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Abstract 

fc The quark is defined a s a flavour vector state in the 7j> colour space 

and the aritiquark a s a vector in the * g * dual space. The observables become 

scalar in the co lour-space built even with a vector and a covector (meson) or 

with a vector and a pseudo-vector (baryon). The pseudo-vector i s responsible 

of the Pauli principle existence and al lows a comprehension of the distinction 

between baryons and mesons . The investigation of the strong interaction a s the 

exchange of gluons leads to a cross ing rule in contradiction with the JOZI rule 

in the general case . The existence and allowed decay of different sort of baryo-

nium is then considered. 
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Our starting point has been naive questions that everyone starting to learn 

about quarks can ask himself : are all hadrons constituted with three quarks 

( q q q ) or with one quark and one antiquark ( q q ) ? Why a certain c la s s of par

t i c l e s (the fermions) obey to the Pauli principle and not the other (the bosons) ? 

Can we have states with more complicated quark configurations and what should 

be such part ic les , bosons or fermions ? 

Many attempts to describe the colour symmetry and hadrodynamics have 
1 ,2) 

been done ' and recently a great interest has been r ised by the work on the 

topological aspects of the Q. C. D. by Chew et al. ' ' ' . The string model ' 

has been an interesting approach of the topological structure of the mesons or 

baryons , but all these diagrammatic approaches s e e m to be a technical support 

rather than a true description of the nature of part ic les . 

We have first defined a quark as a flavour vector state in the colour space, 

and used the basis of the string model to get the diagrammatic representation of a 

meson and a baryon. It appeared then the very s imple fact that an observable was 

a scalar in the colour space constructed with a vector of the & co lour-space and 

a covector of the *£ dual space (the meson) or with a vector of Ç a n < i a pseudo-

vector of *£ obtained by the dot product of two vectors belonging to Iff (the 

baryon). Moreover, it appeared that the Pauli principle existence was linked to 

the presence of a pseudo-vector (antisymmetric) in the observable. The part ic les 

built with an even number of vectors or pseudo-vectors are bosons while and odd 

number of pseudo-vectors in an observable g ives a fermion. 

We have then tried to understand the interactions 

a s a change in the topology of a sy s t em and introduced a s a " basic interaction " 

the fusion of two mesons ,or the inverse process ,and we assoc iated a strength \ 

to the separation process , X being the Veneziano coupling constant. We thus 

obtained all the 5 " basic interactions " introduced in the string model by 

Artru with the expected strength parameter. Those intriguing results m e n 

tioned by this author became thus c lear. Using then the Graphical Spin Algebra 
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and its extension to the Graphical Vector Analysis ' we obtained a crossing 
rule which indicated how a complicated quark configuration could give by non lep-
tonic d e c a y a jet of mesons and baryons. Our rule is in complete disa
greement with the JOZI rule introduced by Imachi et al. which "forbid 
the breaking of a junction ". It seems that such a rule is only valid When quarks 
of the same flavour are involved. Recently Iguchi and Sugano have pointed out 
some violation of the OZI rule f and th i s perhaps have to do with our 

crossing rule. 

We have then studied what should be the baryonium and distinguished between 
the mesonium (formed of equal numbers of quarks and antiquarks) which behaves 
like a meson and decay into mesons, and the baryonium (formed of vectors and 
odd numbers of pseudo-vectors) which behaves like a baryon and always decay 
into at least one baryon. We have described the exotic particles thus obtained with 
n ^ 4 vertices. An interesting thing which appeared is that with n < 3 one obtains 
only one sort of exotic particle, mesonium or baryonium, but with n > 3 we can 
have with a definite number of vertices even a mesonium (equal number of vector 
or pseudo-vectors and covectors) or a baryonium. The obtention of the expected 
baryons and mesons with the given strength may give an indication of the existence 
of exotic particles-
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I. THE QUARK 

The quark is a quantum state characterized by various quantum numbers : 

spin J = ~r" 

1 baryon number B = ~ 

. ^ ~ 1 2 

e l e c t r i c cha rge Q = - — or — 
par i ty P = +1 

flavour f 

co lour c (blue, r ed and green) 

i sosp in I 

s t r a n g e n e s s S 

c h a r m C 

beauty b 

t ru th t 

The four l a s t quantum n u m b e r s have been in t roduced a s to define without ambigu i ty 

a qua rk with a given flavour. Six different poss ib le favours have been s ta ted with 

the c h a r a c t e r i s t i c s given in Table 1 . 

Baryon num aer 1/3 

Spin J 1/2 

Cha rge Q 2 / 3 •1/3 

Flavour f u c t d s b 

I sosp in I 1/2 

1/2 

0 

0 

0 

0 

1/2 0 

0 

0 

0 

S t r a n g e n e s s S 0 0 0 0 -1 0 

C h a r m C 0 1 0 0 0 0 

Beauty b 0 0 0 0 0 1 
T r u t h t 0 0 1 0 0 0 
Mass (MeV) m o m + 1500 o m + ? 

0 
m o m + 150 o m + ? 

o 

Table 1 
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We note here that a specified flavour gives to a quark all its quantum num

bers. If we use the d-flavour of the quark the I , I , C , S , b , t numbers a re 

specified as in Table 1. The pairs u and d form the basic representation of 

iaospin S13(2) . The triplet u , d , s form the basic representation of STJ(3) . 

When we add the C charm state one gets the basic representation of SU(4) and 

so on. 

An antiquark of a given flavour f has the same mass^p i^and isospin 

that the quark of flavour f but all others quantum numbers ( B, Q, I , S , C, 

b, t and the parity P ) have the opposite sign. 

Let us consider a quark as a vector (with three components) of flavour f 

in the colour-space 0 

{ = < f l l c > = T = î f - ^ l - = $ 1 - ^ - & ^ (I.l) 

and the antiquark q ^its hermitian conjugate,as a vector in the dual colour space ^f 

- f ^ . , . ^ T* ? . 4« 

* 

q„ < i d f > = 7* = f h£L = £ | - £ - ê if" (i.2) 

We have used a graphical representation of these vectors in the colour-
7) 

space analog to that used in the Graphical. Vector Analysis in the coordinate 

space. The quark or antiquark kind of a state is thus graphically linked to the 

direction of the arrow with respect to the flavour index. 

II. THE MESONS 

The fundamental hypothesis in the quark model is that the mesons are 

quark - antiquark systems. Since all quantum numbers previously defined for a 

quark are conserved when dealing with strong interactions one then gets a baryon 
— T V " i 

number B = 0 , a total spin J = — + ~Z~ + I and a parity n n (-) . j r o r l à q q 

simplicity sake we restr ict our study to the 1=0 relative orbital momentum 

state. It appears that J = 0 or I and P = -1 . We thus get pseudo-scalar meson 
P - P -

of state J = 0 and vectorial meson of state J = 1 . It is then obvious to 
note that the mesons a re bosons and do not obey to the Pauli principle . 

Let us now consider the meson as a colour singlet flavour neutral q q 

state : 
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M = " 7 T s » . «ïf q f

c ' = -j=- s q c

f q f

c ("• u 

/ l ce1 C C f l fZ V3 c • f l f 2 

One obtains with the graphical representations of the quark and antiquark : 

1 
M n 

-* t C C | <A 

7) 
As usual in the Graphical Spin Algebra one gets the summation on the c colour 

indices by linking the corresponding l ines (l ines with the same colour! one outgoing 

like a ket, the other doubly ingoing like a bra) 

M = — p r - f l J — \IZ (II. 3) 

One can recognize in such a diagram (or directly on (II. 1) ) the scalar product of 

vectors f and f in the colour-space , or e l se , the tensorial product of zero 

order of these vectors 

M = —l— r . f f = (ffit*) (n.4) 
{$ i c. i i- oo 

p 
In some c a s e s it can be of great help to note the J quantum numbers on a meson 

graphical representation as to completely define the involved particle . 'The —r:— 
v 3 

coefficient may be omitted for s implicity sake 

When one changes the direction of the arrow in the meson diagram one changes the 

e lectr ic charge of this particle a s well as the I , S , C , b , t quantum numbers. 

+ 
The " is for example graphically represented by 

n T = u \- a I d (II. 6) 

*\ n - A 
while the TT will be u|—•« Id (II. 7) 
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One can for convenience denote by h the ( u , c , t ) s t a t e s of the qua rk 

(e lec t r ic c h a r g e 2/3) and I the (d, s, b) s t a t e s . One then obtains by including 

the spin : 

.+ 
M 

M 

with h = u , c , t 

l = d , s , b 

( h t) 

M" = h|_ H * = ( h i ) 

h l - H h or JR »— 

( h h ) o r {II) o r ( h h t t ï) 
2 

Q = — flavour s t a t e s 
3 

Q = - ~ f lavour s t a t e s . 

(II. 8) 

-, t, o r h | , h t l y _ 

When one l i m i t s the qua rk f lavours to the u , d , s s t a t e s one obta ins a 

nonet for the o" p s e u d o - s c a l a r m e s o n and one o the r nonet for the v e c t o r i a l m e s o n 

U Ï ) 

K-

When one in t roduces the c h a r m a s a supp lemen ta ry flavour of the q u a r k , 

the lowest meson s t a t e s a r e 15 p le t s and s ing le t s m a d e up of the usual SU(3) 

oc te t s and s ingle t s plus t h r e e c h a r m e d m e s o n s ( c f ) and t h r e e m e s o n s ( f c ) 
12) 
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(40 F" 

In the above study we have only considered ground states of (qq) systems 

in S relative orbital momentum states. One can have 0 states mesons like 
v. 

the * (0. 7) or 6 (0. 98) . These states may come from relative P states of the 

(qq) system or belong to more complicated exotic mesons like ( q q q q ) in a 

relative S-state, as we shall see later. 

III. THE BARYONS 

The second fundamental hypothesis in the quark model is that baryons are 

constituted of three quarks. It explains the fact that the baryon number assigned to 

a quark is l/3 . The total spin of a baryon in ils fundamental state is obtained by 

-» ï* T T 
coupling the spin of the three quarks J = ~z~ + "J~ + "T- and one get states of spin 
1 2 

—- or ~ with a positive parity. The baryons are fermions. 
Let us now consider the baryons as colour singlets with three quarks 

B = 
/ e 

(in. i) 
c c' c" 

We use the graphical representation of the v t n Levi-Civita antisymmetric 
C ° C 8 9) 

tensor as defined in the Graphical Vector Analysis ' and the graphical represen
tation (I. 1) of the quarks to get after summation over the colour indices 



8. 

B = Z ^ > - ^ *-«$- >^h ( I I I- 2 ) 

c c' c" f 

One can recognize on the above diagram, or directly on its analytical expression 

(III. 1) the triple scalar product of vectors f. , f and f in colour-space or 

else, the tensorial product of zero order of one of these vectors with the c ross -

product of the others 

Z.(T^T) = ( r ® ( f ! ® f * ) y ) on. 3) 
I Z J 1 ' Z 3 o o n 

—• —» y 

We have first to note that f A f, must be a vector of the T? dual colour space in 

order to give with the vector f. É & a scalar product. In fact f_ A f is an 

axial vector or a pseudo-vector and we shall denote by f the vector belonging to 
ta -** 
tl and f the vector be 
tructed by dot products 

6 and f the vector belonging to G , by g and g the pseudo-vectors cons-

fj A f2 = g e J? 

- # - # _ to 
fj A f2 = g £ ? 

-••& 2 — 2 

The baryonic number of g is "r - and that of g is - — . 
-* -* 

Contrarily to f , g does not represent a quark (its baryonic number is 
2 

-— ) , it represents an object which behaves like a quark since its representative 

vector belongs to C . Hence with true vectors one may construct a scalar which 

is the observable meson while with a vector and a pseudo-vector one may construct 

an observable (their scalar product) which is the baryon 
- -* _•* -

M = f . f = f . f 

- - « • - - » * - . 

B = f. g and B = f . g 

The presence of a dot product in the baryon state shows 

that when two flavour indices are permuted the baryon wave-function gets the 

opposite sign in the colour-space. This perhaps may explain why even if quarks do 

not obey Pauli statistics individually the baryons must obey to the Pauli principle. 

The fact that observables must be scalars in the colour-space may explain why 

(qq ) or ( q q q q ) are not seen while (qq) and ( q q q ) are seen and why one 

may hope to observe exotic states like (qq"qq) or ( q q q q q ) ... . 



As for the mesons it may be useful to note the J quantum numbers on a 

diagram and for simplicity sake omit the - j £ - coefficient , so that 

f, 

la 
I " Ji-tt^Jk)- f.'ff (ni. 4) 

The S" is for example graphically represented by E " _ 

(HI. 5) 

Let us note that the existence of the s flavour in the diagram implies that the 2 

has a strangeness S = -1 while the existence of two flavours d gives an isospin 

1 = 1 . The electric charge Q is determined by the electric charge of the quark 

components. 

The change of direction of the three arrows of a baryon diagram leads to 

the graphical representation of the antibaryon 

( f 2 A f 3 ) = V g l ( l I I - 6 ) 

The antibaryon B has the same spin and isospin that the B baryon but all other 

quantum numbers ( B , Q , I , S , C , b , t , P ) change in signs as can be seen by 

replacing the quarks by antiquarks with the same flavour. 

When one limits the study to the ( u, d, s ) flavours of the quark one 

obtains an SU(3) internal symmetry and an octet for the fundamental — states 
3 + 2 

and a decuplet for the fundamental — states of the baryon 

Ml) ÇdcU) 

WA) 

v++ 
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It seems moreover that the (u d s ) state with J = -— may be assigned to 
the A (1405) particle and constitutes the singlet state of the SU(3) internal 
symmetry. 

When one introduces the charm in the possible flavours of the quark one 
gets a 20 plet for the baryon states that form an irreducible representation of 

Here too, we have only considered the ground states of the baryons and not taken 
into account a relative orbital angular momentum. 
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IV. THE INTERACTIONS 

In the following we only consider the strong interaction between the quarks. 

Such an interaction is known to be independent of the flavour, due to the exchange 

of colored gluons and to conserve the descriptive quantum numbers S , C , b , t. 

We shall consider two " basic " interactions, the first one corresponding 

to a fusion process by exchange of one gluon and annihilation of a ( q q ) pair of 

quarks with identical flavour and the inverse process ( a separation) . We shall 

symbolical ly denote it by 
M + M ^ M 

If we use the graphical representation of the mesons we get 

{IV. 1) 

The exchange of a gluon is thus here represented by a link between the quark l ines . 

We can assoc ia te a strength X to a separation process , where X is the 
6} 

Veneziano coupling constant 

I I—1£ = A f 4 l - ~ - - - •-—' £ (IV. 2) 

The second " basic interaction " will be the triple rearrangement between three 

quark l ines symbolical ly written a s M + M + M î * B + "5 . 

We begin with the use of the separation process on the three involved 

mesons 

-A 

£ » — » & =*' £•-—•• •—if* < r v - 3 > 

Y r- ;hen use the usual pinching rule of the graphical technique to get 



12. 

i l " 
3 «• 

_|... 

fc i—»-

We have introduced as a basic hypothesis the pinching rule on three gluon l ines 

and its validity will be shown by the consequences thus obtained. We shall write 

the two basic interactions in the following way : 

; 

(IV. 5) 

f l f 2 f 3 We have to note that the relative position.of the quark q , q , q in the 

baryon and q q q in the antibaryon is not important s ince a s soon a s a 

choice i s maid in the baryon the order i s correspondingly fixed in the antibaryon. 

We can deduce from (IV. 5) the strength of a double rearrangement proces s 

I • — i î , ' . ?4 •——i • — * & i »-—i, .t-*—i I ; 

and we write it a s 



13. 

We note here that the pinching rule has been used as to pinch corresponding quark-
lines and allow the formation of scalars in the colour-space 

in 
The virtual processes in which quark-lines disappear (or a re created of) 

the vacuum may be deduced for our fundamental hypothesis (IV. 5) . Starting from 
a baryon diagram we get 

-•£ 
' • • " H - t l , z 

A 
' * 3 

A. 

or eliminating the three convergent gluon lines it comes that 

L 
= A 3 

which gives the identity 1 o - (IV. 7) 

which is coherent with the triple rearrangement virtual process since 

*Q-**4E$ -*O A , G-
An analog procedure gives the double virtual rearrangement process and the 
graphical representation of a pomeron 
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which gives the identity 

With one single interaction one must get too ' O- (IV. 8) 

Let us now try to identify a special type of diagram with a loop on a quark-

antiquark line : 

"•'*-' «*•$;.—-•-— ^-Ç)-* . . * A 

Î •——if, ' 

J$~.i- 0 
We find (with IV. 7) that 

A question may a r i s e . Why do we not apply a separation process o n the 

loop ? 

I -O-î: -' *~0—* 
It appears that such a process will separate the quark and the antiquark-lines and 

lead to non-scalar objects in the colour space. Such a separation is thus forbidden. 

We can now determine the strength of the interaction between a baryon and anti-

baryon with exchange of one > two or three gluons. 
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i) .One gluon exchange 

\ -*- «-C ( IV-10) 

( / • \ î » f , r » A i t ' 

- A" -X 
A separation process may now occur on the different quark l ines . As previously indicated 

a n y separation must lead to a scalar in the colour space . It i s thus imposs ib le 

to consider a separation on f and f without a separation on f and f . We 

can thus get J l 3, 

and with (IV. 9) we find that 

A same result should have been obtained by considering directly a separation of the 

four quark l ines 

4, 

(IV. 11) 

A pinch on (f f ) and (f f ) i s a l so possible leading to the value 
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y 
(IV. 12) 

The two p r o c e s s e s described in (IV. 11) et (IV. 12) are in competition and we shall 

write it as 

(IV. 13) 

If the involved quarks have the same flavour one gets zero in the right hand part. 

This may perhaps explain why some authors have given this result as an extension 
10) 

of the OZI rule and called it the JOZI rule which " forbids a breaking of a junc-
13) tion ". Our cross ing rule i s in complete disagreement with this statement and i s 

based on a mathematical transcription of the above result . 

JLet us f irst recal l that the X coefficient only compares the strength of such a 

process to the fusion p r o c e s s . On the other hand, the graphical equivalence (IV. 13) 

i s s imply a diagrammatic expression of the cross ing rule as defined in the 
8) 

Graphical Vector Analysis . We can recal l it by an analytical transcription of 

the diagram involved 

(IV. 14) 

f f c c c f f> 
X I 2 -S f i l l - 1 - 2 

q c q c 2- c' C c' V q c ' 
c l C 2 C ' l C , 2 l 2 C 1 2 l 2 
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We use the well known relation 

C 1 C 2 C 

S « e . , , = « , 6 , - 6 , 6 , (IV. 15) 
c' c c' c c 1 c c' c c 1 c c 

c 1 2 1 1 2 2 1 2 2 1 

to get f f f f f f f V 
_, 1 - 1 p 2 - 2 _ 1 - 2 _ 2 - 1 1 2 q„ q„ £ q q - t q q S q q 

c , c , c„ c„ c , c , c_ c^ 
c L 1 1 c 2 2 2 Cj 1 1 c 2 2 

and we refind the graphical equivalence (without the strength parameter) 

_ (IV. 16) 

l ' \ i *—îi Ê—£ 
( f l A f 2 ) . (f-l"Af2')= ( f r r*, ( £ j s . r«) - ( f r r 2 ) (f 2 . f-p 

This equivalence will be of great importance when dealing with the baryonium. 

In most c a s e s the interaction between a bar yon and an antibaryon occurs 

via the exchange process on the gluon l ines 

* \ 

(IV. 17) 

Now the last diagram may d e c a y through the formation of an other bar yon -

antibaryon sys tem or through the formation of mesons with (IV. 13) 

( f j f 2 f 3 ) + ( H t k~ k" ) f * 2 (f 3 ty + X3 ( f jfjjidj) + X3 ( HJ k^ W3 ) 

X Z ( f 3 k ~ ) + X 3 ( f j k , ) + X 3 ( f 2 k p (IV. 18) 

x 2 ( f 3 r 3 ) + x 3 ( f 1 k z ) + * 3 ( f 2 ^ ) 
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With the p p sys tem one may obtain for ins tance (among the many opened p r o c e s s e s ) 

*- + 4-, 

A 

A 
) „ I - ( I V . 19) 

p + p = X (TT ) + X ( n + n ) 

= X 2 ( n ° ) + X 3 ( n ° + J l

0 ) 

With (IV. 20) one ge ts 

With (IV. 21) one ge ts 

With (IV. 22) one ge ts 

= x 2 ( " ° ) + X 3 , + - , 
(TT + TT ) 

enfn) 
= x2 

O-lf) 
= 

1 

<r(n°) 
= 

X 2 ( 1 + X ) Z 

C-(n + ) <T(TT") 

«T-(TT°) <r(n°) 

(IV. 20) 

(IV. 21) 

(IV. 22) 

(IV. 23) 

ii) Two gluons exchange : 

i^C'_y^ i - H , ^o- 1 *> - ^ ^ (IV. 24) 

If one looks a t a r eac t ion B B in which two gluons a r e exchanged one ge t s 

A A A •* 

=A £>-*-( >-*—ift̂  = A3 î,»-^Hfc, 

£ - — ' 4 
(IV. 25) 
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One can have an exchange between k and k getting thus two poss ibi l i t ies 

< V 2 V + < k , k

2 V 
^3(f2i^) + * 3 ( f , V + * 3 ( * 3 V 

(IV. 26) 

With the pp reaction one may obtain 

p + p = X 3 (n° ) + * 3 (ir°) + K 3 ( t i ° ) 

= X 3 ( n + ) + X 3 ( n ° ) + >I 3 (TI") 

One gets the same mesons than in (IV. 22) and (IV. 23) but 

(IV. 27) 

o-(n ) o-(it ) 
— = 1 and = I (IV. 28) 

«r(u ) <r(n ) 

If such a ratio i s obtained it supposes that the pp reaction does not produce the 

intermediate state as described in (IV. 19). 

iii) -Three gluons exchange : 

If we introduce a separation on the three quark and the three antiquark l ines 

one gets 

-t V A = A4 Z t ^ 4 1 — ' ^ - ^ ^ — ^ (IV. 29) 

One may think that there is not any difference between that result and (IV. 26) . 

In fact, one s ee s on (IV. 26) that in any case on must obtain the meson (f. k . ) if 
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there is an exchange of two gluons , but with the exchange of three gluons one may 

not detect the production of the meson (f. k,) a t > d g e t f ° r instance 

(VzV + < ki k

2V=< 

^ x 3 ( f 1 k 2 ) + * 3 ( f 2 iT 3 ) + x 3 ( f 3 k , ) 

x 3 ( f , i ^ ) + * 3 ( f 2 k , ) + x 3 ( f 3 k 3 ) 

1 x 3 (fji^) + x 3 (f 2k,) + * 3 (f 3i^) 

(IV. 30) 

With the proton - antiproton sys tem where four of the s ix flavours involved are 

identical to u , it will be difficult to distinguish between the two last p r o c e s s e s 

with exchange of three or two gluons but it s e e m s possible to distinguish between 

the f irst process and the others . 

iv) Examples of application : 

As an application of the separation and pinching procedure one may consider a 

reaction of a meson on a baryon. In such a case one must have only one gluon 

exchange 

i, v. 
* ' 

\ 

>4 

(IV. 31) 
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- + 14) 
This process may for instance explain the reaction K p _• it £ s ince 

*U-• !•< ; • * 
M.Y Z 

a/ < I V - 3 2 ) 

2 2 
( s u ) + ( u u d ) _ » X ( u u s ) + \ ( d û ) 

K" + p _ • (S ) + « 

A second example will concern an exchange of a gluon between a quark 
14) 

antiquark of same flavour 

& 1- is*-*—iK - * — i -

1' 
- « — 1 • 

• , > » - ^ • * 

.* 
* 

Such a process may explain the " p - • K S reaction if one se t s 

r f i = f

2

 = k i = u 

f 3 = d 

H, = s 
V. 2 

( u d ) + ( u u d ) _ * ( u s ) + ( u u s ) 

H + + p — K + + S + 

We note that such a mechanism allows the change of one flavour by exchange of 

one gluon. 
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V. THE BARYONIUM 

As previously mentioned the physical observablesare scalars, built with 
flavour vectors in the colour space. One can then imagine more complicated sys
tems than the mesons and baryons usually detected and such expected objects have 
been denominated baryonium in the literature. In fact as we shall see later, one 
should have two classes of exotic particles. The first sort of such particles are 
bosons and thus do not obey to the Pauli principle, behave like mesons and may 
be called exotic mesons or mesonium. A mesonium will be always constituted of 
equal numbers of quarks and antiquarks, so that its baryonic number will be zero 
and its decomposition by strong interaction will produce baryon-antibaryon pairs 
or mesons. The second class of object will call baryonium are fermions and thus 
have to obey to the Pauli principle or bosons and do not obey to the Pauli principle. 
A baryonium may be constituted of quarks only or of quarks and antiquarks in non 
equal proportions. A non leptonic désintégration of a baryonium will always give 
at least one baryon (it corresponds in fact to the conservation law of the baryon 
quantum number). 

Let us examine now how one can get the mesonium and baryonium. We 
have first to recall the two fundamental rules of our graphical theory of the 
particles 

1. One may sum only over corresponding lines ,( contra variant like a 
quark line and covariant like an antiquark line ) • 

2. At each vertex the three quark lines must have the same direction 
(ingoing or outgoing). 

With these two fundamental rules one may ask ourselves what sort of 
scalars one can build with the flavour vectors in the colour-space and thus what 
sort of observables one may expect. We shall examine the question with respect 
to the number of vertices involved. 

1) n= 0 : 

We obtain the usual meson (baryonic number 0) 

M o = < f l V = f, »—' •?* = < V r 2 * > <V.l) 
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The first rule indicates that ( f , f , ) or (f, f , ) cannot exist s ince they are not 

sca lars in the coulour-space. 

2) n = 1 : 

One gets the baryon or the antibaryon in virtue of our second fundamental 

rule 

B I = ( f i f

2 v = A y—<—'*3 = v < f

2

A f

3 > = f r g i * = h-H-v«3* 

pseudo-vectors £ & with •? . •? -* 
f 2 A f 3 = g l * 

? 3 A fl - h* 

f A f = a 
1 2 s l 

With the scalar product of a pseudo-vector of h and a vector of g , one obtains 

the antibaryon 

\ 
Bj = (f^f j ) = V- - , if, = ?!* ^ = f/. g2 = ?3*.?3 

One may link the existence of the Pauli principle to the existence of an axial vector 

g (or g ) in the detected observable. 

3) n = 2 : 

With two vert ices the only possible diagram according to the fundamental 

rules i s the following 
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(f,f,f~fj = ( T A 7 , ) . (f*A7*) = 7 * i l (v.2) 
1 I 2 3 4' * 1 2 v 3 4 ' 6 3 e 5 v 

Its structure is analog to that of a meson since its baryon number is zero but the 
vectors are replaced by pseudo-vectors. Such an object should then be a mesonium 
M . The antiparticle M is easily obtained by inversing all the arrows 

= ( v 2

f

3 V = < 7 * A 7

2 * J - < V V = V h* ( v - 3 ) 

The presence of g or g axial vectors in a particle leads to the Pauli principle 
existence as previously mentioned but when two (or more generally an even num
ber) of pseudo-vectors are involved the corresponding particle becomes a boson 
and the Pauli principle is no more fulfilled. 

With the use of the graphical technique (G. V. A. ) (or analytically } 
one may express M in a different way. For instance 

M2= f*r {Tz*(i*A7*)) = r x . ( V Z J (V. 4) 

One sees that f A g becomes a vector of the jf colour space 

-» .-» -»*. 
f A g = f (V. 5) 

The mesonium M, has a baryon number equal to zero, a positive parity 
and a spin equal to 0, 1, or 2 . 
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The remarkable thing is that it is impossible to form an other kind of 

observable with two vertices and our fundamental rules. A diagram like M 

has already been considered in the previous section and we have seen that through 

exchange of gluons in non leptonic désintégration such an object may separate into 

mesons or a baryon-antibaryon pair 

* (fjf2g) + Mgf 3 f 4 ) 

M2= ( f i V 3 V = i x ( f i V + M f

2 V ( v - 6 ) 

x (ij4) + x (f 2f 3> 

If one considers for instance the reaction p + S one should get as indicated in 

the preceding section 

2 — 2 
X {uu) + X (udû s) 

A V | ^ ( u s ) + X ( u d û û ) 
d + _L_\_^_, .f J 2 (V.7) 

X (du) + X (uuûs) 

2 — 2 -
X ( d s ) + X (uuûu) 

If we consider only the mesons produced in a zero orbital relative state 0 or 1 

the mesonium should be in a state 0 , 1 or 2 . Let us consider for simplicity 

sake the meson in the 0 state and the mesonium in the 0 state. In (V. 7) we 
as 

have considered equiprobable all the interaction processes /even if one may suspect 

that due to the fact that the u flavour is more often presen the first process 

should be more favorized than the others. If we only look at the meson production 

of such a reaction one should get with application of rule (III. 13) 

, 2 . . , .3 , - , „3 , , . , 
rt X (uu) + » . « / , « 

(uud) + ( û û s ) I 2 , . _. , _ , . j , _ . 
1+ x 1 - —» l l x ( u û ) + X ( u s ) + X ( d û ) 
2 T X Z ( u s ) + X 3 ( u û ) + X3 ( d û ) (V.8) 

X 2 ( d u ) + X3 ( u l ) + X3 ( u û ) 

X 2 ( d i ) + X 3 ( u û ) + X3 ( u û ) 
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Even if the same mesons s eem to be produced in many of these p r o c e s s e s their 

branching ratios appear to be different . 

In the first case 
3 2 2 

°~(d*? = ( * ) = ( —±— ) (v. 9) 
« • ( « » ) X +X 

while in the last case 

- S H i i i - ^ - i L . ^ - L - (v.io) 
<r(uû) x +x 4x 

The same remark applies for the production of the ( d û ) meson. In the f irst ca se 

<T(dû? = « - ( n i ) , {-^-)Z = X2 ( V . l l ) 
O-(uû) ff-(uû) XZ 

T l t j c*(dû) . , ff(nê) _ 1 , , , , , , 
In the second process ' *— = 1 and : zlT î V ». 12) 

O-(uû) <T(uû) *2 

In the third case r \ A l \ = - * = - and ^ ^ " f ? = X 2 (V. 13) 
<T(uu) X z O-(uu) 

4) n = 3 

\sT\i 
= < f l f 2 f 5 f

3 V 

= T r (?2A (T5*A(f~Af^))) 
(V. 14) 

* 
Such a baryonium has the structure f. g of a baryon. One may determine i t s 

baryon number and one gets as expected B = 1 . Its spin will be in the ground 
1 3 5 

state ~ , or — , or — and its parity negative. 

Its non leptonic désintégration will give at l eas t one baryon aa one can s e e 

it by isolating the baryon-antibaryon or using the (III. 13) cross ing rule. One 

obtains 

file:///sT/i
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B 3 = < f l f

2

f 5 f 3 V - ~ XZ (fxiz g ) + X 2 ( gf-gk ) + \ Z (k f 3 f 4 ) 

j X ( f l f 3 i 4 ) + x ( f 2 f 5 ) 

V ( f , M J + X(f2f5) 
(V. 15) 

| X ( £ l V 3 ) + X ( £ 4 £ 5 ) 

ix(f 1f 2f 4) + x ( f 3 f 5 ) 

A baryonium may be obtained by interaction of a baryon with a M m e s o -

nium (if ex i s t s ) s ince 

M 2 * B , . ! 

In this case too, it appears that the above diagram i s the only poss ib le . This i s no 

more the case when n > 3 . 

5) n = 4 : 

The f irst diagram we can obtain i s the following 

B 4 = 
• < f l f

2

f 3 f 4 f

5 V 

= ( f ^ ) . ( ( f 3 A f 4 ) A ( f 5 A ? 6 ) ) 

(V. 17) 
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It has the structure of a baryon in which the vectors are now replaced by pseudo-
vectors. It is effectively a baryonium since its baryon number is different of zero 
equal to B = 2 . However it is not a fermion but a boson since its spin may be 
0, 1, 2 or 3 (its parity will be positive). Such a particle will not obey to the Pauli 
principle, but this is understable since appears in its structure four dot products 
or in other words four pseudo-vectors 

B4= «VzWsV = X3< fl f2gl> + * 3 «VA 1 + X ' < f

5 W + ^ <«~1%«V 

X ( f , f 3 f 4 ) + * ( f 2 £ 5 £ 6 ) 

-3£4> 
" t x ltlt5t6) + x (f2f3 

x( f l f 2 f 3 ) + x(f 5 f 6 f 4 ) 

" * * ( f l f

2 V + * Ws> (V" 1 8 ) 

{ 
x ( V l f 2 ) + x(f 5 f 3 f 4 , 

X ( f 5 V 2 ) + X (f 6S f

4> 

Such a baryonium may be obtained by interaction of three baryons with a strength 
X since 

— -MH*. 

^ ^1 N « I HH V,. sr A 
* \ . . . 

(V. 19) 

Let us consider an example of reaction in which a covector (an antiquark) is not 

immediately available to fusion with a contravector (a quark) and form a scalar 
(an observable). In such a case the only way to get a covector is to form with two 
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contravectors a dot product (a covectorjand then use it to obtain an observable. 
For example f. f. 

If such a reaction occurs one does not see the necessity of each baryon to wait the 
presence of the other baryon to decay into a baryon and a meson. One must thus 
think that in such a reaction the remaining baryons must interact. How can they do 
since there is not any covector available ? One must then take two vectors (and 

-* -» 
why not f ' and k' before they combine to the baryon ? ) to form a pseudo-vector 
of G . We introduce for that purpose a virtual state created of the vacuum to get 

We have thus obtained a B baryonium through the formation of a pseudo-vector 
with two vectors. Hence one may write 

B, + Bi = \ Z M + * 2 M" + K* B„ 1 1 o o 4 

or with the flavour vectors 

( f ^ ) + (k jk 2 k 3 ) = \ 2 ( f 3 f ' 3 ) + X2 ( k 3 k 3 ) + X ( V 2 k j k 2 f 3 k 3 ) 

The search of such a baryonium has been made with the reaction pp -» K K X 
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•a. 
X 2 ( s u ) + X2 ( s u ) + \ 5 B° 

where B . = 
4 

B = 2 
J = 0 , 1, 2 . 3 
Q = 0 
I = 0 i 3 = o 
c = b = t 
S = -2 
P = + 

We note that the A strength should have been obtained for the formation of the 

B baryonium by interaction of pp 3H o r PP ^ but t n e triple rearrangement 

i s certainly l e s s probable that a double rearrangement 

( p p i " ; - * 3 < B ° > + * 3 ( P ) 

3 , „ o , 
( P P Z ) - * (B^) + x " ( 0 
( p p ) _ X f (B° ) + X 2 ( K + ) + X 2 ( K + ) 

One can get a l so a diagram with four vert ices which represents a mesonium 

M. since 4 

M 4 = 

l t. Î. ' % ?„ 

- ( f l f 2 f 3 f 4 f

5 V 

= ( ( f j A f ^ A ^ ) . ( f 4 A ( f 5 * A f 6 * ) ) 

= (S 3*A-f3*).(V~g 7) 

(V. 20) 
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and we have seen above that g A f is a vector belonging to 5f and f A g a 

vector belonging to <£* . 

We note that a mesonium i s always constructed with the scalar product of 

pseudo-vectors or vectors of the same structure. 

The baryon number of M is zero, its spin 0 or 1 or 2 and its parity 

negative. 

The non leptonic decomposition of M will involve the exchange of one, 

two Or three gluons and one gets 

M 4 _ X 3 ( f 1 f 2 g ) + X 3 ( £ f " 3 k ) + \ 3 ( k f 4 m ) + X 3 ( m f 5 f 6 ) 

f X ( £ 2 f 3 ) + X 2 ( f , f 5 ) + * 2 ( f 4 V 

Mf 2 y
 + * 2 <W + *2( f

4V 
mj3) + * 2 u 2 y + ^ W 
x (fj3) + x 2 (f 2r 6) + x z (f4?5) 

X(f,£ 4) + *2<V~5> + x 2 ( f

2 V (V.21) 

x ( f 3 f 4 ) + x 2 ( f l f 6 ) + * 2 ( f 2 y 

x(f 1 f 2 f 4 ) + x ( f 3 r 5 f - 6 ) 

x(f 4 F 6 ) + x 2 ( f l 7 5 ) + x 2(f 2f- 3) 

x{f 4 ? 6 ) + x 2 (fjF3) + x 2 (ij5) 

X(£ 4£ 5) + X 2 ( f l f 6 ) + X 2 ( f 2 r 3 ) 

x( f 4 7 5 ) + x 2

( f i f 3 , + x 2 ( f 2 f 6 ) 

Such a mesonium i s obtainable by interaction between two M_ mesonium since 
ih 2 

J1 * \ - , r « \ l-f—l*y 

( f l f 2 r 3 i ; ) + (k^kjî;) = x 2 ^) + x2 « v ^ v ^ 
(V. 22) 
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One can now imagine an other kind of diagram with four vert ices on a square 16) 

y^ 
( f i f

2

f

3 v = M ; (V. 23) 

The baryon number of such an object i s zero , the spin 0, 1 or 2 and the parity 

positive. It i s thus a mesonium like M . However such a diagram is not eas i ly 

express ible in term of scalar and dot products of the flavour vectors as for M . 
7) Using the graphical technique for the vector analys is one can see that such a 

diagram is express ible in term of the scalar product, the dot product and a rank 

2 tensor of the vectors f, f„ f„ f, . Since one has not yet defined the tensor 1 c 3 4 
of higher rank than 1 in the colour space , one cannot give an analytic express ion 

of M'. analog to that of M, but one may write it with the Levi-Civita tensors 
4 4 

M ; = z . % % % % t 
C 1 C 2 ° 3 C 4 1 2 3 4 c r r z - 2 - 2 - 3 - 3 - 3 - 4 - 4 - 4 - ! 

- I Z l S 
"4 c . c ' c ' c_c'_c'_ c_c' c' c . c ' c ' . 

-•i c ' c 1 c 1 

_ 1 2 C 3 4 
(V. 24) 

The non-leptonic decomposition of M' may lead to a baryon-antibaryon pair or 

with the cross ing rule (III. 12) to a pair of mesons 

X 4 (fjkjk.,) + * 4 ( f 2 k 2 k 3 ) + X 4 ( f 3 k 3 k 4 ) + X4 ( f ^ k , ) 

M 4 = ( f l f 2 f 3 £ 4 } = i X ( £ l f 2 , + ( £ 4 f 3 } 

X M2< fl f3 f~2V = I ^ i V + *2{W 
x z (f , r 4 ) + ^ 2 (f 3 r 2 ) 

and the same result by a cycl ic permutation of the indices . 

(V. 25) 
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Conclusion 

We have shown that the observed meson and baryon may be considered 

as rank zero tensors (scalars) in the colour space. The existence of the Pauli prin

ciple i s thus linked to the fact that such scalars are often obtained by contraction 

of a vector with a pseudo-vector (axial vector) which is nothing but the dot product 

of two vectors of the ç colour space. Such a geometrical insight g ives an easy 

comprehension of the possible existence of meson and mesonium, baryon and 

baryonium. A rule, corresponding to the cross ing rule of the Graphical Vector 
8) Analysis has been established. It defines the non leptonic decay of elaborated 

quark configurations into usual mesons and baryons. Such a rule is in d i sagree 

ment in the more general case , with the J OZI rule stated by Imachi et al . 

" which forbids the breaking of a junction ". It means that the J OZI rule predicts 

that any mesonium or baryonium will decay into mesons , baryons and antibaryons 

while our rule predicts that mesonium may decay into mesons only while baryonium 

have always to decay into at l east one baryon and mesons . It should be interest ing 

to verify experimentally such a statement. One has finally to note that we have 

introduced in the fusion process a X strength independent of the quarks involved. 

It s e e m s however that such a statement is somewhat crude and that one has to 

introduce a different strength for each flavour involved. But such a refinement 

does not alter essent ial ly our resul t s . 

I would like to thank my col leagues for many helpful d i scuss ions and 

especial ly Professor Lambert and Profes sor Giffon. I am indebted to my colla -

borator, Dr. J. Meyer, for many comments and a careful reading of the 

manuscript. 
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