r , S s > A B 
1 2 ' r , r„ 

I V r l r 2 1 2 

(4 .1) 

In order to obtain the scalar and the cross-product we have to evaluate two 

particular cartesian Clebsch-Gordan coefficients < l r . l r - , | 0 0 > and 

< l r i l r 2 | l s > . 

It can be easi ly found that 
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< l r j l r 2 ] 0 0 > . = S .< l r j / l u ^ < l r 2 J l n 2 > < lu^ 1 ^ | 00 > 

" l ^ ! (4 .2) 

= Ï < l r Jin > < l r / l - H > -p=, 1-) " ' - " F i 6 , , 
* l 1 Z l (T1 {P r l r 2 

< l r 2 J ! - !* !> (") " l l l = < l n 1 | l r 2 > (4 .3) 

It follows that 

' l *2 oo 
(A 9 B ) = — U A . B (4 .4) 

and a comparison with (2. 8) shows that the Biedenharn's convention leads to the 

same value of the tensor product of zero order in spherical and cartes ian coordinates. 

Let us now evaluate the cartesian Clebsch-Gordan coefficient 

< lr l r I l s > = £ < Ir I lu-, > < lr | IV-, > < 11* / i s » 
1 Z H,l»2l*3 * * Z Z 3 (4 .5) 

. < IHJ lt* 2 / 1 ^ > 

"l The use of the U matrix e lements gives without difficulty the value 
r l 

< l r , l r , I l s > = -—j=r c (4 .6) 
1 2 « Ç r i r 2 s 

f i s the Levi-Civittà antisymmetric tensor . 
1-1*2 s 

1 if T^T^B i s an even permutation of 1, 2, 3 indices 

f _ y -1 if r j r , s i s an odd permutation 

0 e lsewhere 

In cartesian coordinates one thus finds that 

(A x B ) - - — 7 = T ( A " A B ) B (4 .7) 
r i r2 s fP s 



It i s exactly the result obtained in spherical coordinates. We have then 

3 I 1& ' = A . B 

(4.8) 

in any reference frame. When working in spherical coordinates q = (i = 1, 0, -1 

and in cartesian coordinates q = s = 1, 2, 3 = x, y, z . 

5. VECTOR ANALYSIS 

Let us f irst recal l some obvious but useful resul ts . The cross-product of 

two vector operators reads now 

(A A 13) = Je" • ^ - (5 .1) 

If the components of A operator commute, one can change the lecture order of the 

diagram without affecting the result ; one knows however that such a change mul

tiplies the result by (-) . It then follows 

4«j 
[ A , A ] = 0 < = > -« < - = 0 (5 .2) 

We obtain for instance 
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4* = 0 equivalent to T'A 7 = 0 (5 .3) 

while with the Pauli matr ices 

2 i 

f 
1 _ , * < 1 B-

equivalent to the commutation i C T A T 3 2t- a* 

(5 .4) 

(5 .5 ) 

An other interesting result i s obtain with the cartes ian coordinates coeffi

cients 

.*** 

é +> 
'4*4 

s.«ri 

•in irj 
>» 'I 

-If» 4 r £ 
» > i 

-in - W 

(5 .6) 

V) 

E * * i i = 6 , 6 , i 

r r s r r s r r ' r r ' - o o 
s 1 2 1 2 S V l V Z & r l V r ^ -

(5 .7) 

We shall denote this rule as the " cross ing rule ". 
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5. 1 The triple scalar product : 

A. (BAC) = ^6~ £ , _ J / - (5.8) 

Due to the symmetry property of the " 3jn " coefficient one can start the lecture 

from any vector operator and thus obtain 

A . CBAc") = B. (CAÀ*) = C . (Â*AB) (5 .9) 

5 .2 Scalar products of two dot products : 

The use of (5. 6) g ives an interesting express ion of the scalar products of 

two dot products 

(A A B ) . ( C A D ) 

0 J—-—\o B» i a» 

*î A >» «4 . * •* 6 l — = J3> Ti » | C 

(5. 10) 

(Â*A B ) . (C A 5") = ( A . C*) ( B . D ) - ( A . D ) ( B . C ) (5. 11) 

When dealing with vector operators which do not neces sar i ly commute, one must 

take caxe of the order of the operator in the left and right hand s ides . When the 

above are only vectors the order i s unimportant. 
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5. 3 The double cross-product 

( A A ( B AC) ) = 6 

•5 4 + 
A h-= r-

4. 

(5. 12) 

One can consider that one works in cartesian coordinates and uses (5. 6) to imme

diately obtain the well-known relation 

( A A ( B A C ) L = 

-êr-^3- *• 4- 4 8 t 1 A 

C I J A i-1 

A A ( B A C ) = B ( A . C ) - ( A . B ) C (5. 13) 

One can use now the graphical representation of the double cross-product and the 

usual rules of the G. S. A. to get the analytical express ion of a particular tensor 
4. * -*q 

JË3 

( A A ( B A C ) ) = 6 /* 
q s* - ' *~ 

C 

-*£«' * 
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( A A ( B A C ) ) 6 S X 2 ( - ) X {'• 1 i } 
(5. 14) 

One can develop that express ion since X = 0, 1 , 2 and the corresponding " 6j " 

coefficient take the values - ~ , — , ~ . One then obtains 
3 6 6 

[A A ( B A C ) ) = --%• (Â.B)C - 7 ( C A ( Â A B ) ) + T, (Â~, B . C) (5. 15) 
q 3 q Z q lq 

with 

(5.16) 

and it follows that 

T. ( A , B , C) = ( A A (B A C ) ) + — ( X . B ) C + 4 " ( C A ( A A B ) ) 
q ( 5 .17 ) 

or with (5. 13) 

T l q = -j; ( A . C ) B q - 4 - ( X . B ) C q + f (B.?) A (5. 18) 
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6. SOME EXAMPLES OF APPLICATION 

One can use (2. 15} to show that for the e Pauli matr ices considered a s 

vector operators 
T . CS\o") = 0 (6 .1) 

Zq 

One can then easi ly obtain the following 

* 4. £ 

( o . A ) ( c . B ) = - > X 

<r> »e> x 

We use the X = 0, 1, 2 and (5. 5) , (6. 1) to get 

/\ 4. A 
<r i — - — I r 

(Tf. A ) (7. B ) = -± ^ ^ 
5 A*— 5 —16 

1 2 — — / 2 A 

= j - « ' A . B + 3i V Y <rf 
A 4 / 
ir- i H f -

2 
and since S = 3 

( O . A ) ( » . B) = (A ,B") + i 7 . ( A A B ) (6 .2) 
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One can obtain a more general expression when starting with the product 

of two scalar products of vector operators 

A t—£ i& 

( A . C J ( B . D ) « 3 ^ A = E X 2

 + > 

We set 

T 2 ( X . B ) . T 2 ( C , D ) = 

and one easi ly obtains the well-known form 

T 2 ( A , 1 ) . T 2 ( C \ D ) = ( A . C) ( B . D ) - y - ( A \ B ) (C*. D ) 

- y - ( À A B ) . ( C A D ) 

(6.3) 

(6 .4) 

(6 .5) 

If C = D = « , one refinds (6. 2) . If all the vector operators are different, one 

can express the scalar product of the two dot products with (5. 6) getting 

T ( A \ B ) . T 2 ( C . D) = -J ( A . C) ( B . D ) + ~ ( A . D ) ( B . C) 

(6. 6) 

- Y ( A . B ) ( C . D ) 
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A comparison with (5. 16) and (5. 18) shows that 

T 2 ( A , B ) . T 2 ( C . H ) = Tj ( C , D, B). A = T ^ C . D . A J . B 

= T j f A . B , D ) . <? (6 .8) 

Bince the above diagram can be cut by isolating any component. 

We note that when C = ~5 = 7 one can reach the dot product 

(«AÂ), {7A B) 

(9 A A ) . ( J A B ) = 6 

Let us finish by an example in which both cartesian and spherical a s ç e c t s of 

the G. S.A. have to be used 

i* l il» 

(Ï...7) (?,."?) -
A%\ if 
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and since X = 0, 1, 2 

*< I 1 s t 

(6.11) 

Since r~A 7 = 0 the second diagram vanishes and we are left with 

( ? l . 7 ) ( s " 2 - . " r ) - - } ; ( 3 j . ' 3 ' 2 ) r 2 = 5 

• V s r V - T 2 ( 7 , T ) (6.i2) 

2 
We divide the two sides by the length r of the r vector and set 

(Sv7){S2.'r) 
S 1 2 =

 r 2 " 3 S T S 2 = 5 

(6. 13) 

Since the only directions of the r vector are now involved in the diagram, 
one can normalize it by •*/~r _ in order to have "* | r "S Y, ( r ) and 

use the usual technique of the G. S. A. on the two spherical harmonics thus left 
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S 12 = 2 
r 

( s r ? ) ( s 2 . 7 ) ^ J_S!L' \ *- .A (6.u; 

where —«—It* = Y„ ( r ) the usual spherical harmonic in the r direction, 
1 2m 

A 4»-
and S 1 > ' = S, is the standard form of the spin vector operator. 

7. CONCLUSION 

W have shown in this paper the following results. Fi rs t if we use the 
Biedenharn-Rose convention for the transformation of the cartesian basis into a 
standard (spherical) basis, the G. S. A. is applicable without modification in carte
sian coordinates. Moreover, the graphical representations of the scalar and dot 
products and of the scalar " 3nj " coefficients in the two coordinates are identical. 
One can thus work without specifying a priori the coordinate system. The second 
result is that the G. S.A. can give a new useful approach of the vector analysis 
in its more usual aspect. In that case one can deal with the only few graphical 
representations and rules (2. 15} , (2. 16) and (2. 17), (4. 8) , (5. 6) . One note 
that when dealing with these rules only, one can avoid the \jb numerical coeffi
cient in the dot product, but the use of the other rules of the G. S. A. makes this 
coefficient indispensable. 



19. 

REFERENCES 

1) E. E lbaz , B. Cas te l , A m e r . J . P h y s . 3 9 ( 1 9 7 1 ) 8 6 8 ; Graphica l Methods of 

Spin Algebra in Atomic , Nuclear and P a r t i c l e P h y s i c s , Dekker , New Y o r k , 

1972 . 

2) V. K. Agrawa la , J . G. Belinfante, Ann. P h y s . (NY) 49 (1968) 130 . 

3) P . A. M. Guichon, Doctora t de Spécia l i té , Lyon Univers i ty , 1975, R e p o r t 

LYCEN 7570, unpublished. 

4) G. E. Stedman, J . P h y s . A : Math. Gen. 8 (1975) 1021 . 

5) G. E. S tedman, J . P h y s . A : Math. Gen. 9 (1976) 1099 . 

6) E. E lbaz , R . S . Nahabet ian , J . P h y s . A : Math. Gen. 10 (1977) 1063 . 

7) J . A . R . Coope, R. F . Snider , J . Math. P h y s . 11 (1970) 1003 . 

8) L . C. Biedenharn , M. E. Rose , Rev. Mod. P h y s . 25 (1953) 729 . 

9) D. M. Br ink, G. R. Sa tch le r , Angular Momentum, 2nd é d . , Clarendon P r e s s , 

Oxford, 1971 . 


