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THE BROKEN-PATR MODEL FOR NUCLEI

AND ITS EXTENSION WITH QUADRUPOLE VIBRATIONS

a description of odd
N=50 isotones and Z=30 isotopes

Chapter 1

SURVEY AND MAIN RESULTS

In this thesis calculations are presented for low-

energy properties of nuclei with an odd number of parti-

cles. So either the number of protons or the number of

neutrons is odd. The kind of particles of which the number

is odd will be referred to as odd particles; the other

kind as even particles. In all the presented calculations

the odd particles are described in the Broken-Pair approxi-

mation, which is equivalent to the number-projected quasi-

particle model. It is assumed that all but three particles

occur as ordered Cooper pairs; the unpaired (one or three)

particles are called quasiparticles.

First it is attempted to describe nuclei of which the

even particles form a closed shell in terms of three types

of states:

1) one-quasiparticle states which take into account the

simplest excitations of the odd particles.

2) three-quasiparticle states. These states are obtained,

when in addition to the one quasiparticle one pair of

the odd nucleons is broken.

3) one-quasiparticle states coupled to the lp-lh states

of the even particles. These states account for core

excitations.



In the second part of the thesis a model is developed

with which it is hoped to describe odd nuclei with two

open shells in terms of both single-particle and collective

degrees of freedom. The odd particles are again described

with a (one-plus) three-quasiparticle cluster. The even

particles as well as some neglected states of the odd par-

ticles are approximated by quadrupole vibrations. It is

hoped that this model may be useful for nuclei in the

transitional regions, i.e. with two, four, six even parti-

cles outside a closed shell,

1.1 THE BROKEN-PAIR MODEL

The single-particle degrees of freedom are treated with

the Broken-Pair model1}-. In this model most particles are

assumed to occur in pairs of identical nucleons. These

pairs consist of two particles in orbits which are each

other's time reversed state. The attractive effective inter-

action produces a nuclear ground state which is similar to

that of a superfluid system. States of a higher energy may

be generated by breaking one or more pairs in the ground

state wave function. The Broken-Pair model is equivalent to

the number-projected BCS model. The particles which do not

occur in superfluid pairs are referred to as quasiparticles.

The BCS model was designed in the field of solid state

physics to describe superfluidity2}; it turned out to be

useful also in the nuclear spectroscopy. In the BCS model

the number of particles is treated in an average way. In

the solid state physics where the number of particles is

of the order 10 2 3, this approximation appears to be valid.

In nuclear physics, however, the number of particles is

about a hundred; projection on the desired number of parti-

cles results in sizeable effects on the spectra and wave

functions. The method used for the particle-number pro-

• ' A;;-



jection was developed in refs3fl*J. The basic notions of

the BCS model are presented in chapter 2.

The parameters which occur in the Broken-Pair model

are the same as in a shell model, viz. single-particle

energies and the effective nucleon-nucleon interaction.

Gillet et al.s<l have shown, that the single-particle

energies and the strength of the force, to be used in the

unprojected BCS model, can be extracted from the spectros-

copic data of the odd single-closed-shell nuclei with a

simple method and in a unique way. Allaart et al.6-1 have

developed a possible extension of this method to the num-

ber-projected BCS model. Since it is interesting to inves-

tigate the meaning of the parameter values which are thus

obtained, chapter 3 is devoted to the question whether

these parameters may be applied to more complex calcula-

tions. It appears then, that these parameters are model

dependent.

In single-closed-shell nuclei one expects that the

collective effects are not strong. It is interesting to

check if just single-particle degrees of freedom will suf-

fice for the description of these nuclei, when only two

or three nucleons (of one kind) are allowed not to be

bound in Cooper pairs. Recently number-projected two- and

I' three-quasiparticle calculations have been performed for

!• the even N=50 isotones7J and Sn isotopes3'8J and for the

I odd Sn isotopes3'9'l1}, respectively. In these calcula-

l tions only one kind of particles was assumed to be excited

f within one major shell. Many experimental states could be
t:

I described reasonably well; for states with a collective
1 character (for example: the 2* and 3~ states in the even

• nuclei), however, the collectivity was not strong enough.

*



Cove exaitationsj application to odd N=50 isotones

In chapter 4 it is attempted to improve the number-

projected three-quasiparticie BCS model for odd nuclei by

including core excitations, i.e. excitation of particles

out of the closed shell into the higher empty shell. This

model is applied to the odd N=50 isotones 89Y, 91Nb and
93Tc. The protons could occupy one major shell and the

neutrons two major shells in such a way that at most one

proton or neutron pair was broken. Using a Gaussian resi-

dual interaction between the nucleons, the spectra as well

as the electromagnetic properties can be reproduced in

reasonable agreement with experiment. The results for the

N=50 isotones are better than the results for the Z=50

isotopes. The inclusion of the neutron (core) excitations

appears to be essential, especially for states with a col-

lective character. Analogous calculations for even Z=50

isotopes and N=50 isotones show that the collectivity of

the 2. and 3. states improves considerably10-'.

1.2 THE EXTENSION OF THE BROKEN PAIR MODEL WITH

QUADRUPOLE VIBRATIONS

When we consider odd nuclei with two, four, six,

particles (holes) beyond closed shells, collective effects

become more dominant. If one would try to account for these

effects with single-particle degrees of freedom only, too

many excitations in a large model space would be needed.

In chapter 5 a model is proposed to describe this type of

nuclei with a model in which both the single-particle de-

grees of freedom and the collective degrees of freedom are

explicitly taken into account.

We will illustrate this for the example of 7 neutrons

outside a closed shell and 2 protons outside another shell.
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As the number-projected BCS model is rather successful

for odd single-closed-shell nuclei, the neutrons are re-

presented by a three-quasiparticle cluster. This means

that 4 neutrons are distributed in ordered pairs over the

valence shells. The other 3 neutrons are not paired. All

the other excitations such as protons excitations and

neutron-core excitations are represented by quadrupole

vibrations. This model is an extension of the three-

particle cluster vibration model (Alaga model) 1ZJ, which '

is meant to describe nuclei in the transitional regions

with three particles or holes in tue valence shell.

Recently many applications of this model have been pu-

blished by Paar. The three-quasiparticle cluster vibration

model is developed in close collaboration with Paar; it is

designed to describe nuclei in the transitional regions

with three, five* seven, particles in the valence

shell.

The three-quasiparticle cluster vibration model may

also be considered as an extension of the one-quasiparti-

cle vibration coupling model of Kisslinger and Sorenson13-'.

These authors have indicated, that for many states three-

quasiparticle components should be included in their model.

Truncation of the model space

The dimension of the configuration space for a certain

spin and parity in the three-quasiparticle cluster vibra-

tion model may become about a thousand. The calculations

become very time consuming then. So when one has to fit

the model parameters it may be preferable to truncate the

number of basis vectors for reasons of economy. In general

the resulting spectra will depend on the method of selec-

tion of these vectors. In section 4 of chapter 5 the spec-

tra, resulting from two selection methods, are compared

with a spectrum, resulting from a complete diagonalization.



The first method is used frequently in the Alaga model,

viz. a selection based on diagonal energies of the basis

vectors, only. The second method (see section 5.4) takes

also the off-diagonal matrix elements into account. This

method appears to be preferable over the first one, espe-

cially, when the coupling between basis vectors with a

large energy difference is large, as may be the case when

the valence shell is about half filled. The second method,

however, is still not a very good approximation of a com-

plete diagonalization. The latter has to be preferred for

the production of final results.

Application to odd Z=30 isotopes

A nice property of the three-quasiparticle cluster

model is that it can be applied to a whole series of odd

isotopes or isotones; the single-particle energies and

the strength of the interaction between the particles

should be considered then as constants for the whole

series of nuclei. The phonon energy and the coupling

strength between the single-particle and phonon degrees

of freedcra are the only parameters, which may be allowed

co change from nucleus to nucleus. This is reasonable,

since the softness of the core nucleus, which is treated

as the model vibrator and which represents the nucleons

which appear not explicitly in the excitations, will

change when two particles are added.

In chapter 6 the three-quasiparticle cluster vibration

model is applied to the isotopes 61Zn, 63Zn, 6SZn and 67Zn.

The neutrons occupy the orbits 2p3/z, If5/2 and 2pi/2. The

interaction is assumed to be a pairing force. All parame-

ters (except the number of valence-shell neutrons) are

kept constant for all Zn isotopes. The nucleus 67Zn has

been described beforelw) rather successfully with the



Alaga model (three holes in a N=40 "closed shell"). With

the same parametrization it is now tried to describe the

other Zn isotopes (five, seven and nine holes in a N=40

"closed shell"), to which the Alaga model is not applica-

ble. The three-quasiparticle cluster vibration model pro-

duces the same results for 67Zn as the Alaga model, be-

cause the two models are equivalent for cases with three

particles or holes beyond a closed shell.

The spectra and electromagnetic properties produced

by the three-quasiparticle cluster vibration model agree

reasonably well with experimental values; the agreement

for 6 1 l 6 3 l 6 5Zn is of the same quality as one obtains with

the Alaga model in the case of three holes (67Zn).

These Zn isotopes have been described earlier with a

one-quasiparticle vibration model15'' and with the shell

model16-'. The three-quasiparticle cluster vibration model

shows that the one-quasiparticle and three-quasiparticle

states are strongly mixed, so one cannot expect that a

model with only one-quasiparticle states is a good tool to

describe these nuclei. In the spectra obtained by the one-

quasiparticle vibration model levels are missing with an

excitation energy as low as 0.5 MeV. The results of a shell

model calculation, in which matrices had to be diagonalized

with ten times larger dimensions are comparable with the

results of the three-quasiparticle cluster vibration model.

The latter model has a smaller configuration space (maxi-

mum: 124 vectors) and is therefore a more convenient tool

to describe this type of nuclei.

1.3 FUTURE PROSPECTS OF THESE INVESTIGATIONS

Up to now the Broken-Pair model has been applied to

the following single-closed-shell nuclei: even N=50 iso-

tones7J, odd N=50 isotones17J, even and odd Z=50 isoto-

pes 3'8'1 1} . The results were found to be better for the
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N=50 than for the Z=50 region. It seems interesting to

apply this model to other single-closed-shell nuclei,

for example, the N=82 isotones, so as to obtain more

conclusive results.

One can apply the Broken-Pair model also to nuclei

with one open shell and one or two particles or holes in

the other shell. We may think for example at 9<*Zr with

2 protons and 4 neutrons outside a 88Sr core. Both the

protons and the neutrons can be handled in the Broken-

Pair Approximation. Such calculations are in progress1e '19J.

The three-quasiparticle cluster vibration model is

able to describe the low-energy properties of the odd Zn

isotopes. It is evident that such an agreement of experi-

mental energies and electromagnetic properties for one

series of isotopes is not a sufficient proof that the low-

est states of the spectra of nuclei in transitional regions

are generally described well with this model. To investi-

gate further the applicability of the three-quasiparticle

cluster vibration model, it should be applied to many

other cases, such as the odd Te, Xe, Ge, Se, isotopes

and the odd N=52, 54, 48, 46 isotones.

A similar model, in which a two-quasiparticle cluster

is coupled to quadrupole vibrations can be applied to the

even nuclei in transitional regions. Such a model has been

applied recently to the even Zn and Ge isotopes2°i . Parti-

cle-number projection was not performed in this work, how-

ever; so one has to consider the results with care.

Particle-number projected two-quasiparticle cluster vibra-

tion model calculations have not been reported so far.

Another possible interesting line of investigation is:

modifying the description of the vibrator. This may be

done in several ways. Firstly, one can introduce an

anharmonic term in the phonon Hamiltonian. Secondly, one

can replace the harmonic phonon Hamiltonian by the



Truncated Quadrupole Model Hamiltonian2IJ (TQM). This

Hamiltonian is a realization of the Bohr Hamiltonian. The

TQM is equivalent to the Interacting Boson Approximation22-'

With these extensions it might be possible to describe

strongly deformed odd nuclei as well.

Chapter 4 will be published in Zeitschrift fur Fysik;

it is reproduced here with kind permission of the Springer

Verlag, Heidelberg.
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Chapter 2

THE NUMBER-CONSERVING QUASIPARTICLE MODEL?

FORMALISM AND METHODS

2.1 INTRODUCTION

In this chapter the basic notions of the quasiparti-

cle model or BCS model are given; the BCS model may be

considered as an approximation of the shell model1J. In

the BCS model1~7Jone calculates with so-called quasi-

partioles, which can be dealt with as particles, but they

also incorporate an important property in nuclei, viz.t

the pairing correlations of nucleons.

The shell model Hamiltonian is written in second

quantization in terms of particle creation and annihila-

tion operators as:

H " l*Aaa + % J V 3 6 a K a 6 a Y (2.1.1)

where a= (n . 1 , j=,m=) = (a,mo) are the quantumnumbers of

the particle orbits; e is the single-particle energy of

shell a; vagYg is the antisymmetrized matrix element of

the residual interaction V.

Without interaction V the particles would stay in the

orbits with the lowest energies e . obeying the Pauli
a.

principle. Due to their interactions, however, they may

be scattered over all possible orbits. Therefore the wave

function of the nuclear states will be superpositions of
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all possible particle configurations within these orbits

in general. The coefficients of these configurations in

the wavefunctions are, obtained by diagonalizing H within

the choosen configuration space. The number of configu-

rations rapidly increases with the number of nucleons

and the number of orbits which one choses to consider.

For example: consider the orbits, shown in fig. 2.1, the

Ifs/ , 2p3, , 2pi. and lg$ , orbits (this major shell
/ 2 ,'2 /2 /2

is important in the calculations on the N=50 isotones;

see Ch.4).

E(MeV)

OL

1g 9/2 (10)

2p 1 / 2 ( 2 )

2p 3 / 2 ( 4 )

1 f 5/2 ( 6 )

Figure 2.1 (Proton) s ingle-part ic le orbits for the N=50 isotones with their
maximum occupation number in parentheses.

If one particle moves in this single-particle space

there are 3 possible ways to obtain a state with negative

parity and one way to obtain a state with positive parity,

If three particles are distributed in this space the num-

ber of ways to distribute them increases drastically.



Table 2.1 Number of configurations for the negative-parity states with three

particles in the shells lfs, , 2p3, , 2pi ,
/ 2 / 2 / 2

a b

f5/2 f5/2

f5/ U,
/2 /2

P3 / z P3 /z

P l /2 PV2

f V 2
 P3/2

" / a g9/2

" / 2 g9/2

total

c

P 3 A
PV2
P 3 /2

PV2

P3 / 2

Pl/2fv-
PV2

VI

1

1

1

1

1

1

1

1

8

VI

1

2
1
1

1
1

1

2
2
2

1

15

VI

1
2

1

2
1

1

2
3
2

1

16

VI

2

1

1

2

3

2

1

12

VI

1

1

1

1

1

3

2

1

11

"/a

1

3

2

1

7

1 3 /I

3

2

1

6

XVI

2

2

1

5

1 7 / — 1 9 / " 2 1 / ~
/z /2 /2

2 1 1
1 1
1

4 2 1 total 87

to

Every configuration is determined by the quantum numbers QablJcJj where a,b and c are the quantum numbers
of the single-particle orbits; the particles in shell a and b couple to angular momentum J; the total angular
momentum is j; if the number of configurations for a certain choice of a,b,c and j is larger than one, more
choices for J are possible.
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In table 2.1 the number of configurations for negative

parity states is shown; vertically the orbits are listed,

which the particles occupy; horizontally the total angu-

lar momentum is shown; the numbers in the table are the

numbers of configurations - i.e. possible ways to dis-

tribute the particles over the subshells, while they are

coupled to a certain angular momentum - for the negative

parity states. The total number of configurations is 87.

Although the number in the example can be easily dealt

with by computertechniques, for larger spaces reductions

are required.

There are a few approximations which reduce the num-

ber of configurations. In section 2 the low-sen_ority

approximation is introduced, which relies upon the pair-

ing correlations of nucleons.

In section 3 the basic notions of the quasiparticle

formalism are explained. It appears to be necessary to

perform particle-number projection, the method of which

is outlined in section 4.

A method to determine the parameters, used in the

quasiparticle model is discussed in section 5.

2.2 THE LOW-SENIORITY APPROXIMATION

Nuclear binding energies depend systematically on

whether the protonnumber Z and the neutronnumber N are

W even or odd8-1

i
A Z even , N even

0 A odd (A=N+Z)

-A Z odd , N odd

where A = 12/A^ MeV.

This feature indicates, that it is preferable for
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Figure 8.2 Classical picture of two
nucleons with angular momentum j,
which form a pair.

nucleons to move in pairs. Fig 2.2 shows a pair in a

classical way. Two particles (with angular momentum j)

form a pair, if their angular momenta are coupled to

zero. The overlap of their orbitals is then very large.

Therefore the two particles can gain more than 1 MeV

energy in spite of the short range of the nucleon-nucleon

interaction8J. This pairing property is the basis of the

low-seniority approximation3' **'9'1 ° •* . In this approxima-

tion it is assumed that as many nucleons as possible move

in pairs. The assumption of the occurrence of pairs yields

two important simplifications of the formalism:

1) The number of pairs, that have to be distributed

over the single-particle shells is only half the

number of particles.

2) Angular momentum coupling of pairs is trivial.

The number of unpaired particles is called the seniority

number vllj. The number of configurations is rapidly in-

creasing with seniority number. If one restricts oneself

for ground states of even nuclei to v=0 basis states then

the number of configurations in a shell model calculation

is about a hundred for five single-particle shells. For

the description of excited states at least v=2 states are

necessary, the number of which is then several hundreds.
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So still the number of configurations is very large.

There exists a helpful formalism to simplify the descrip-

tion of many-body systems with pairing properties by sup-

posing a special ordering of the pairs. This is the BCS-

superfluidity theory, which will be touched upon in the

next section.

2,3 THE BCS FORMALISM FOR SUPERFLUID NUCLEI

In the theory of superfluidity one assumes that

fermions occur pairwise in states which are each other's

time reverse and moreover that all these pairs may be

described by the same pair-wave function. In terms of our

formalism this means that the nuclear wave function is

described as

¥(1,2 A) = il7(S+)%A|Q> (2.3.1)

where S =V <(>-S, is the creation operator of a pair which
cl ci cl

has coefficients <(>_ for the particles to be created in the

shell a. If one releases the condition that (2.3.1) should

describe a system with a specific number of nucleon pairs,

one may replace this expression by the exponential

iVexp(S+)|0>
(2.3.2)

which is more convenient to perform simple calculations.

The form (2.3.2) may be rewritten as

|BCS> = n (u +v s a a-)lo> to T T\
a>0 a a « « a ' (2.3.3)

which was (for the case of plane waves) introduced by

Bardeen, Cooper and Schrieffer (BCS) in their original
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treatise on superfluidity12-) . In (2.3.3) ot runs over all

available states with m >0; a=(a,-in ); s =(-) ;
at a vX

u and v are the BCS parameters, which satisfy the norma-a a
lization condition

= l (2.3.'

The quantity v* is the occupation probability of shell a.

These occupation probabilities completely determine the

BCS wave function, which again illustrates the simplicity

and coherence of its structure. It is therefore completely

specified by a drawing like fig 2.3.

The parameters u and v_ are usually determined by thea a
conditions:

<BCS|H|BCS> = minimum

<BCS|N|BCS> = n0 (2.3.5)

where N denotes the particle number operator:

r t
-aaa (2.3.6)

and H is the Hamiltonian (2.1.1). The second condi-

Figure Z.I Sketch of a BCS pair dis-
tribution. The dotted line connects
the occupation probabilities v2 of
the shells a. The level I a

indicates the Fermi energy.

N

\

X( V* = 1/2)
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tion gives the BCS wave function the desired average

number of particles no (from definition (2.3.3) it is

'; obvious that the BCS wave function contains components

|: with different number of particles).

The equations (2.3.5) can be solved by introducing

a Lagrange multiplier X, One then obtains the so-called

:'•• gap equations'"13^

V

/ (<sD_+l)v =no vi.J./J
a a a

where Aa = -hi snsp

The self-energy y represents the binding for a particle

in shell a with all other particles. The gap parameters

A_ are related to the energy gap which occurs in super-

conductors. They are a measure of the diffuseness of the

pair distribution; if A is large then the diffuseness is

large. A typical value in nuclei is A =:Aa12/A^ MeV. The

Lagrange multiplier A. is the energy of the Fermi level.

One easily proves that (2.3.3) is the vacuum for

objects created by the operator:

These operators obey the same anticommutation rules as

the particle creation and annihilation operators. They

are called quasiparticle (creation) operators. One has:

na|BCS> = 0 (2.3.9)
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TJ]||BCS> = (2.3.10)

Equation (2.3.10) shows that nt destroys the pair sgalas

and creates a particle at. The state (2.3.10) is called

a one-quasiparticle state (lq.p.) and has components with

an odd number of particles only; this state should have

its counterpart in an odd nucleus. Other states in odd

nuclei may be generated by creating any odd number of

quasiparticles.

The states of an even nucleus can be described by a

superposition of states with an even number of quasi-

particles.

As a quasiparticle operator destroys a coherent pair

it will create a wave function with higher energy. The

increase of energy is about 1 to 1.5 MeV for each quasii-

particle, if one adopts a current nucleon-nucleon inter-

action. This follows from a transcription of the Hamil-

tonian in terms of quasiparticle operators.

The Hamiltonian (2.1.1) can be expressed in quasi-

particle operators by transforming the particle operators

into the quasiparticle operators by the inverse of (2.3.8)

(2.3.11)

Then the Hamiltonian has the form:

H = Ho + I E rt n + H22 + other terms, which
a change the number of quasiparticles,

(2.3.12)

where H22 describes the interaction between quasiparticles.

More details may be found in ref1'3 5' 1*i.

If one approximates the energy of a n-quasiparticle state

by taking only the second term in (2.3.12) (the first term

gives for all states the same constant E(BCS) = Ho), then
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one has:

0 q.p.

1 q.p.

2 q.p.

3 q.p.

where E_ =

|BCS> E=0

•'to-

ti

M BCS>

m'
BCS>

>_2A

>3A

> Aa

(2.

(2.

3.13)

3.14)

All A are roughly equal to A, which has a value of about

1,5 MeV in our applications.

So, if one neglects the interactions between the

quasiparticles, then the energy difference between v-

quasiparticle states and (v+2)-quasiparticle states is

2A=3MeV. If one wants to calculate states of a single-

closed-shell nucleus below 2 MeV one may therefore hope

that it is sufficient to consider 0 q.p. and 2 q.p. for

even nuclei and 1 q.p. and 3 q.p. for odd nuclei.

2.4 PARTICLE-NUMBER PROJECTION; THE BROKEN-PAIR MODEL

The BCS model presented in section 3 is simple. It

has the drawback however, that the wave functions don't

have a fixed number of particles. It is obvious, looking

at (2.3.3), that the BCS wave function has components with

0,2,4, particles. This means that the BCS wave func-

tion for a nucleus with no particles also contains compo-

nents for nuclei with no±2, no±4...... particles. One

even can construct states, which do not have any component

with the desired number of particles1'-' , the so-called

spurious states. These spurious states describe in fact

only states in neighbouring nuclei. It is necessary that

these spurious components are removed from the model space

by performing particle-number projection. The method of

i

•V
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••I

! i

particle-number projection, used for the calculations in

this thesis is the one of refs*'s'llfJ .

The particle-number projected BCS model is equivalent

to the broken-pair approximation15-'. The unnormalized

v=0,2 broken-pair states are:

(S+)p|0>

AjM(ab)(S
+)p"1|0>

(2.4.1)

(2.4.2)

where |0> denotes the closed shell state and

S = T %av, (u=)~ Aoo (aa) in the notation of reflf*J,*"a a a

The relation of the broken-pair states (2.4.1) and

(2.4.2) with the number-projected quasiparticle states

of reflltJ is:

(2.4.3)

Q
ua

a](S+)P"1|0> =

uaubl*2 ( a b ) > (2'4'4)p,JM

For the odd nuclei the relation of the broken-pair states

with the number-projected quasiparticle states can be

found in the appendix of Chapter 4.

I

t

2.5 RELATIONSHIP BETWEEN ODD AND EVEN SPECTRA

IN THE BCS MODEL

In section 3 it is argued and globally indicated in

(2.3.14), that a one-q.p. and twcrq.p. state are about

A and 2A respectively higher in energy than the BCS state.

This leads to the picture, shown in fig 2.4 for the case

of which the single-particle energies are shown in fig

2.1. The interaction is the pairing force with strength



21

."2

O
K
Ul
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Ul

r - , - _ J H ^ = . —xr

'E(BCS)

10 12
PARTICLE NUMBER nQ

14

Figure 2.4 The spectra of odd and even nuclei as predicted by the BCS model.
The single-particle energies of figure 2.1 and a pairing force with strength
G=0.4 MeV are adopted. No number projection was Derformed, but the spurious
0+ state was removed.

Vo=0.4 MeV. The ground states of the even nuclei are con-

sidered to be BCS (0 q.p.) states and the excited states

the 2 q.p. states. In the odd nuclei the lowest states

are considered to be 1 q.p. states. If the relative single-

particle energies e_-eb and the force strength Vo are ^nown

the gap equations (2.3.7) can be solved; then the quasi-

particle energies E= (2.3.14) are obtained.
a

Gillet et al.l6j proved that one may reverse this pro-

cedure, viz.'. starting from the experimental quasiparticle

energies E, one calculates the relative single-particle

energies and the force strength.

The quasiparticle energies are derived from the expe-

rimental spectra of the odd nuclei in the following way.

First one needs the odd-even mass difference (which mainly

determines the force strength). Secondly one needs for all

single-particle levels with angular momentam and parity j u

the lowest level with j u in the odd nucleus. These levels
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are considered as 1 q.p. states. If more than one level

with a certain j11 have been observed then a sum of the

energies, weighted with the spectroscopic factors from

one-nucleon transfer data is used. The quasiparticle

energies are the sum of the odd even mass difference and

the excitation energy of this lowest state.

With these quantities the inverse of the gap equation

(2.3.7) can be used to calculate u -v_,e_ and Vo; this
cl cl cl

method is known as the Inverse Gap Equation method (IGE)16J.

For even nuclei the parameters can now be obtained by

interpolation of the parameters found for the odd nuclei.

In this way one can perform for even nuclei calculations,

which are free of further adjustable parameters. In the

method IGE no particle-number projection is used. Particle-

number projection may have a considerable effect on the

excitation energies. Therefore one should use the Inverse

Modified Gap Equations (IMGE) + v=l fit or equivalently a

IMGE +lq.p.GCM fit. This was introduced by Allaart3-1 and

applied by Van Gunsteren5'1 as the particle-number projected

analogue of IGE. In Chapter 3 this procedure is used for

several single-closed-shell nuclei in the pf shell. The

meaning of the resulting parameters is discussed there.

The procedure IMGE + 1 q.p.GCM fit yields good results

for single-closed-shell nuclei. Examples of these calcula-

tions can be found in refs3f5~7J and in Chapter 4 of this

thesis.

In Chapters 5 and 6 quasiparticle degrees of freedom

are coupled to harmonic vibrations. In this model it is

not so easy to extract parameters from the odd nuclei as

described above; phonon admixtures can play a large role

in the low-lying states; in this case these states cannot

be considered any more as 1 q.p. states. Therefore in such

cases one normally considers the single-particle energies

ea and force strength Vo as free parameters.
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Chapter S

APPLICATION OF THE SUPERFLUIDITY MODEL TO SCS NUCLEI

IN THE PF SHELL

!

3.1 INTRODUCTION

In chapter 2 a brief outline has been given of the

number-projected BCS model. In the Shell Model Hamiltonian

it was assumed that the single-particle energies are

independent of the magnetic quantumnumber m . Therefore

the formulas given there apply to spherical nuclei only.

Nuclei with a single closed shell are indeed expected to

have a spherical shape. Examples of this type of nuclei

are the Ca and Ni isotopes and the N=28 isotones.

First, single-particle energies will be determined for

these nuclei with the method IMGE + 1 q.p.GCM fit, men-

tioned in chapter 2. The single-particle shell model space

for the protons and the neutrons consists of the pf shell.

As residual interactions the Kuo Brown force, the Me Grory

force and a Gaussian Serber force are used.

Next, the obtained values of the single-particle ener-

gies for s2Cr will be used in a HFB calculation to see

whether the intrinsic groundstate is spherical or whether

it turns out to*be deformed. In the former case the model

would be consistent; in the latter case we conclude that

one should not consider the parameters obtained by the

IMGE + 1 q.p.GCM fit as suitable parameters in other model

spaces.

Finally these parameters will be used in a projected
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two-guasiparticle calculation for S0Ti, 52Cr and 51*Fe.

3.2 DETERMINATION OF THE PARAMETERS

In the pf shell single-particle energies were deter-

mined for protons as well as for neutrons. For protons the

spectroscopic data of the odd N=28 isotones1'-' were used.

The quasiparticle energy for an orbit j \ given in table

3.1, is the sum of the odd-even mass difference12} plus

the sum of the energies of the levels with j1* in the odd

nucleus weighted with the spectroscopic factors for one-

nucleon transfer. The number of levels we used to calcu-

late a quasiparticle energy for these nuclei was mostly

less than five; for a few cases it was even about ten.

For higher levels the available experimental data become

less clear. This introduces considerable uncertainties of

the order of 0.5 MeV. The neutron single-particle energies

were extracted from the nuclei *2'*s'"s'£?Ca and 57'i§Ni.

In both cases only one kind of particles is assumed to be

excited. The obtained quasiparticle energies are listed in

table 3.1. Three residual interactions were used.

The first is the Kuo Brown force1J , which was deter-

mined, starting from the Hamada-Johns ton nucleon-nucleon

interaction.

The second is the Me Grory force2-' , which is a modifi-

cation of the Kuo Brown force, to fit better the spectra

of light pf shell nuclei for some shell model calculation.

The third interaction is the simple Gaussian Serber

force

V(r ) = - V» P. exp
12 Q
12

-r2

1 2

where Vo is the force strength,

Ps is the singlet even projection operator,

U = 2.0 fm is the range.
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Table S.I Proton and neutron quasiparticle energies (MeV)

used to determine the single-particle energies.

Protons

lf7i
2P3/,

"Vl
2 P l / 2

neutrons

lf'/2
2PV,
XU/2

2 P V I

1.70

5.23

6.47

7.60

*'Ca

1.68

3.86

6.57

5.76

51V

1,61

4.17

5,76

7.09

">Ca

1.78

3.76

5.72

5.43

"Mn

1.56

3.97

5.29

6.03

"5Ca

1.68

3.68

6.18

5.IB

"Co

1.46

4.05

5.03

4.79

»'ca

1.50

3.50

6,50

5.50

57

5.

1.

2.

2.

Ni

37
25

03

36

Si

5.

1.

2.

2.

Ni

65

55

05

35

For these interactions first overall force strengths were

adjusted so as to fit the odd-even mass differences with

the IMGE method. For the Kuo Brown and Me Grory interactions

the resulting factor was within a few percent 1.0. This

shows some consistency of these forces with our method to

fit these parameters. For the Serber force the result was

Vo=44.0 MeV. These values were next used in the one-quasi-

particle GCM fit.

For the resulting single-particle energies for the

N=28 isotones and the Ni isotopes a correction was made for

the binding by 8 nucleons of the other kind in the ifi ,

shell:

Aev = -%(2j.+l)"
1 I (2J+1) 6(k7/2k7/aJ'P) (3.1)

* * J,T

This means that the energies for all nuclei are calculated

relative to a '"'Ca core. Without the correction (3.1) the

energies would be given relative to a lf8Ca core for the

N=28 isotones or a **8Ni core for the Ni isotopes. The cor-

rection amounts to a downward shift of the 2p3, , lf5,

and 2pi^2 single-particle levels relative to the If7,
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level of 1.35 MeV, -1.81 MeV and 0.80 MeV respectively for "•}

the Kuo Brown force and of 4.16 MeV, 1.02 MeV and 3.63 MeV •

respectively for the Me Grory force. The shifts of the ;

Me Grory force are 2.83 MeV larger. This is due to the fact •

that this force has stronger matrix elements

G (7/j 7/z ' A 7/z JT) ; this results in a stronger binding i

for the If7/ single-particle level if the 8 particles of {
/ 2

the other kind are included. The energy shifts (3.1) for :j

the Serber force are much smaller, viz. 0.32 MeV, -0.62 MeV ;

and 0.21 MeV for the 2p3/ , lfs/ and 2pi . level. The

single-particle energies are drawn in figure 1. Especially

important for a calculation on an even N=28 nucleus is the

gap between the If7 . proton and neutron level and the other

levels; therefore let us consider the relative single-

particle energies e ( p 3 / ) - e ( f 7 , ) .
/ 2 / 2

For the protons the results for the Kuo Brown and

Me Grory matrix elements are nearly identical relative

to a ^'Ca core. Due to the binding correction (3.1) there

is a difference of 2.83 MeV relative to a lt0Ca core. The

result for the Serber force is a little different. The

main difference with the other forces is again the cor-

rection (3.1). For the neutrons the situation is almost :

the same as for protons; the large differences between the i

three forces for 9 and 11 particles are due to the cor- ,;

rection(3.1): i.e. relative to a "8Ni core they are al- |

most the same. 'I

|.-.. We consider single-particle energies to be acceptable ^

•fl if they satisfy the following two criteria: ;|

I i) The variation of the single-particle energies as a |g

! function of particle-number should be smoothlZ}; £

i ii) the difference between the relative proton and I

1 neutron single-particle energies should not be too ilarge. The only relevant difference between protons

and neutrons is the Coulomb potential but the relative

effect on the single-particle energies is known to be
small.

•'V
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Figure S.I Single-particle energies for protons and neutrons in the pf shell for
the Kuo Brown interaction (KB), the Me Grory interaction (MG) and the Serber
force (S) . The nuclei, from which the quasioarticle energies were taken are given
below in the figure.

From figure 3.1 one may notice that the Kuo Brown force

satisfies the two criteria best. The Serber force and the

Me Grory force show discontinuities in the relative single-

particle energies e(p3, ) - e(f7/ ) for the neutrons; for

the Me Grory force the difference between the energies of

the proton and neutron p3, level relative to the f7 ,
/ 2 / 2

level is about 3 MeV. Me Grory's ad hoc changes of the

Kuo Brown force, to fit the light pf shell nuclei better,

are responsable for this effect.

3.3 THE HARTREE-FOCK-BOGOLYUBOV (HFB) GROUND STATE

The HFB theory may be considered as a generalization of

che Hartree-Fock (HF) theory. Therefore, it is first indi-

cated, how the HF ground state energy is calculated.
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S

?f Thereafter the extension to the HFB case is simple.

:| 3.3.1 The Hartvee-Fook ground state6)

' In second quantization the Hamiltonian H in the HF

i' theory is given by:

I H = I <a|T|0>a^aB + \ \ <aB|v|Tf6-6Y>aJaJafiaY (3.2)
V where T is the kinetic energy operator,

J V is the nucleon-nucleon interaction.

One determines the nuclear wave function $, which is

xT a solution of the Schrodinger equation

H$ = E$ (3.3)

in an approximate way by assuming, that for a nucleus,

consisting of A particles, $ can be written as a Slater

determinant
A .

H1aMo> (3.4)

The precise nature of the single-particle states y are not

yet specified. Only orthogonality is required. $ has to

satisfy:

6<$|H|$> = 0 (3.5)

which is equivalent to

<6$|H|3» = <*|H|6<&> = 0 (3.6)

where 6$ is orthogonal to $. In second quantization 6* is

given by:

I 6$> = T\SL aj I $> (3.7)

with n infinitesimal; a should refer to an empty state and

X to an occupied state.

Then equations (3.6) lead to:
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<CJ|T|X> + I <ay|v|Xy> = 0 and

<X|T|a> <Xy|v|ay> ~ 0

(3.8)

(3.9)

To specify the single-particle states y in (3.4) one dia-

gonalizes:

A
<a|T|6> + I <ay|v|0y> = e 6 R

y=l p
(3.10)

The resulting single-particle states automatically fulfill

equations (3.8) and (3.9). The self consistent HF potential

U is defined by:

A
<a|u|3> = 'I <ay|v|&y> (3.11)

y=l

Equation (3.10) can be written as:

<a|T+u|0> = <a|ea|3> (3.12)

Notice, that U is still dependent on the single-particle

wave functions y. The solution of equation (3.12) is ob-

tained by starting with trial single-particle wave functions.

This process has to be repeated until the solution is stable.

The energy of the ground state is then given by:

A A
Eo = <$|H|*> = I <X|T|X> + h I <Xy|v|Xy>

X=l y=l
A A

= I e, - h I <X|U|X> (3.13)
X=l A X=l

3.3.2 The Hartree-Foek-Bogolyubov ground stateS}

The essential difference between the HF theory and the

HFB theory is, that the trial wave function is chosen in a

different way. Here one first defines the quasiparticle
+operators r)' by:
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a
'aA Bakaa) (3.14)

The quasiparticle operators should satisfy the anticommu-

tation rules for ferralons; this requirement gives a

restriction for the matrices A and B. The trial wave

function $, given by:

|«> ~ H n. |0> (3.15)

k K

is a vacuum for the quasiparticle operators.

The choice A ,* 0 for occupied states and

B ,= 0 for empty states

leads to the trial wave function in the HF theory. The

quasiparticle wave functions are determined by the HFB

equations:

I f(<o|T|B> + I <au|v|8v><B*BT> )A| +

hi <ay|v|Bv><ABt>yvBBp] = E aA a p and

I f(<$|T|a> + I <&n|v|av><BtB>im)B. +

hi <eu|V|av<>BTA*>yvA3p] = E aB a p

(3.16)

(3.17)

vv
From these equations the BCS gap equations can be derived

with the choice Aair^v^nv an<* Bak=vk^akSK' T^ e n fc^e quasi"

particle operator (3.14) is the BCS quasiparticle operator.

Apparently the HFB equations generalize both the HF and

BCS equations. The HFB equations determine self consistently

the single-particle energies. If the single-particle shell

model space is too large (for example for 52Cr) then an

inert core is assumed and the binding for a particle in

shell X by this core is simulated by a single-particle ener-

gy e^, which includes also the kinetic energy term. This

single-particle energy is set equal to the single-particle

••v
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energy found in section 3.2,

3.4 RESULTS

For 52Cr a HFB calculation was performed with the

parameters obtained with the Kuo Brown force, because

this gave a smoother behaviour of the energies of the

single-particle levels as a function of the particle num-

ber. Besides, the results with the Me Grory matrix ele-

ments will not be very different, because the energies

relative to a lf8Ca core are not very different.

First a HFB calculation was performed, while the nu-

cleus was restricted to a spherical shape, i.e. essential-

ly a BCS calculation.

Next, in another calculation the nucleus was allowed

to deform to find the minimum energy for the intrinsic

ground state. The results of the second calculation are

the following. It shows a minimum for the ground state

energy for a prolate deformation. The energy gained by

deformation is about 2.5 MeV. The quadrupole moment of

the intrinsic ground state is 142 fm2. This means, that

the single-particle energies obtained by the IMGE + 1 q.p.

GCM fit should not be used in a HFB calculation; the as-

sumption that the N=28 nuclei are spherical is not con-

sistent in that case. Therefore our parameters should be

considered as connected with the model space in which one

considers at most two particles which are not coupled to

a (spherical) pair.

Next, we proceeded to perform a two-quasiparticle cal-

culation, to see what the result would look like. The pro-

ton single-particle energies for S0Ti, 52Cr and sl*Fe are

listed in table 3.2 In the figures 3.2, 3.3 and 3.4 the

results are compared with the experimental spectra and

other calculations.

In figure 3.2 the results are shown for 50Ti. The model
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Figure 3.2 Experimental end calculated Figure 3.3 Experimental and calculated
spectra of 50Ti. spectra of 5l*Fe.
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Figure 3.4 Experimental and calculated
spectra of 52Cr.

of Kuo and Brown is identical with ours. Only the single-

particle energies are different, vis.i e{f7/ )=0.0,
/ 2

i, )=6.9. The dominant
/2

e(P3/ )=4.4, e(fs, )=5.9 and fpi,
/2 /2 /2

configuration is (f /i)2. Therefore the result of Kuo and

Brown and ours are much alike.

We also compare with the shell model calculation of

Chuu et.al.10J. In that calculation the neutron If7 ,
/2
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I
Table 3.2 Proton single-particle energies in MeV for the

Kuo Brown interaction, used in the 2-quasiparticXe calculation.

nucleus

50Ti
5?Cr
s*Fe

0

0

0

/2>

.0

.0

.0

Mp

3

3

4

V*>
.41

.39

.11

E(f5

4.

4.

5.

/2)

93

96

46

e(P

6

6

5

.27

.09

.61

shell is closed; all protons but one are assumed to occupy

the f.7 . shell and the interaction of Schiffer and True 1 1 J,

the 14 parameters of which are fitted to the spectra of the

N=28, N=29 and N=30 nuclei, is used. For 50Ti their result

is not very different from ours.

The results for 51*Fe are shown in figure 3.3. Like for
S0Ti our result does not differ much from that of Chuu et.

al. The spectrum can be explained to a large extent by the

configuration of two holes in the if7 . shell.

In the calculation of Mrs. Parikh9J protons and neu-

trons were assumed to occupy the pf shell. As an effective

interaction she used the Me Grory interaction and two bands'

were calculated:

1) a prolate HF band

2) a second prolate HF band

The first has the ground state with the lowest energy. The

single-particle energies were varied to fit the spectrum of
5"Fe. The two band were mixed. The result looks more like

rotational than our result and experiment.

Figure 3.4 shows the results for 5 2Cr. Our calculation

is able to reproduce the energies of the levels, which can

be understood in terms of v=2 configurations. The calcula-

tion of Chuu et.al. can also describe some levels with a

v=4 character. The GCM and HFB calculations of Miither et.al.

are interesting. They find using a Me Grory interaction a

HFB intrinsic ground state with a prolate minimum. This
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minimum is 0.2 MeV lower than the spherical solution. The

quadrupole moment was 121 fm2, which is near our result

(142 fm2). The calculated spectrum is too rotational.

Later Muther decreased the energy of the If7 / single-

particle level by 1 MeV and his results improved; the

shape of 5 2Cr was then almost sphericallk).

3.5 CONCLUSION

All spherical models, shown in section 4, give reason-

able results for N=28 nuclei.

The calculations of Parikh and Muther have a freedom for

the nucleus to deform. The Kuo Brown interaction then pro-

duces a deformed solution, unless the gap between the If7 .

single-particle level and the other single-particle levels

is increased arbitrarily, so that a spherical solution is

obtained. Then this model gives reasonable results for the

spectra.

It is apparent, that good results are obtained, only,

if the shape of the nucleus is (almost) spherical.

When the single-particle energies which are determined with

the spherical IMGE method and the 1 q.p.GCM fit, are used

in a HFB calculation, a deformed solution is obtained. This

is an indication, that these parameters should not be used

in a HFB calculation. Apparently parameters and model are

coupled, so that one may not use parameters from an essential-

ly spherical model 1 q.p.IMGE to perform calculation with

deformed degrees of freedom.

This conclusion is not completely unexpected. A depen-

dence of the parameters on the model space was also present

in earlier calculations by Van Gunsteren for example13J.

There the single-particle energies from the IMGE + 1 q.p.GCM

fit did not give good results in 3 q.p. calculations for the

Sn isotopes. The extension of the model space by including

states with two extra quasiparticles shifted the lowest

•v
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levels by a few hundred keV. So a new determination of

the parameters, which was essentially a three-quasiparti- :

cle fit for the single-particle energies, had to be per- I

formed13j. When one allows nuclear deformation, this is •

equivalent with including many-quasiparticle states. f.

So the appropriate model parameters may then differ con-

siderably from those found in our treatment.
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Chapter 4

A Broken-Pair Description of 89Y, 9 l N b and "Tc

The low-energy properties of 89Y, "'Nb and fl3Tc are described in a broken-pair model.
The shell model space for the ptotons consists of one major shell and for the neutrons
particle-hole states within two major shells are taken into account. The effective in-
teraction is assumed to be a simple Gaussian Serber force, which has proved to be the
most successful in adjacent even nuclei.
Energy spectra up to about 3 MeV excitation energy and one-nucleon transfer data can
be described very well. Also electromagnetic properties can be reproduced rather well if
reasonable effective charges are used. No indication for deformed states, as found in Sn
nuclei, is observed.

1. Introduction

For many years attempts have been made to describe
the JV=5O isotones. The main reason for this has
been the supposition that llSriB might be treated as
a proper inert core, so valence protons were restricted
to the 2p 1/2 and lg9/2 single-particle levels. Within
this small model space relationships between the
energy spectra of several nuclei as predicted by the
shell model can be shown to be satisfied to a large
extent [1-6].
In several investigations it has been remarked howev-
er that also excitations from the 2p3/2 level are
important, especially to describe electromagnetic pro-
perties [7-12]. In the work of Vergados and Kuo
[11] both proton and neutron excitations from the
88Sr core were allowed for the description of the
energy levels of 89Y. In a recent, rather extensive
study of both the even and odd N = 50 isotones
Fujita and Komoda allowed one - or two-proton
excitations from the 2p3/2 level [12]. Although this
is sufficient to obtain non-zero values for M1, £2 and
£3 transitions, the comparison with experimental
data points out that the results are not always satis-
factory, especially for collective transitions in even
nuclei. Such collective transitions have been studied
extensively by Gillet et al. [13] in the framework of
the BCS model. They found that the £ 3 excitations

can be reasonably well accounted for by this model,
but the description of £2 excitations was found to be
poor.
Allaart and Boeker have demonstrated however that
the latter are considerably improved for N = 50 iso-
tones by a systematic particle-number conserving
BCS treatment [14].
There are several reasons why one may prefer a
number-conserving BCS quusiparticle model [IS],
which is equivalent with a broken-pair model [16] or
the generalized seniority scheme [17], rather than a
straightforward shell model treatment. One reason is
that one can easily deal with more than one major
shell to describe the pairing properties [18]. Also
when one restricts the model to one major shell the
projected quasiparticle or broken-pair model yields a
good prescription how to select a few model states
out of a many times larger shell model basis without
loosing much accuracy [19]. It also provides a trans-
parent picture of the structure of the nuclear states,
supposing that most nucleons occur as unbroken
pairs (which are supposed to be the microscopic
equivalent of S-bosons in [20]).
In the present paper we report the application of
the projected quasiparticle [IS] or broken-pair [16]
model to odd JV = SO isotones. So far this model has

M
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been applied to odd Sn nuclei only [21, 22]. Since it
is known [23] that in Sn nuclei certain deformed
structures may appear at rather low excitation en-
ergy, the N = 5 0 isotones might be more suitable for
the application of the model. As the description of
the odd nuclei can only be expected to be successful
when also the lowest (collective) excited states can be
described by the same method, these states are con-
sidered first, and improved by the inclusion of neu-
tron particle-hole excitations. Therefore the'basis sta-
tes for the description of the odd isotones are states
with one broken proton pair or a neutron particle-
hole pair. In Sect. 2 the model and the computational
method are out-lined. Section 3 contains the resulting
spectroscopic properties and a comparison with ex-
perimental data. Section 4 contains a summary and
conclusions.

2. Model and Computational Procedure

2.1. The Model Space

The model space consists of states of the following
three types
a) states without a broken pair:

(2.1)

<2-2»

Table I. Relative single-particle energies and force strengths used
in the calculation of "* Y, *' Nb and "Tc in MeV

b) states with a broken proton pair:

( . ;<i ;«; ts+)"- l i f l>.

c) states with a neutron particlchole pair:

where |5> denotes the closed shell (Z = 28, N = 50)

state and S+ =X«5~il<4J0(aa) in obvious notation

[19]. The BCS-parameters va,ua are determined such
that the presence of unpaired particles is accounted
for in an average way [23]. The technique how to
calculate matrix elements of a shell model hamil-
tonian in the space of states 12.1) and (2.2), coupled to
proper angular momenta, is well known f_15, 21]. In
[15] extensive formulas have been given. The exten-
sion to include the particlehoie stales (2.3) is straight-
forward. Formulas are given i;i the appendix.
The shell model orbits included are the 1/5/2, 2p3/2,
2p 1/2 and 1 g9/2 shells for protons, the 1/5/2, 2p 3/2,
2p 1/2 and tg9/2 for the neutron hole and the 2</5/2
1 g7/2, 2W3/2, 3s 1/2 and lft 11/2 shells for the neu-
tron particle. A restriction, which was justified by
some test calculations, is that the neutron particle-
hole configuration should have natural parity {J"
= 2".3",4*,. . .) . The 7"= I ~ configurations were ex-

Protons Neutrons

'Nb "Tc

1/5/2 0.0 0.0 0,0
2/i3/2 1.59 1.19 2.04

3.22 3.36 3,80
3.80 3.36 3.26

36.1 36.0 37.2

1/5/2 - 3 . 0 2tf5/2 4.0
2/i 3/2 - 2 . 0 l g 7 / 2 5.0
2/>l/2 - 1 . 0 3s 1/2 5.0
lg9/2 0.0 2J3/2 6.0

I 111 1/2 7,0

eluded because they only produce a low-lying spu-
rious (center of mass motion) state and high-lying
slates which do not contribute significantly to the
lowest part of the spectra,

2,2. The Model Parameters

The shell model effective interaction is assumed to be
of the form

(2.4)

where Ps is the singlet operator. The range parameter
H is taken to be 1.9 fm. Although this force is very
simple it appears to give good results in practical
calculations of even single-closed-shell nuclei; better
than several more complicated forces [24], The pro-
ton single-particle energies were determined from
experimental data by the number-conserving anal-
ogue of the inverse gap equations [25]. In " N b these
energies were taken slightly different from those of
[25] in order to reproduce the fragmentation of the
p 3/2 and /5 /2 single-particle strength belter. For the
neutron single-particle energies a reasonable guess was
made. The results are not sensitive to small changes
in these energies. The parameters are listed in Table
1. For the even nuclei, of which we need the ground
state wave function for the calculation of one-nucleon
transfer spectroscopic factors, interpolated parame-
ters are used. Further model parameters are the
effective charges e'"=\Ae for protons and 0.4e for
neutrons and the effective spin-gyromagnetic factors
gff = 3.29 n.m. for ptorons and — 2.50 n.m. for neu-
trons. With these values we reproduced the
B(£2;2f-g .s . ) and fl(Ml; 1 f -g .s . ) in BBSr.

3. Results and Discussion

3.1. Spectroscopic Factors

Table 2 shows that the experimental values for one
proton transfer reactions are reproduced reasonably
well by the calculation. (The pick-up data for 89Y
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Table i, Spectrosgopic factors Tor one-proton transfer reactions

"Nt>

"Tc

l ' 2"
9/2*
3/2-
5/2-

*/2*
1/2"
5/2-
3/2"
3/2"

9/2-
1/2-
3/2"
5/2-

Stripping

keV

0
909

1,507
1.744

0
104

1,187
1,313
1,613

0
.190

1,193
1.406

eule

0.77
0.88
0.11
0.03

0.86
0,22
0.01
0,02
0.02

0.66
0.32
0.07
0.002

exp.

0.9:
0,74
0.10
0.13

0.92
0.43
weak
0.04
0.07

0,73
0.22
weak
weak

Pick up

Cillc.

1.41
0.77
3.55
4,94

2.61
1.19
0.86
1.50
1.82

ex p.

1.91
1.10
4.25
7.80

2.6
1.66
0.55
1.15
2.35

The experimental data are taken from [27, 29. 30]

appear to be at least 25 percent too large). Since these
data have been used in the parameter Tit they are
only a weak test on the model. The description of the
other states, which is now free of further parameters
is a much more crucial test.

3.2. The Nucleus B*V

Figure 1 shows the experimental and calculated spec-
tra. Also the positive parity states, obtained by a
calculation without core-excitations, are given. Es-
pecially the energies of the two lowest 5/2+ and 7/2+

states, which can be described to a large extent as a
p,,2 quasiparticle coupled to the 3~ state in 88Sr. are
lowered by core-excitations. The energy of this 3"
state is calculated about 1.2 MeV too high, when
neutron excitations are neglected; inclusion of these
excitations makes the nucleus "softer" and gives a
downward shift of the 3" state by 1 MeV. The effect
on the 5/2+ and 7/2+ states is clearly seen in the odd
nucleus 89Y. One notices that the calculated levels
are almost in the right order; all experimentally
observed levels are reproduced by the calculation. So
there is little doubt about the nature of these states.
\ comparison with the shell model calculations [12]
confirms the above statements about the 5/2+ and
7/2+ states. Within the limited (although large) shell
model space these states are not predicted at the
correct position, as also the 3" states in the even
luclei cannot be described, when the lf,/2 proton
shell is omitted and, more importantly, when no
leutron core-excitations are considered [13]. In their
study [I I] of ""Y Vergados and Kuo included such
:xcitations and consequently they find the 5/2* and

7/2+ states at lower energy. In [ H ] there seem to be
too many low-lying states however. We think that
this is due to the fact that much attention was paid to
core excitations but relatively little to pairing cor-
relations which increase the splitting between zero-
and one-broken-pair states. Around 3.2 MeV states
with a different nature seem to appeur. Figure 2 shows
some high spin states. The spin assignments given by
[28] are tentative. It has been suggested that the stale
at 5.58 MeV is a g9/2 quasiparticle coupled to the 7"
state in 8RSr. The 1~ state in 88Sr, however, is an
almost pure configuration (irg,,2, IT/,,,) in a one-
broken-pair calculation. So, when a g4/2 quasiparticle
is coupled to this configuration, the Pauli principle
forbids a 23/2" assignment. Within our model space
the first 23/2" state occurs around 8 MeV, but we
cannot exclude the probability of a lower state when
more pairs are broken.
Table 3 shows transition rates, half-lives and mixing
ratios. The BE), values and half-lives for most states
are reproduced reasonably well. This indicates that
the configuration mixing of these states is correct. The
2,873 keV state is presumably a 7/2+ state, for in that
case the calculated BE3 value and the half-life are
much closer to the experimental values than for the
5/2+ assignment, as one may notice from the table.
As expected our results are much better than those
obtained in shell-model calculations, e.g. [12].

3.3. Tke Nucleus 9lNb

In "Nb some 20 states are known which have a one-
broken-pair (or a more complicated) character. As
one may notice from Fig. 3 the calculation can
account for them reasonably well. The results are
especially reasonable in view of the well known fact
[23] that a careful optimization of the pair-distribu-
tion for the broken-pair states may bring them down
by a few hundred keV. It cannot be excluded however
that substantial admixtures of components with more
than one-broken pair are important to improve these
states. The calculation predicts that the second 13/2~
state lies only slightly above the 15/2" state, so it
might be observable by a weak gamma branch in the
decay of the 17/2" state. So up to about 3.2 MeV, like
in ••*¥, essentially all levels can be explained as one-
broKcn-pair states. This is also confirmed by the
transition rates and half-lives, which are shown in
Table 4.
The half-lives or the 9/2+ state at 1,637 keV and the
11/2" state at 2,413 keV are quite sensitive to the
effective gyromagnetic factor for the neutrons. For
example, if gs(neutron)=0 then T, ,2( l l /2-; 2,413)
=4.2ps.

"I

I

• - v
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Fig. I. Energy levels of " Y . The numbers near the levels indicate the angular momenia times two. Spectra (B) and (D) are the calculations
IW ilu* positive und negative parity stales respectively, with the parameters Tram Table I. In calculation (A) the neutron excitations were
omitted. Thu experimental data are taken from [27]

The branching ratio for the 9/2" state at 1.791 MeV
is not reproduced in the calculation, probably be-
cause within our model space E1 transitions are not
possible.
For a comparison with the most extensive shell-
model calculations [12] we should mention that our

first 1/2+, second 3/2+, 5/2+ and third 9/2+ shown in
Fig. 3 consist predominantly of configurations outside
the (2p3/j,2p1/2,1g9/j) proton space. The latter is
found to be a kind of pairing vibration with respect
to the ground state whereas the first l /2+ and the
second 3/2+ and 5/2+ states are mainly built of
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Fig. 2. High-spin energy levels of_"*Y.
The numbers near the levels indicate
the angular momenta times two. The
experimental data are taken from [28]

Table 3. Transition rates, branching ratios and half-lives in " Y

i

Initial level

J'

9/2*
3/2"
5/2" .
5/2*

7/2*

11/2*
9/2*
(5/2*)
or
(7/2*)

keV

909
1,507
1,744
2.222

2,530

2,566
2,622
2,873

2,873

Final level

J'

1/2"
1/2"
1/2-
1/2"
9/2*
1/2-
9/2*
9/2+
9/2+
1/2"
9/2+
1/2"
9/2+

keV

0
0
0
0

909
0

909
909
909

0
909

0
909

Calculated gamma transition probability
in s~' (Weisskopf units)

E).

3.1X10-*(12)
5.3xlO"(2.3)
1.0xl0'2(2.2)
1.1 x IO'(I6)
5.2x10" (4.6)
1.9 x 10* (10)

3.2xl012(8.9)
3.1xl0'2(7.2)
I.7xlO»(OJ8)
4.9xl0"(0.58)
2.5xl0'(5.8)
3.0xl0"(3.5)

M>.

6.8xlO-2(6.l)
1.9xl013(0.18)

1.9 x 10' (0.08)

2.6xl0'2(0.02)
4.2xlO"(3.0xlO-3)
8.7xlO"(5.5xlO-3)
8.8 x 10'(0.l0)

5.6xl012(0.02)

Branching

calc.

10.2s
26 fs
0.68

ioo}u

ioS} l 6 9 f

0.19
017

100/ '•*

°lnn«
1 0 0 / 0 0 8

ratio and half-life (ps)

exp. exp.

16.06s
24±15fs « =
0.53 ±0.04

0.35+0.14 BE

s 76 + 35fs BE

0.12

• o o 1 } ^ Bl

-O.I5±O.O5"

3 = 18±2W.U.

3 = 19±2W.U.

:3 = 36 + 3W.U.

0\ 0 B£2=27+3W.U.
1 0 0 ) s u z

I

• «tlte(3/2-,l,5O7keV)= -0.16. The experimental data are taken from [27]
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13-
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U 9-

17
= 17
-19
-15

-13.15,17.
21

po&parity rxp neg. parity

Fig. 3. Energy levels of "Nb. The numbers neur the levels indicate the angular momentil times two. The experimental duta are taken (torn
[29]

neutron excitations from the I g9l2 shell to the 3s—2d
shell. We suggest therefore that the experimentally
observed 5/2+ state at 2.58 MeV should be consid-
ered as a neutron excitation; our third 5/2+ state
may be compared with the second state in [12]. In
the shell model calculation [12] the high spin posi-
tive parity states 11/2+ —21/2* have large admixtures
of excitations of the 8*Sr core. In our wave functions
these excitations are rather small, especially for the
highest spins. Nevertheless we reproduce the
21/2+ -»17/2+ transition equally well as [12], so this
transition does not yield conclusive evidence for the
importance of the admixtures.

3.4. Vie Nucleus 93Tc

The experimental information on ""'Tc is scarce; al-
ready around 2 MeV excitation energy many spin-
assignments are missing. Therefore an attempt to
identify the calculated levels with experimentally ob-
served ones up to 3 MeV would be too speculative.
As far as well-identified states are concerned the
description seems satisfactory, with the 21/2" state as
a possible exception. The scarce decay data (Table 5)
are of little help to clarify the picture. The mixing ra-
tio for the 7/2+ state at 680keV indicates that the
Ml strength is too much hindered in the model.
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Table 4. Transition rates, branching ratios and half-lives i n " N b

Initial level

J"

1/2"

5/2"

3/2-

7/2*
3/2"

9/2*

9,2-

5/2"

5.2'

13/2-

17/2"
7/2-

13/2*

11/2*

32-

17 2 -
112-

9 2 '

21 2-

keV

104

1,187

1,313

1,581

1.613

1,637

1,791

1,845

1,963

1.984

2,035
2,120

2,292

2,330

2,345

2,378
2,413

2.632

3,467

Final level

J'

9/2-

1/2-

1/2-

9/2-

1/2"

9/2-

9/2-
5/2"
1/2-
5/2-

9/2*

9/2*
9/2"

13/2"
9/2'
5/2"
3/2"
9/2"

9/2*

9/2*

1/2-
5'2-
3/2"
3/2"

13/2"
9/2*
9/2"

13 2-
7 2"
92"
7/2*
9/2*
5,2"

17,2-

keV

0

104

104

0

104

0

0
1,187

104
1.187

0

0
1,791
1.984

0
1.187
1.313
1,791

0

0

104
1,187
1.313
1.613
1.984

0
1.791
1.984
2.121

0
1.581
1,637
1.963
3,1 It)

Calculated gamma transition probability
in s~' (Weisskopf units)

£/.

3.1x10"" (121

3,7x10" (8.4)

6,5x10" (8.5)

1.9xl01!(6.5)
1.0x10" (0.44)

7.7xI0'"(0.22)

1.6xl0"(0,09|*
8.0xl0"(3.3)
8.4x10" (0,01)
2.4xlO"(O.O6)

3.3xl0' :(3.8)

7.4x10" (0.22)
2.3 x 107(2.9)
1.0xl04(l.0)
4.6x10" (0.85)*
7.4x|0'*(0.35)
12xlO'"(2.2l
4.7x10" (0,04)

7.9 x 10'' (4.2)

7.6x|Oi:!(3.7)

3.0x10" (0.18)
5.5 xlO"1 (0.90)
1.5x10" (4.41
8.3x|O"(1.3)
2.9xlO"(I.O)
2.4xl0"|l.8|«
8.5xl()7(0.03)
2.4x10" (0.55)
l lxI0"|3.2)
3.7 x 10'! (0.98)
3Jx 10'" 10.85)
3.6x)O'°(1.2)
8.6xl0"|0.2l)
4.5xl0H(2.6)

Af/.

l . |xl0-"(30|

5.8x10" (0.10)

I .7X10'*(1 .3XI0- 5 )

7.1xlO1!(6.5xl0--|

1.8xlO"(l.3xlO-»l

4.9 xlO7 (5.9x10')

3.1x10" (0.03]

8.7xlO-(6.2xl0-'|

3.6xl()'1(l.9x|0-'|
4.4xl0"(l.7xI0-4)

5.5x|O'"(4.8xlO-i)

3.4xlO'"(8.4xlO-'|

1.6xl0"(4.5x|0-4)
6.5xlO"(1.3xlO-;!|
1.7xl0 i :(4.9x|0- !)
l .2xlO i ; (9 .6xl0 ; l

1.8 x 10"(5.0x It)-11)
7.9xl0"(l.0xl01')
1.3x10" (0.051

7.5xlO'"(1.3xlO-*)
7.8 x 10*12.1 x I0"4)
l.4xlO' l(4.6xl0-!)

Branching ratio and half-life (ps)
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0,36

96 fs
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01 „.
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97/

0.21

^}5.9ns
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6.J
0.09

0.09

"1
17 L . ,
44 f 0.16

28 J
2.4 ns
0.2
O.I

99.5
0.2

98)
| |
!|O.I8
o|
1.5 ns

exp, enp.

62 d

1 6 - f t 8
+0.05

°«to.06 "=-0.24
54+l7fs ± 0'1 0"

'•li + 05 1̂  = 0,53 + 0.16"
931
7 r

641
36 f

49 f 1110 + 0.4ns B£2 = 2.9W.U.

3.76+0.12 us
10]
39
9

42
+0.04

" ' - - 0 . 0 3
0.11 ^=IO + ^7J

3 7 )IK
\ i\ in i n fx^

16 | 010 ±0.02

9 J
10 m

-1
^t0,65±0.)3
—J

96]
4 .,+0.03
O|°12-O.O2

0,92 ±0.1 Ons

The numoers marked with an asterisk tire £3 transition probabilities. The experimental data arc taken from [29].
' •'.* '3 2" •= 0 -" - *uk (T 2") = 33. ^,,t (9.2 • )=6.5. rfuk (11 '2' | = 15

possibly the inclusion of the proton g 7 , level might
improve this.
We are unable to check the statement in [12] that
seniority four admixtures are large in the 5/2", 9/2"
and 13/2" states, because components with two bro-
ken pairs are omitted in the present treatment.
There is one more point we want to mention. In the
odd Sn nuclei, especially for ' ' 7Sn, one finds [22] in
the same type of calcultions that more levels (of low

spin) are observed than can be described. This could
than be understood from the fact that also in even Sn
nuclei collective bands have been observed [26]
which do not fit into a spherical description. The
spectra of the odd /V = 50 nuclei do not exhibit in-
dications of the existence of more levels than de-
scribed below 3 MeV. From this we expect, that in
the even N=5Q nuclei no collective bands, like those
in Sn, will occur below 4 MeV excitation energy.
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Fig. 4. Energy levels of "Tc. The numbers near ihe levels indicate the angular momenta times two. The experimental data are taken from

[30]

4. Summary and Conclusion

We !u\c checked whether the states, up to about
3MeV excitation energy in odd N = 50 isotones can
be interpreted as states with at most one broken pair.
For this purpose a simple Gaussian Serber force was
applied which also has proved to be the most useful
to describe spectra of even single-closed-shell nuclei.
As the single-particle energies are derived from the
lowest few states, which are assumed to have the
unbroken-pair state as the main component, the de-
scription of the broken-pair states is free of further

adjustable parameters. From the nice reproduction of
the energy spectra, typically the lowest twenty levels
being calculated in the correct position, we conclude
that such an interpretation is indeed very likely to be
correct, although admixtures of more complicated
configurations may not be negligeable. These may
also improve the calculated transition rates al-
though the agreement with experimental data ob-
tained here, which is mostly better than within a
factor two, should be considered as quite good in
microscopic model calculations.
We conclude that the results of the application of the
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Table 5, Transition rates, branching ratios and half-lives in " T c

Initial level Final level Calculated gamma transition probability
i ns " 1 (Weissknpf units)

J" keV J" keV Ei M>.

Branching ratio and half-life |ps)

cult exp. exp.

1/2-
7/2*

390
680

3/2" 1,193
5/2-

13/2*
1,406
1,434
1,516

13/2" 2,145

17/2* 2,185
17/2" 2,185

21/2* 2,534

9/2*
9/2*
1/2-
1/2-
9/2*
9/2*

13/2*
11/2*

13/2*
13/2*
13/2-
17/2*

0 4,0x10-"(0.14)
0

390
390

0
0

1,434

6.5x|010(l5)
l ,gxi0 | o( l ,7|
3.2 x 10'' (9,6)
1.8 x 10'2 (9.6)
1.5xlO1J(6.0)
9.9 xlO3 (0,37)*

2.8x10-* (49)
6,6xl08|6,7xl0-!)
2.5x!0"(ai6)

LSxlO'tUxlO"5)

3lmin
10,5
0.26
2.2
0.43
0.46

1,516 4.1x|O- ' (3,6xlO- s l * 2.4x 10'(5,3x IO"J|

1,434
1,434
2,145
2,185

1,3x10'(0.18)
l.lx!O*(O,28)
5.3x10' (0,17)
2.5 xlO1 (0.16)

0.52 ns

43.5 min

S5ns

«1

S5ns

<S=0,7±0.2'

27 ns

The numbers marked with an asterisk are £3 transition probabilities. The experimental data are taken from [30]
* <U(7/2*)=9.9

one-broken-pair model to the odd N=50 isotones
are considerably more convincing than earlier appli-
cations to odd Sn isotopes [21, 22]. One reason for
this is that here also particle-hole excitations of the
closed shell were included, which makes the nucleus
sufficiently soft to lower collective excitations of the
vibrational type. Another point is however that in Sn
nuclei (Z=50) more* complicated collective states
have been observed in even nuclei [26] which possi-
bly also play a role in the odd nuclei [22]. In the
present investigation we do not find indications for u
similar situation around the N = 50 closed shell.

This investigation was part of the research program of the Stich-
ling voor Fundamentcel Onitcrzoek der Malerie (FOM), which is
financially supported by the Nederlandse Organisatie voor Zuiver
Wctenschappelijk Onderzoek (ZWO).

Appendix

For the formulae in the quusiparticle formalism we
make use of the notation and the results of [15, 31],

has to be replaced by

- Rf5 Us' trpJ') + Rfr2 (sa' tr pf) •

Using the projection method of [18] the residium
integrals /*(pq...r), in the expressions of [15] are
replaced by the quantities li{pq...t), fefined in Eq.
(4.3) of [18].
The relation of the broken-pair states (2.1) and (2.2)
to the number-projected quasiparticle stales of [15]
i

'fit
|JM)a*o,+ a.; 1

with

(A.I)

(A.2)

(A.3)

A1. Matrixdements of the Hamilumiun

In [15] the matrixelements of the Hamiltonian H
between two number-projected 1 quasiparticle (1 q.p.)
or 3 quasiparticle (3 q.p.) states and the overlaps of
these states are given. In Eq. (21) of [15] a misprint
has to be corrected. The term

and

-Jf~tulvcP{abJ)l6KSllr2

where

(A.4)

P(ubJ)[expressinn] = [expression]

- (—)" + ' + 7 [expression with interchanged a and b]
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We define the particle-hole state related to the state
(2,3) as:

TOt

where b* and b are the neutron creation and annihi--
lation operators. One finds the following expressions
for the matrix elements of H:

(A.6)
-Jf-l{ucu,F[crhpJ)I}'(tt)
[-t+'+J vcv,FicrphJ)l}"-2[rc)]

L , F(abphJ) <5C

(A.7)

• Z{cc"p'p

where can be found in [IS],

(A.9)

in which the summation runs over the quantum
numbers (n, IJ) of the quasipartide states,
and

Z(cc'nn')

=[-)<-•+'• F{cc'nri J")ucuc.L
2l>(cc')

-F(c'cnn'J") vcvc. L2p-2(cc')

A,2, Matrixelements of Magnetic
and Electric Operators

The definition of the one body (electric and magnetic)
operator and the conventiones used can be found in
[31]; also the matrixelements for this operator be-
tween two 1 q.p. and 3 q.p. states are given there.
The matrixelemcnts involving particle-hole states are:

(A.11)

??.-1 (h\\Ok\\p> L2"

where x indicates the behaviour of the operator un-
der lime reversal, .v=l for magnetic and .v=0 for
electric operators.

</ i | |O i | |p>(-) x [L 2 ' - J (af) - I 2 ' 1W] (A.13)

(A.10)
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Chapter 5

THE CLUSTER-VIBRATION COUPLING MODEL

5.1 THE PARTICLE-VIBRATION MODEL

The particle-vibration model was originally suggested

by Bohr and Mottelson1-' . One odd particle moving in the

potential due to the other nucleons experiences a potential

V(r) when these other nucleons (the core) have a spherical

distribution. A vibration of the core, described by the

nuclear surface

R(6,4) = Ro[l + Ix y
aXy yx u

( e'* ))' (5-a)

is assumed to change V(r) into

± ] (5.2),0,<(.) = v ( ±
{l + Exy<W8'

which is approximated to first order in the deformation ]{j

parameter o, «

V(r,0,<|>) = V(r) - J, o, Y, (9,<j>) r5—V(r). (5.3) -£

The Hamiltonian of the vibrating core is in lowest order :.!

£i that of a set of independent harmonic oscillators if
§ . i|

where B^ is a mass parameter and C^ a stiffness parameter,

After quantization this Hamiltonian acquires the form

b2yb2y>



49

where B,
(5.6)

and bl is the creation operator of a vibrational quantum

(phonon). The second term of (5.3) now appears as the

particle-vibration interaction or particle-phonon coupling:

HPVC " "iX

One often introduces a parameter2'3)

X •*

2TTC,ax =

(5.7)

(5.8)

thereby neglecting the dependence on the radial wave

function of the particle. One may then write

HPVC - -V^X^V8'*) <b2y + <"> W <5'9>

which is the form which we shall also use in our numerical

work, which is described in this thesis. The total

Hamiltonian of the odd nucleus is now

Hodd ~ Hsingle-particle H PVC
(5.10)

where one may add in the Hamiltonian for the particle a

spin-orbit term etc. to reproduce empirical single-parti-

cle energies.

The effect of HpVC may be illustrated by the diagrams
1*-'

in figure 5.1. Arrows pointing up (down) represent a

particle (hole) with quantumnumbers a or b; the wigly line

represents a phonon with angular momentum X. The diagrams

show the following physical features:

a) a particle in orbit a is scattered to orbit b and a

phonon is created.

b) a hole in orbit a is scattered to orbit b and a phonon

is created.

c) a phonon is annihilated and a particle-hole pair is
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(a) ( b ) ( c ) ( d )

Figure 5.^ Diagrams illustrating first-order coupling between
particle and vibration.

created.

d) a phonon is created and a particle-hole pair is created.

In the particle (hole) vibration model only the diagrams

a) and b) contribute.

5.2 THE CLUSTER-VIBRATION MODEL (CVM)

In the cluster-vibration model the nucleus is described

as a system consisting of a few particles which show up in a

pronounced, explicit way (the cluster) and the remaining

nucleons (the core) which are accounted for by collective,

vibrational degrees of freedom. In this model one usually

considers quadrupole vibrations only22'5-1. The Hamiltonian

now reads

H " H particles riB
H
CVC

(5.11)

where H c v c is the sum of H_vc (5.10) over all the cluster

particles. For example one may adopt a cluster of three

nucleons instead of only one in the particle-vibration

model. In this manner an important part of the Pauli prin-

ciple is accounted for and a broken-pair of nucleons or a

promoted pair of particles appears explicitly. The impor-

tance of including cluster- and vibrational degrees of
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freedom simultaneously has been demonstrated in

refs5'l1'22J. it is customary to write

particles - J ^ p . ^ + j j
V ( i ' J ) (5'12)

where n is the number of particles in the cluster. V(i,j)

is the residual interaction between particle i and j.

We note that the quadrupole residual interaction is al-
»

ready effectively included by phonon exchange as shown in

figure 5.2. The most important components of the residual

interaction are the quadrupole force and the pairing force.

Therefore we take the pairing force with a force strength

G as residual interaction in (5.12).

Then one may write

"particles = Eaeaaaaot " (aa)Aoo (bb) (5.13)

with a=(na,la,ja,ma), a=(na,l&, j a), a=(2Ja+l)S a* creates

a particle in a state with quantumnumbers a and

Aoo(aa) V (j m j -m
'•m a aJa a a1

(5.14)

where a=(n .1 .j_,-m,,) . The model defined by eq. (5.11)

with the assumptions (5.5), (5.9) and (5.13) is the sim-

plest version of the CVM.

Q.Q

Figure 5.2 Phonon exchange causes an effective quadrupole residual interaction.



52

This simplest version of the CVM has some nice properties:

1) The leading effects of the pairing and the quadrupole-

quadrupole force between nucleons are consistently

taken into account.

2) The number of model parameters is relatively small,

via. the single-particle energies e . the phonon energy

hu. the pairing force strength G and the particle-

vibration coupling strength a,

3) The transparency of the model allows an analysis 'in

terms of leading diagrams and thereby enables one to

give simple qualitative interpretations of some pro-

nounced features of the results.

4) The Pauli principle is explicitly treated in the cluster.

Point 4) leads us to mention the fact that the Pauli

principle is violated to a certain extent. One can express

the phonon in shell model degrees of freedom. Some of these

degrees of freedom will also be described by the cluster

degrees of freedom. However, since many shells are avail-

able to nucleons from the vibrational core and since we

expect that the important contributions to these vibra-

tional excitation within the valence-shell for valence-

shell nucleons are of another type than those included in

the cluster, it seems that the contributions to the wave

function of an effective vibrator which involve excitations

to the valence-shell of the cluster are not sizeable.

Furthermore, the phonon might be ot: a very complex internal

structure; for example, in TQM it is a combination of two-

quasiparticle, four-quasiparticle, components. This

might lead to an additional destructive interference.

More complex versions of the CVM may be constructed by

including anharmonic vibrations and/or additional compo-

nents of the particle interaction V(i,j). Anharmonicities

may be explicitly introduced in several ways, for example:

V';
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a) .c] (5.15)

where A,, is the strength of a cubic anharmonicity (h.c.

is the hermitian conjugate of (b^bg^Jg);

b) the SU(6)Hamiltonian for quadrupole motion

h l N + h2

(<b2h
3(<

b2b2b2>0

(5.16)

where

N h2lh2\i

N is the maximum number of phonons.

In the latter case the CVC term of the Hamiltonian is

changed into

HPVC

(5.17)

The form (5.16) of the vibrational Hamiltonian may con-

veniently produce vibrational as well as rotational states

as limiting cases, both for the axial6} and the triaxial7j

rotor. In the rotor limit the coupling (5.17) produces

states similar to those of the Nilsson model and rotational

bands of odd nuclei appear8J. The model with the Hamiltonian

(5.16) is also referred to as TQM; it is equivalent to the

IBA model9-'.

When introducing a more complex nuclear interaction

between the particles one should beware of double counting.

The particle-vibration coupling (5.9) already induces an

effective quadrupole-quadrupole force between the particles
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of the cluster, so it is not allowed to adopt an extra

force of this type between the cluster particles with the

same strength as one needs in models without vibrations.

Electromagnetic properties in CVM

The E2 and Ml operators contain single-particle and

vibrational parts. For n particles in the cluster they

read:

ML(E2) = -4-
sp £"S«>I

J4sp(Ml)

(5.18)

(5.19)

(5.20)

(5.21)

Here L, % and R are the orbital and spin angular momentum

operators of the cluster and the angular momentum operator

of the phonons, respectively. es^ and e are the effec-

tive single-particle and vibrator charge, respectively;

g^, g , g and gR are the gyromagnetic ratios.

Let us comment on the effective charges and gyromag-

netic ratios. The single-particle charge incorporates both

the bare charge and the polarization charge; in this way

we simulate excitations of particles of the cluster to

higher shells, which are neglected in the model. The rough

estimate for this polarization charge is 0.5 for both pro-

tons and neutrons.

In the vibrational E2 operator the estimate for the

vibrational charge is

aVIB

3R§
{B(E2)



55

Throughout the periodic table (except deformed nuclei) it

is mostly between 2 and 3,

For the gyre-magnetic ratio gR the hydrodynamic estimate

is g = -, which represents an upper limit. For the gyro-

magnetic ratio q% free values are used, i.e. 1 for protons

and 0 for neutrons. For gs quenched values are used, as

usually, in the region 0.6 - 0.8 g*ree, where gg
ree= 5.59

for protons, and -3.82 for neutrons. The tensor term, when
^ 6 ® lincluded, has g = 0.2 g^6®/ in accordance with the usual

estimate1°'.

CVM calculations have been performed for a number of

odd-even and even-even nuclei in the region A=40-150 and

A=190-220. The overview of these calculations can be found

in refs.11'12'.

5.3 THE QUASIPARTICLE (CLUSTER)-VIBRATION MODEL (Q(C)VM)

5.3.1 Introduction

The particle-vibration model is especially suited for

the description of a nucleus which has just one particle

(or hole) beyond a magic number. Then this particle (or

hole) plays a r6le which is quite distinct from the other

particles; i.e. this particle moves in the space of valence

shells while the other particles form a closed shell core.

Similarly the cluster-vibration model applies to nuclei

which have a small number of nucleons, two or three, beyond

a closed shell core. The vast majority of nuclei however

has more particles in the valence space. Especially if one

wants to study nuclear systematics, vis,, the change of nu-

clear properties with varying number of nucleons, the

treatment of nuclei with more than three particles in the

valence shell is inevitable.

In chapter 2 we have already discussed a model which

is hoped to be especially suitable for nuclei with many
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valence nucleons. This BCS or quasiparticle model relies

upon the pairing correlations of nucleons which give the

nucleus the properties of a superfluid system. The essen-

tial point is that in such a superfluid system almost all

particles occur in so-called Cooper pairs of time-reversed

orbits and all pairs have the same pair wave functions.

Therefore the description of the system may be mathemati-

cally reduced to the description of only those very few

particles which do not occur in such well-arranged Cooper

pairs. This is further elaborated in chapter 2, sections

3 and 4.

Extensive calculations with a quasiparticle-vibration

model have been performed by Kisslinger and Sorensen13J.

These authors assumed that only one particle of odd nuclei

does not occur in a Cooper pair. All remaining nuclei, i.e.

those that do occur in Cooper pairs in the valence shell

as well as those which form the lower-lying closed shells,

were accounted for by considering their quadrupole vibra-

tional degrees of freedom. This model appeared to be fairly

successful in several regions of the periodic table. These

authors also concluded however that the assumption of only

one quasiparticle is often too restrictive. Some nuclear

states should obviously be interpreted as built of at least

three unpaired particles.

Extensive studies of nuclear structure employing the

three-quasiparticle cluster-vibration coupling model have

not been reported so far. There may be several reasons for

this, of which we mention three.

Firstly the number of configurations which one may build

by angular momentum coupling of three nucleons in five or

six valence shells to the lowest few states of a quadrupole

vibrator is very large and therefore the calculations re-

quire much computational effort. This problem we shall
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K return to in section 4,1 of this chapter.

- Secondly with three active nucleons appearing expli-

citly one may build states which may to some extent be

P: considered as the microscopic analogue of one nucleon

together with a quadrupole vibration. So there is some

?. danger that certain physical states may appear in two

^ ways. This problem is slightly diminished by using only

a pairing force between the nucleons, but should perhaps

" be solved by partly removing certain basis states from

L- the model space. Related with this is the problem how to

*-""; choose the parameters of the vibrator as one cannot simply

1-: state that it is the nucleus with one or three particles

v • l e s s .

Thirdly an extension of the work of Kisslinger and

Sorensen13-' to three-quasiparticle clusters is only mean-

ingful if these are treated with sufficient care, i.e. by

employing nuclear wave functions which properly conserve

the particle number. Such number-conserving studies with

three or more quasiparticles have been performed only a

few times so far11"17-1 and a coupling of such wave func-

tions to vibrator states, which is the main subject of

;j this thesis, has not been attempted before. The formalism

of this is presented in the next section.

5.3.2 Quasiparticle cluster-vibration coupling for

•:', odd nuclei (Formalism)

s

'*;.;: In this section we present the formalism which we used

|£ in the calculations for odd nuclei which are reported in

0:; this and the following chapters. The assumption is that

| the nucleus has an odd number of nucleons, so an odd number

1 of protons or an odd number of neutrons, and that this odd

s number of nucleons of one kind is more than three beyond

v a closed (magic) shell.

Then we proceed as follows:
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a) The odd number of nucleons of one kind is treated in

the BCS formalism (chapter 2) and only number-projected

one- or three-quasiparticle states are considered.

These are of the form: (assuming a certain ordering

a=c •• a=b=c)

and

= (5.22)

JM)

W'c

V a ' ^"lucvc(fiac"br

n,

_(_)a+b+J6 fi )}a+(s
+)P|0>,

ar be p (5.23)

where S = f n ^ 1 Up!)" 1

From these formulas it is obvious that this set is

overconjplete:

Therefore we have used as basis sets in our computer

codes the state (5.22) and a set of states (5.23) ortho-

gonal to this one. This required a transformation to a

new basis; in appendix 1 the transformation is given.

After the transformation the number of states is the

same as for the case of three particles. They read:

ID1D2)MD3»Drm > (5.23)

b) The assumption is made that excitations of the other

kind of nucleons as well as excitations of the same

kind of nucleons which do not play an active r&le in

formulas (5.22) and (5.23), that is the particles in

closed major shells as well as the unbroken p-1 pairs,
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- -5J.

may be simulated by a (harmonic) quadrupole vibrator.

These oscillator states are denoted as

NR> (5.26)

where N is the number of oscillator quanta (phonons)

and R the total angular momentum of these phonons.

As we never consider states with more than three pho-

nons these two quantumnumbers are sufficient to specify

the states completely.

c) The model space of nuclear wave functions for a certain

spin and parity 31* is now built of all possible products

of states (5.25) and states (5.26) coupled to lr+R=J

and u=parity of the cluster states (5.25), since (5.26)

has ir=+. So we have states

(5.27)

d) The Hamiltonian is assumed to be of the form:

~ valence particles Hpvc(i) (5.28)
i=valence
particles

where H v a l e n c e p a r t i c l e s is of the form (5.13),

the harmonic vibrator (5.5) for X=2 and H ^ J i ) is the

expression (5.9) for the i particle and X=2, so

H = Le
a
aIan, " *GLx&BAoo(aa)A0o(bb) +

2 y l i 2 f _ v X a g | y | g . (5.29)

The matrix elements of this Hamiltonian in the space

of states (5.22) and (5.23) may be written as follows:

I "valence particles I *2p+i(p §) ><NR I N R >
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( 5' 3 0 )

and similar expressions with I'J'op+i ̂ ^ a n (V o r

I\p_ ,,((>')> replaced by projected three-quasiparticle1 *p+i
states. The last term of (5.30) may be rewritten by

introducing reduced matrix elements25^ as

-ao/4TT{p,^1'J}<NR| |bt+b,| I N ' R ' X ^ - (r) | \Y*\ U 9_., (r
1 )>

(5.31)

The explicit form of the matrix elements occurring in

(5.30) and (5.31) will be given in appendix 2.

5.4.1 TRUNCATION OF THE MODEL SPACE; COMPUTATIONAL

PROCEDURE

In the CVM with a space built of four or five valence

shells for the cluster and up to three quanta of the vibra-

tor one has typically a thousand or more states for each

value of spin and parity. This means that one has to con-

struct and diagonalize a matrix of the Hamiltonian (5.11)

of dimension one thousand or more for each J1* value and

each nucleus. Moreover if one does not know the model para-

meters (the single-particle energies e . the phonon energy
a

•RtD-f the strength parameters G and a2) from the beginning,

one will perform the computations with several parameter

sets.

Another reason why one would like to choose a smaller

model space is that in a complete calculation several hun-

dreds of the thousand basis vectors will appear with unin-

terestingly small components in the lowest few eigenvectors

which may be compared with experimental data.
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The problem one faces is now that much computational

labour could be saved if one knew from the beginning which

basis vectors contribute very little to the lowest states

and therefore may be discarded. We shall consider here two

criteria:

I: The basis vectors with smallest expectation value of

H are the most important ones.

II: One should include the basis vectors which are con-

nected to the (few) most important vectors according

to the criterion I by large off-diagonal matrix

elements of H.

We shall now illustrate how these criteria work for an

example.

A number "of 7 particles are supposed to be in the

2ds , , Ig7 , , 2ds , , 3si. shells with single-particle

energies 0.42, 0;00, 1.60 and 1.85 MeV respectively.

The other model parameters are tia)2=1.0 MeV, a=0.6, G=0.2.

At most three phonons vjere considered. Then one has for

the 7/z state 973 basis vectors and for the 5/z state

894 basis vectors. For each J11 value these vectors are

now first ordered in a sequence with increasing diagonal

energy", (criterion I) . Then according to this criterion we

choose the first (lowest) 150 vectors and diagonalize H

within this subspace. The number 150 is the same as

usual2 °?>Sj in calculations with the CVM.

Figure^5.3 shows the results of this procedure when one

adopts 147 vectors for the 7/ 2
+ and 152 vectors for the

s / 2 + states as wesll as the results when 140 vectors are

adopted for both 7/ 2
+ and 5/2

+. One may notice that the

lowest 5/2
+ state is strongly depressed (by about 500 keV)

when a few more/;basis vectors are adopted. From a closer

inspection vi learned that this is due to the basis vector

I ̂ 7/i' ds/.2)6d3 , ;
9/2;12> which is connected by a large

off-diagonal matrix*element to lower vectors. This illu-



62

I
o
K

u
HI

m.

5/2

7/2.
5/2
5/2

7/2
7/2

5/2

7/2

5/2.

7/2
5/2

5/2

7/J

7/2

7/2

5/2

5/2

7/2

5/2 152 vectors

7/2 144 vectors

5/2 140 vectors
7/2 140 vectors

Figure 5.3 Energies of the 5/2+ and 7/2+ states calculated with selection
criterion I.

strates that the use of criterion I only is not a very

safe procedure and therefore also the second criterion

should play a role. Before we discuss our adopted proce-

dure in more detail we comment on the applicability of

criterion I only in CVM calculations which have been per-

formed until recently2'3'5'20'22-'. For there is a reason

why this truncation method may work better in the CVM

u,u2-v,v2 u,v2+v,u2

Figure 5.4 Diagrams illustrating first-order coupling between quasiparticle
and Vibration. The strength of the vertices are dependent on the pairing
factors, which are presented below the diagrams.
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than in the QCVM. This may be seen from the diagrams,

presented in figure 5.4, which represent the matrix ele-

ments of Hcvc. The pairing factors, with which the matrix :

elements are multiplied due to the superfluidity correla- i

tions, are u!u2~viv2 f o r t h e f i r s t t w o diagrams and ;
U1V2+V1U2 ^ o r t*ie o t^ e r four diagrams. In the CVM one has

u.=u2=l (particle cluster) or u1=u2=0 (hole cluster) then ;

only the first two diagrams contribute. In the QCVM the •;•

other diagrams become increasingly more important as one

approaches the middle of a shell; u1=u2=v1=
:v2=^/2". One

may notice that among these diagrams there are two which

increase (or decrease) the number of phonons (by one) and

the number of quasiparticles (by two), so they connect

basis vectors of which the diagonal energies differ by as

much as •fiw2+E1+E2>Tiu)2+2A. (A is gap parameter, A=l to

1.5 MeV). Therefore the mixing of basis vectors with quite

different diagonal energies becomes much more important in

the QCVM then in the CVM.

The procedure which we have adopted in our computations

is as follows (for each Ju value):

i) First all basis vectors with certain spin J are 1

ordered according to the criterion I, so the one

with the lowest expectation value of H is given '.

the first position etc. Then we adopt a certain |

boundary energy Efi such that all basis vectors ( |:

|i> with <i|HVIB+Hparticleg|i> larger than E£ are ! * §
rejected. This energy E!I is chosen in such a | |?

way that the number of remaining vectors is large i H

(about one thousand) but small enough to be handled : |t

in the subsequent procedure. This large number of ff

;•• selected vectors spans the "total" space {N^(E!?)}. ; %

I ii) From the "total" space {N^(Eg)} a small number Ni . I

with lowest diagonal energies is taken (say 30 vectors) . ''{••
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iii) In this small basis {N"J} the (total) Hamiltonian
HOCVM i s d i a 9 ° n a l i z e d ' This results in Nj eigenvec-

tors |JN> = I i = { N j a*J |i>, N=l,2,... Nx, with

energies EN.

Assuming that for a comparison with experimental

data only the five lowest states of each J1* value

are interesting, we choose the five lowest states

which have resulted from this diagonalization and

now wish to improve these by including more basis

vectors |k> which do not belong to the space {N1}

but do belong to the preselected "total" space

{N.(E_)}. In order to have a selection criterion

which of these vectors |k> should preferentially

be included we now calculate for each vector |k>

the quantity M

! 5 W ^ I ^ I H I ^ I 2

ISk = I i 5 (5.32)

which is a measure for the contribution of the vector

|k> to the energies of the lowest five states sug-

gested by first order perturbation theory.

Next the N~ vectors with the largest sum (5.32) are

added to the basis {N^}, SO one obtains the new basis

{ N . + N 2 } . In practice we chose N2=
!40.

iv) The procedure iii) is repeated but now starting with

the basis space {BL+N1?} instead of {N^}. Again a new

set of basis states {N,} which do not belong to

lNi+N2} b u t d o belong t o (NJ(Eg)} is selected by the

criterion (5.32) and added. So our final selected

basis space is {N,+N'?+N?}. In practice we take
J J J
N1+N2+N3£150 for all spins. An argument to accept this

total number spin-dependent is that also the total

number of basis vectors of the complete space depends

Ion J*. So we take N'T+N^+N^ a constant fraction of this
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dimension of the complete spaces. In this way we

hope to have treated different spins on equal footing

and thereby to have obtained a result which is the

best to be compared with experimental data. The rea-

son why the criterion (5,32) is used twice to select

another set of vectors is that H connects vectors

which differ by one phonon. So in two steps one may

connect states which differ by two phonons and in

large model calculations we mostly find that vectors

with three phonons contribute very little.

This procedure was checked by comparing its results with

those of a diagonalization in the complete model space

using; the Lanczos diagonalization method23-*.

An example is given in table 5.1. It concerns the

Estate of a system of 7 valence shell particles in the

orbits Ig7/ , 2ds. , 2da , and 3si , with single-particle

energies 0, 0.42, 1.60, 1.85 MeV respectively. The other

parameters are T5.<do=0.6 MeV, a=0.8 MeV, G=0.2 MeV. The

dimensions in the different steps were N^=180, N?=20,
k k

N;|=20, N|=15. The table lists the sum of the percentage

Table S.I "Overlaps" <I^=l'ai'8' i n P e r c e n t a 9 e s o f t h e basic vectors and for

the wave functions of the J = V J + states. For parametrization see the text.

1

21

41

61

81

101

121

141

161

1 2 3 4 5 "' 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

61 45 5 4 45 42 30 5 2 0 8 1 1 4 9 0 0 1 4 2

5 2 3 4 1 5 7 U . 3 5_

2 4 1 1 1 ,

3 1 1 4 . 5 2 2 3 1 , 2 2 2 I 1 4. 5 5 5 i

i 1 1 _ _ 5
3 2 1 1 3 1

2 2 2 2

1 1 1 2

20

40

60

80

100

120

140

160

180

Each position of the 20 » 9 matrix corresponds to one of the 180 basis vectors.
For every basis vector |i> the "overlap" is given. Only "overlaps" >1 per cent
are presented. The 20 vectors of the preliminary basis are presented in the
first row. In the rest once underlined "overlaps" correspond to the step (iii)
and those which are twice underlined correspond to (iv). The total number of
selected basis vectors is 55.



66

- 2 r

111

- 4

- 6

S/J

5/2

7/2
7/2

5/2

7/?
'll'l

5/2

7/2

5/2

Lowest
vectors

( a )

7/2

5/2

7/2

5/2

5/2

5/2

100 selected
out of 250

( b)

7/2

5/2.

7/2
5/2

7/2
5/2

100 selected
out of 500

( c )

7/2

7/2
5/2

7/2

5/2
5/2

7/2 5/2

100 selected
out of all

( d )

Figure 5.5 Energies of the 5/2 and 7/2 states. The spectrum (a) is
calculated with selection criterion I. The other spectra are calculated
using 100 vectors selected by criterion II; the number of vectors used
in the selection is given below.

of the 180 basis vectors in the lowest five states after

the complete diagonalization (the numbers should add up

to five, but numbers smaller than 0.01 have been omitted).

The first 20 vectors belong to the set {N * } , the under-

lined ones belong to the set {N|} and those of the set

{N|} have been underlined twice. One may notice from the

table that our procedure has indeed selected practically

all the important vectors. This selection was obviously

much better than a straightforward selection of the first

55 vectors based upon the diagonal energies only. An impor-

tant point is that no relatively large component, which

could cause a large energy shift, has been missed.

Another illustration is shown in figure 5.5. Displayed

are the results for the 7/2
+and 5/2

+states calculated with

147 and 152 vectors respectively, which were selected with
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the diagonal energy as the only criterion. These are the

same as in figure 5.3. Next the results of our selection

procedure are shown for several cases, vis. the vectors

N^15, N^=15, 1*2=70 were chosen out of N^=250, 500 and

all possible 973 vectors. As expected the higher states

are the most sensitive to the number N^. One may notice

the 100 vectors selected by our stepwise procedure yield

lower energies than 150 vectors selected by the diagonal

energies only. We mention here that the same calculations

as presented here for particle number 7 were also performed

for particle number 3 (the CVM). Then our procedure also

yields an improvement over straightforward energy-trunca-

tion. The effect is smaller then, because, as we discussed

in the beginning of this section, the coupling between

vectors which differ much in energy is not so strong.

Finally we present a comparison of our procedure with

a complete diagonalization for a case with very strong

mixing of basis states. For this purpose Hui- was lowered

to 0.6 MeV and all other parameters were kept the same as

before. The maximum number of phonons was now two, however.

In figure 5.6 the results of a stepwise selection procedure

(Nj+N.+N^lSO) and those of a complete diagonalization

(N<436) are displayed as well as those of a truncation

based on diagonal energies only (N£150). One may notice

that although in this case of very strong mixing of basis

vectors our procedure is not quite satisfactory, especially

for the V 2 states, it does yield a large improvement over

the old energy-truncation procedure.

From these illustrations one may conclude that our

truncation procedure is a useful improvement over straight-

forward truncation by considering the diagonal elements

of H only. It is certainly to be recommended when many

calculations with different model parameter sets have to

be performed. In cases of strong configuration mixing a

straightforward diagonalization by the Lanczos method
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Figure 5.6 Spectra calculated with selection criterion I I , the Lanczos
method (diagonalization with a l l basis vectors), with selection
criterion I . The numbers below the spectra are the energies of the
ground s t a t e s . In the Lanczos method the number of vectors used are:
180( l /2 + ) , 328(3/2*), 413(5/2+) , 436(7/2+), 395(9/2 ) , 323( l l /2 + ) .
For the other calculation these numbers are 58, 105, 133, 144, 135
and 117 respectively.

'•S
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t
l
ii

(which is for a thousand basis vectors at least ten times

more time consuming than our procedure selecting 150

vectors) may be required to obtain more precise final

spectra.

5.4.2 Some properties and illustrations of the QCVM

In order to demonstrate the main QCVM features, we

compare here the results of models with a different com-

position of the cluster, viz.:
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1QP : one-quasipartlcle cluster, no particle-number

projection

1QP+NP: one-quasiparticle cluster, with particle-number

projection

3QP ; one- or three-quas ipar tide cluster, no particle-

number projection

3QP+NP; one- or three-quas ipar tide cluster, with particle-

number projection (QCVM)

The model 1QP coincides with the familiar quasiparticle-

vibration model for odd-A nuclei13J. Models 1QP+NP and

3QP are developed as transitional models between 1QP and

3QP+NP in order to illustrate the physical correlations of

QCVM. We are now able to investigate:

a) the effect of particle-number projection (NP) on the

spectra,

o) the effect of including a three-quas ipar tide cluster

in addition to a one-quasiparticle cluster,

3) the dependence of the excitation energies on the (odd)

number of particles.

Before presenting results we comment on these points.

a) The effect of NP has been investigated earlier in

(number-projected) two-quasiparticle21J, three-quasi-

particle1'*'' and four-quasiparticle15-' calculations.

In these calculations the effect of NP on the energies

calculated for the Hamiltonian of the valence-particles

is important. If one couples a quasiparticle cluster

to phonons then also the coupling matrix elements of

HPVC become important; in general the effect on the

coupling dominates. Therefore, when discussing NP, we

shall now only mention the effect on the coupling.

b) The type of states one allows for by admitting three-

quasiparticle clusters in addition to a one-quasi-
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d 3/2

5
J
9

s 1/2
Ml/2

d5/2

Figure 5.7 The single-particle levels,
used to calculate figs. 5.9-5.11 ,
The broken lines correspond to the
position of the Fermi levels for 3, 5,
7 and 9 holes.

V;

particle cluster is in principle the same as in the

case of particles. This subject has been discussed

in ref.22'.

c) The QCVM enables us to calculate the spectra (and other

spectroscopic properties) of a series of odd nuclei

with the same parameters. So systematic changes of

nuclear properties with particle-number should be ac-

counted for by this model, where in principle the same

parameters should be suitable for a whole sequence of

;"j nuclei.

We shall now present results of calculations with the

parameters of ref.20J for 133Xe:

e(d3, )= 0.0 MeV e(si,

i- e(dS/2)=-1.7 MeV

I a = 0.4(in
is

I In figures 5.9-5.11 the excitation energies of the negative

I parity states are given for n=3, 5 and 7 holes in the

I single-particle space. Figure 5.7 shows the single-particle

t space with the energy of the Fermi level for these

; situations.

I First we comment on the most important configurations

and coupling matrix elements in these calculations, in

G

=

= - 0 .
= 0 .

0 .3)

6
1

MeV
MeV

e(hi 7a )=-0
= 1

.8

.0
MeV
MeV
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Kit8
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i.2 Some

I* »
2 11; Ix

2UJVJ

)2 it: /i

2«uvi.

|un*-vn*|

important

>

>

*

3QI

1.

0

-0

0

3

0

n=

coupling

3

• 3QP+NP

66
93

81
25

71
• 97

2,

(0.

-0.

(0)

3.

(1.

50

87)

39

80

0)

matrix elements

3QP

0.

0.

-1.

0.

3.
0.

n==5

3QP+NP

96

55

73
53

25

84

0.81

(0)

-0,75

(0)

3.73

(1.0)

3QP

1.

0.

-2.
0.

2.
0.

n=7
3QP+NP

00

56

61

80

30

60

0

(0)

-2

(0

2

(0

92

43
55)

72
83)

3QP

0.

0.

-3.
0.

1.

0.

n-9
3QP+NP

95
53

07
94

31

34

0.88

(0)

-3.21

(0.87)

1.58

(0.5)

Coupling matrix elements in the models 3QP and 3QP+NP are given between the
configurations |ll> and the configurations listed in the first column. Also
the corresponding pairing factors are presented. Between brackets the pairing
factors for a normal distribution (without pairing correlations) are given.
The symbol n denotes the number of holes in the 50-82 shell.

order to clarify the effect on NP. The most important

configurations are

1 5
/a (5.33)

We have adopted the notation II = ll/z etc.

The most important coupling matrix elements are the

matrix elements which connect the states (5.33). In table

5.2 a few of these matrix elements are shown for u=3,5,7

and 9, both with and without NP, together with the pairing

factors 2uv or u2-v2. The numbers in parenthesis in the

colums "NP" are the values of the "pairing factors" calcu-

lated with a distribution without pairing, i.e. the parti-

cles are placed in the orbits with lowest energy. The main

effect of NP is that the pa'ir-distribution becomes less

diffuse; as should be expected because states with wrong

particle number are removed. This changes effectively the

factors 2uv and u2-v2.
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1 .
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OCCUPATION PROBABILITY V

Figure 5.8 2uv and ua-v2 as functions
of v 1 . The function 2uv has steep
slopes at v2=0 and v2 = l .

1

In figure 5.8 the factors 2uv and u2-v2are given as

functions of the occupation probability v2. The steepest

slopes in this figure occur in the curve for 2uv near

v2=0 and vz=l. These values of v2 correspond to the fac-

tors for the coupling matrix elements, which connect

states containing a one-quasiparticle cluster with states

containing a three-quasiparticle cluster; the two addi-

tional quasiparticles should be both almost particles

(v2=0) or both almost holes (v2=l). The NP changes ef-

fectively the occupation probability v2; the effect of

this change on the coupling matrix element will be strong-

est in the above mentioned cases.

In table 5.2 the factors for a distribution without

pairing correlations are indicated in brackets. In general

one sees from table 5.2 that if the pairing factors in

brackets are larger (smaller) also the corresponding

matrix element become larger (smaller). There are two

exceptions viz.:

<ll| |Yi| | (32)2 l V / 2 > for n=3 and

<ll||Y2||(l'i:
2)2 l V / 2 > for n-9.

v
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Figure b.D The negative parity spectra
obtained by the models 1QP, 1QP+NP, 3QP
and 33P+NP for three holes.

1.51-

1.0

©
0:
Ul

Ul

u
Ul

7 holes

9/2.W2
11/2

li/2

7/2.13/2.15/2

11/2 11/2 11/2 11/2

1QP 1QP+NP 3QP 3OP+WP

Fiaure 5.11 The negative parity snectra
obtained by the models 1QP, 1QP+SP, 3UP
and 3QP+NP for seven holes.
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For n=3 the 3/a+ level is near the Fermi level and for

n=5 the xx/z~ level is near the Fermi level. In such a

case it is difficult to predict what effect NP will have

on the matrix elements. The matrix elements

<li\ |Y2|I(^
2)2 ll;l> are important for n=3,

<\\\|Y2|j(lT
2)2 1̂ ;I> for n=7 and 9 and

<l\\ |Y2| |ll> for n=3,5 and 7, because they are large in

these cases and connect the dominant configurations of

the lowest states.

Let us now turn to the calculated spectra, which are

shown in figure 5.9. For n=3 the models 1QP and 1QP+NP

show a quintuplet V I 1 5 A with configuration

|l1:;12>- at about 1 MeV. The NP has hardly an effect on

the spectra. The important configurations for the quin-

tuplet are |ll,12> and |l^,2R> (R=0,2,4); quasiparticle

states are coupled by the matrix element <lY\|Y2||ll>,

and this does not change much by NP.

The spectrum calculated by 3QP shows an additional

quintuplet based on the cluster configuration

| (iz)2 ll;I>. As we have seen before the coupling of this

j configuration to the configuration |l3l?l2> increases con-

1 siderably by NP. This is reflected in the large downward

\ shift of the 7/2~,
 15/*~, 1 3 A " and 9/2" states, if NP is

; performed.

\ The spectrum of 3QP+NP resembles the spectrum shown

I in figure 2 of ref.20J, which was calculated with the

| CVM, but with a=0.3. The model 3QP+NP (QCVM) for n=3 is

I equivalent with the CVM. In figure 5.10 the negative-

parity spectra are shown for n«5. The Fermi level is now

closer to the 5i, level. Therefore the
1(1^)2 ll;I = 1/z~ 15/2~> configurations become more
dominant instead of the configurations

| (31) 22 1^;I = 7/a" l*/z~>. The coupling matrix ele-

ments (which are not shown in table 5.2) are not influenced

\
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much by the NP.

In figure 5.11 the negative parity spectra are shown

for n=7. As the Fermi level is now closer to the h u /

level the configurations |(l!2)2 1^;I = 7/z~ 15/z >

become important. The coupling of these configurations

to |ll,12;I = 7/z~ ..... 15/2> is also much stronger

than for n=5. KisslingerZHi pointed out the importance

of the inclusion of configurations |(j3)l = j-l> for the

lowering of the lowest state with spin I = j-l« This

state is indeed the lowest of the quintuplet now. For

stronger coupling this state even may become the ground

state.

Summarizing we conclude that NP is important for the

coupling matrix elements and therefore for the excitation

energies. With the QCVM one is able to calculate the pro-

perties of a series of nuclei in the same parametrization.

In the next chapter we shall apply the model to the odd

Zn isotopes.

lih

'!•'•

K
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Appendix 1

The transformation of the overcomplete three-quasiparticle

basis to an orthogonal and normalized basis is done as

follows.

The overcomplete unnormalized basis reads:

(Al.l)!*2p +l
( j2 j2°' r ; p ) > = *2

From the space, spanned by

then a basis (Ji,

one vector is removed;
1 Tn

is formed by Schmid-orthogonalization.
where <t>2 <l>n are orthogonal to i|<0 and to each other.
The new normalized basis reads:

(A1.2)

1 )nJn'

The transformation matrix A.,, which is printed in the com-

putercode TQD, gives the relation between the overcomplete

normalized basis and the new normalized basis:

ik
(-A1.3)

Another orthogonalization problem may also occur.

If Jrl
9/z and jg>.

9/2 then I (DsDs)23fs; Jr> is not orthogonal
to the basis (A1.2). In this case the vector

'*2p+l(:'s^s2:'s;p)> is a d d e d t o t h e basis (Al.l) before the
removal of the spurious state and the orthonormalization.
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Appendix 2

THE MATRIX ELEMENTS OF

The matrix elements of between two states reads

p«tiolaJ*2p+l«2)><llBlBR>

?{J, R, J}<NR||bJ+b2||N'R'><i|»2p+1(l)||y*||«2p+1(2)>
(A2.1)

where |i|>21(i)> (1=1,2) are one-quasiparticle or three-

quasiparticle wave functions with angular momenta r and r1

First we evaluate the matrix elements with the phonon

wave functions |NR>.

<NR|N'R'> = SNUISRR. for N<_3

<NR||b++b2||N'R
I> =

(A2.2)

where

<NR| |b!||N'R'> = (-)R*R*

(A2.3)

(A2.4)

The boson fractional parentage coefficients <NR|}N-1R'>

are given in table A2.1 (from ref. 1 8 J).

Next the matrix elements

<*2p+lU^valence particles' *2p+l(2) > are given;

they are taken from ref.1**-*.
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Table A2.1

N=3 R

0

2

3

4

6

R1
N'=2

0

0

/7/15

0

0

0

2

1

/ITU
/57T
•11/21

0

4

0

•12/35

-/27T
•10/21

1

Hvalence particles I *2P+l

ll (rr),
(A2.5)

P(pqJ')6p t6g r + S j . Q f i ^

^R2P(ttr)P(pqJ')6pt6qr + (A2.6)

<*2p+1(abJc;p)|Hvalence p a r t i c l e s k 2 p + 1 (pqJ ' t ;p )>

- R20(

P(pqJ'

(pqtraJ'
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i:

R2p(apr) + R2p~4(rrap) - 2R2p~2(rrap)

+ R2p(rrap>] - fr^ r" ucvc*<abJ)6ac6br*

RJrJ, (abc;pqt)

+ R2P"2(cabc)]

2

x ^t r R22

P(abJ)P(pqJ') fs JJ'J"2(-)a+b+I"l'c*
v. aP

The overlaps between the basis states are:

<1'2p+1(p)|*2p+1(abJc;p)>

ucvc

< P(abJ)6ac6brfL
2p"2(ab) - L2p(ab))}

<*2p+l ( a b J c ; p ) l*2p+ltpqJ't;p)> =

(A2.6a)

(A2.7)

(A2.8)

I'

1
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L2P"2(abc)RJrJ,(abc,pqt)

x[L2p~4(apq) - 2L2P"2(abq) + L2p(abq)]}

- { a«--»-p, b-*-*q, e*--*-1, J-*"*-J'}

-2L2P"2(ctr) + L2p(ctr)]

The quantities R are defined as

RJlrJ(abc;a'b'C) = P(abJ'

R^3(abcd tJ) = hi {G(abcdJ) fuaubudv

*Lk~2(p t) - vavbvdu

+ (_)
J+c+d

F(abdcJ)(uaubudvcL
k~2(a.

.k-4
" F ( a b c d J )

t} "

.t) = Ia2v2eaL
k"2(ap.. t) +

(A2.9)

(A2.10)

I t)
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+uavaubvbG(aabb0)L
k"2(abp t) J , (A2.12)

(pq t) = -2pupvpepL
k~2(pq.....t)

_v_v^F(aappO)Lk"4(apq t) -

a p p

-uavaG(aappO) fvpL
k"4 (apq t) - u2Lk"2 (apq t) J},

(A2.13)

Rk
x(pq t) = ep[u

2Lk(pq t) - v2Lk"2(pq t)]

F ( a a p p 0 ) f u L ( a p q t) -

-v2Lk"4 (apq t) I - u_v_uvG(aappO)Lk~2 (apq t) } ,

p J a a p p (A2.14)

Rk
2(abcdeJ) = k P(abJ)P(cdJ)f

xLk"2(abcde) + v v, v v,Lk~6(abode)|G(abcdJ)
a D C Cl J

+4vaubvcudL
k~4(abcde)F(abcdJ)}

where G(abcdJ) and F(abcdJ) are the particle-particle

and particle-hole matrix elements of H v a l e n c e p a r t i c l e s.

For the pairing interaction with force strength G they read

2, -S,
a b

F(abcdJ) - (-)J+^a^b G6ad6bc {A2'l5)

For the single-particle states the coupling order

I + s = ] is adopted. The angular part of the single-

particle wave function is the (8,<j>) of Condon and

V
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Shortley (1935).

P(pqJ)(expression) * (expression) + (-) Tp~q(expression

with p and q interchanged), (A2.16)

{p«--*q} means: the last expression between the brackets

{ }with p and q interchanged. (A2.17)

The formulas above were taken from ref.ll>J; however, the
v

residual integrals I (pq.....t) were replaced by the

finite sums L (pq t). The advantage of the latter sums

is elaborated in ref. l9J.

The sums L (pq t) are defined by

i M

m=l

where pa = (u& + Z ^ )

-k, -2 n 2
i n p

ct>0 a

(A2.18)

Zm = exp (iirm/M)

M should be odd. In ref. 19-* it is shown that the applica-

tion of the sums L (pq.....t) remove all contributions

from the wave function with a particle number different

from 2p + 1 + 2rM (r integer). So for sufficiently large

M only components with particle number 2p + 1 are taken

into account.

Lastly we give the reduced matrix elements of a tensor of

rank X (X+0)

<*2p+1(abJc;r)||Qx||4)2p+1(pqj't;r')> =

= -£r'JJlP(abJ)P(pqJI)<p||Q I|a>
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,_xr'-C+p+q+X+J+J'fX J J'i r\ J J'
( } *c r'r ' )b p a

|QX| |a>f (-)
XuautL

2p"2(abct)

3.

,c-r+J "<t||QX||c>[(-)
XucutL

2P"2(abct) .

S'P(pqJ')6pr {
S
t
 S
r\

J
x'} <t||Qx||q>(utVg+(-)

XVtuq))

" L2P"4 (pqat)) +

Jr"1ucvc(L
2p~2(pqct)- L2p"4(pqct))P(abJ)«ac5b

cv c

r"r'+X+X

6ac 6br N ( c p )

(A2.19)
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f

where

N(ps) = (-)\ur,(L
2P(psrr') - 2L2P"2(psrr') +

+ L2p"4(psrr')) - vrvr,[L
2p"2(psrr') - 2L2p'4(psrr'

pr
P J.J'l <t||Qx||q>(tttvq +

L2p"2(pqt)

- vrvr,(L
2P"2(prr•) - L2p"4(prr•

(A2.20)

= <r||Qx||r'>[urur,L
2P(rr') - (-)Xvrvr,L

2p"2(rr1)](A2.21)

The reduced single-particle matrixelement of the ^

operator between harmonic oscillator wave functions

is defined as:

a- b<a||Y2||b> = (-)
a-b<b||Y2||a>

_ } (A2.22)
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Chapter 6

APPLICATION OP THE THREE-QUASIPARTICLE CLUSTER

VIBRATION MODEL TO ODD Zn ISOTOPES

Abstract: The three-quasiparticle cluster vibration

(QCV) model is applied to the odd Zn isotopes. It is

concluded that the inclusion of a three-quasiparticle

cluster is essential for the properties of the low-lying

states in the Zn isotopes. A comparison with other model

calculations is made; the QCV model yields spectra and

electromagnetic properties, which agree with experimental

values as good as a much larger shell model calculation.

6.1 INTRODUCTION AND CHOICE OF THE PARAMETERS

In chapter 5 the QCV model was introduced. The model

contains collective and single-particle degrees of free-

dom, viz.i vibrational (harmonic) phonons (with a phonon

energy tiw) and a number-projected three-quasiparticle

cluster, respectively. In chapter 5, section 4.2 the im-

portance of particle-number projection is shown. The

quasiparticles occupy certain shell model single-particle

orbits with energy e; the residual interaction is a pair-

ing force with strength G. The coupling between the pho-

nons and the cluster is a quadrupole coupling (5.9) with

strength a. The model is an extension of the Alaga model

or (three-particle) cluster vibration (CV) model.

As an illustration we have applied the QCV model to

the sequence of isotopes §iZn3i, SilZnaa, UZnas and
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-, with n=3,5,7 and 9 particles in the N=28-50

neutron valence shell, respectively. Of these nuclei 67Zn

has been treated previously in the CV model, by assuming

a N=40 subshell closure, i.e. a three-neutron-hole clus-

ter in the N=28-40 subshell1'2J. So, the neutron can

occupy the 2p 3 / 2, lf5/z and 2pi/z orbits. Here we adopt

the parametrization from ref1J and perform the calculation

for the whole sequence of_Zn nuclei, Jay changing only the

number of valence-shell neutrons.

The parameters arex J:

= 1.2 MeV

a = 0.81 MeV

G = 0.4 MeV

e(fs

e(pi

) = 0.76 MeV

) s 1.08 MeV

The single-neutron energies are taken from the experimen-

tal data for 57Ni. The phonon energy "nco is about the

energy of the 2+ states in the Ni-isotopes. The pairing

strength G is a little higher than the estimate 23/A to

account for the omission of the g9/z orbit; besides, the

results are rather insensitive to the value of G. The va-

lue of the coupling strength a is fitted to the spectrum

of 67Zn. The value of a=0.8l MeV is in good agreement with

the estimate for the particle-vibration coupling strength18

a =
(6.1)

If we use for the radial coupling matrix elements <k> the

value 40 MeV, then we obtain for 6zNi a=0.9 MeV and for
6*Ni a=0.8 MeV.

The parameters are taken constant for all Zn isotopes.

In a more detailed calculation, the dependence of the

phonon energy -fim on the particle number A should be taken

into account. However, in even Hi isotopes these changes

are rather small, so we take the same "no), in order to

demonstrate clearly the effect of the particle number in

the valence shell. An analogous argument applies to the
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strength a. It should be stressed that we take here a

parametrization of the CV model for 67Zn, without read-

justing any of the parameters for 6i'6"65zn.

6.2 SPECTRA AND WAVE FUNCTIONS

First the BCS gap equations are solved; the resulting

values for u,v,A and E are listed in table 6.1. Without

the particle-vibration coupling the values of the quasi-

particle energies E. determine the states below 0.5 MeV.

For 672n the ground state has spin l/2~ then, but the

structure of the low-lying states are already roughly re-

produced by the one-quasiparticle configurations only.

The spectra, calculated by the QCV model for this

parametrization a::e compared with the experimental spectra

in figure 6.1. In the calculation phonon states with only

up to two phonons are included. One may notice from the

figure that the spectra of the lighter isotopes are re-

produced equally well as the spectrum of 67Zn. This gives

some confidence, that the model may indeed describe the

states of these nuclei equally well as the CV model does

for nuclei with only three particles beyond a closed shell.

So we believe that the QCV model wave functions can tell

something about the properties of the nuclear levels.

These wave function are presented in tables 6.2 - 6.5 for

the low-lying states of 6lZn - 67Zn, respectively.

Table e.l The BCS solutions for •»'»»»«»»»»s n.

3/2 0
5/2 0.76
1/2 1.08

A(MeV)

3 5 7 9

0.48 0.69 0.82 0.90
0.15 0.30 0.51 0.72
0.10 0.20 0.34 0.54

0.95 1.08 1.10 0.98

Ej (MeV)

3 5 7 9

0.95 1.17 1.42 1.63
1.33 1.17 1.10 1.09
1.59 1.36 1.16 0.98
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Table 6.2 Wave functions for 6lZn.

\

1

(1 /2) !

1
\,X2
<3"a)2$;l/2
(l')03(?3/2,12
(3ll)2$;l/2
# a ) 2 l [5/2,12
(^1L)2%: 3/2,12

(3 /2) 2

31,12

(ta)o3l
$.12
(3ft)25"i3/2
$a)2$,7/2,12

(5/2)2

31,12
(3)2)2ls5/2
($ )23f;5/2
(3la)2%i9/2,12

(7 /2) 2

31.12

\%l\2%
<l!)03\-3/2.l2
(3fl')25'
(5(l)lS;7/2,12

.37

.47

.20

-.22
.27

.21

-.21

.39

-.21
.31

-.31
.20

.54

.35

-.21
.23

.60

.26

.24

.26

-.21

U/2>2

1
3(,12
(3(1)2$;5/2,12
($.12

(3/2)3

3(
3(,12
$.12
1.12
(3(l)2ls3/2.12
(Ss)2lf3/2

(5/2)3

%

$.12
(?fl)2$j5/2
1.12
3(.24
(3(1) 2%; 5/2

(9 / 2 ) l

Sr,i2
(3fl)251

(3(1)25
(3(2)2?!;9/a,12
(3(1)2%;7/2,12

.54

.50

.22

.15)

-.26
-.24

,33

.44

-.22
-.24

.25

.37

.24

.40

.20

.25

.62

.32

.27

-.20
-.24

(3/2),

(la)o3(>3/2
(3l»)?-l:!5/2,12
rtl!#j3/a,i2

(5/2),

%

$.12
(la)0$s5/2

(7/2),
$.12
(3(2)2?i;7/2
($1)23(i7/2
$.24
(il)43l;7/2,12
($i)43i;ll/2,12
(3(1) 2%; 3/2 ,12

(H/2 ) 1

(Sa)45(,-ll/2
5.24
(3»)2%.7/2,12
(5M23TS7/2.12
(%2)4^|11/2,12
(S2)43(>7/2,12
(3d)2%,-7/2,12

(Sa)43ft7/2,2Z

-.62
- .24

.25

.21

.61

- .36
.20

- .50
.29

- .21
.20

.20

.24

- .22

.49

- .31
.30

- .27
- .24
- .20

.27

- .25
.21

The following simplifying labelling is used for the quasiparticle states: ^Ep^/),
3l=pi/2. %;fs/i. The three-quasioarticle cluster is written as (afe)Ji,!i;j where
the angular momenta of quasiparticles a and b couple to J u ; j is the total angu-
lar momentum of the cluster. The phonon quantumnumbers N(number of phonons) and
R(angular momentum of the phonon state) are added if N^0. Only components with
amplitudes larger than 0.2 are presented.
The number of valence-shell particles is n=3.
(ll)0i( stands for: 0.25|3"> + 0.511 fi*)tft> - 0.1l| (<i'2)0̂ > - 0.53| (5*i)O3'>
(\i)0% stands for: 0.05|SS + 0.54| ('2(J)0%> - 0.261 (l2)0?r> - 0.49| (%2)0?!>
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Table 6,3 Wave functions for "Zn.

•U/2),

"t
$,12
31,12

(3/2)2

3i
$.12
31,12

(3ft) 2$, 3/2
<%a>2l;3/2

(5 /2) 2

5",12
31.12
(3ll) 2^(5/2
(3ft) 2%; 5/2

(7/2)2

$.12
3U2

,S8
.34

- . 2 1

. 23
- . 6 3
- , 2 2

.21
,22
.22

.21
- . 7 2
- . 2 0

.22

.30
- . 7 1

I
3f,12

(S*)ol

5\l2
31.12

Ut
$.24

!(,12

U/2>2

?l/2

(3/2)3

(5/2)3

t;5/J

( 9 / 2 ) t

S.ia
(3ft>25">9/2

- .39
- .59
- .26

.21
- .52

.46

.21

.59

.43

.20

.78

.20

( 3 / 2 ) l

3(
31.12
3f,2O

(5/2)j

5-.12
1,20

(7/2)x

$.12
31,12,
(3ft)2$i7/2
(?(a)4^;7/2

(11/2)!

rt-iiWa

31,24
(%2)23( (7/2,12
(3ft)2%;7/2,12
(3ft) 2%; 9/2,12
(?;2)4l;.-7/2,12

.69

.32

.22

.71
- . 2 6

.23

.68

.32
- . 2 2
- . 2 4

- . 3 8
.50
.35
.30

- . 3 7
.21

- . 3 0

See for the description the caption of table 6.2.

The number of valence-shell particles is n=5.

(P)0t stands for: 0.22|l> + 0.58| (3(l jot* - 0.47|(%2)0^>

(ab)J12c*j stands for the cluster state with three quasi-

particles in orbit with angular momenta j.=a/2, J2=b/2 and

jj=c/2; jĵ  and j 2 are coupled to J12 and the angular momen-

tum of the cluster state is j. One-quasiparticle states

with angular momentum j/2 are written as 3. Phonon quantum-

number N(number of phonons) and R(angular momentum of the

N-phonon state) are added if N+0. Note, that the configura-

tions of the type |(]a)0r> are in fact linear combinations

of seniority v=l states for spin j r ; the latter states are

linearly dependent (see chapter 5, appendix 1). The linear
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Table 6,4 Wave functions for " Z n .

d /2) l

$.12
3*,«
($a)2^15/2,12

(3/2)2

$.12

31.12
($*)2$f3/2
($>)2l;I3/2

(5/2)2

$.12

1.12
31.12
($*)2l!5/2
(3ft>2$?5/2

(7/2)2

$.12
$.12

.35
-.32

.23

.63

.70

.24

-.24
-.26

-.61
-.32

.35

.21

.25

-.24
.76

(l/2)2

1
$.12
3(,12
(3if)2$il/2

(3/2)3

3f

$.12
(3ft)2$}3/2

(5/2)3

$.12
1,12
3(.12
(3"2)2l;5/2

(9/2) 1

$.12

.42
-.33

.51

-.21

.20
,59

-.46
.20

.22

.31

.65

.20

.80

*

$.12
31,12
31,20

$
$.20
($1)4"

$.12
3(.12
($2)4:

$.24
($2)4'

(3/2)j

(5/2)i

(7/2)x

(11/2^

($1)2$;7/2,12

.67

-.22
.34

.23

.74

.24

.25

.75

.22
-.29

-.69
.46
.29

See for the description the caption of table 6,2.
The number of valence-shell p a r t i c l e s is n=7.
fr)0\ stands for: 0 . l8 | l> + 0 .63 | (3f1)o'i> + 0.40|

combinations may be different for different particle

numbers.

From tables 6.2 - 6.5 one sees, that the dominant

configurations of the low-lying states are one-quasi-

particle configurations and one-quasiparticle-coupled-

to-one-phonon configurations. The admixture of the three

quasiparticle cluster states are considerable, however.

In 65'67Zn the seniority three cluster state |($2)2$

is responsable for pushing down a 3/2~ state with main

configuration |!J,12> to low energy. This low-lying 3/2

state has a large B(E2) value to the ground state 5/2~
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Tubls e.S Wave functions for '7Zn.

(1/2)j

1
S.ia
(3ll) 23)1/2
3.12
(3l)2lj3/2,12
(3')2l)5/2,12

(3/2)2

J
3),12
3(.2O
(3(1)23)1/2.12
(3(1)1?; .-7/2,12

(5/2)2

1.12

s
(!2)o3;5/2
(3*)2l)5/2
3(,12
(3(1)23)5/2

<7/2)2

31.12
(3(1)1?!; 7/2
(3d)2S.-7/2
(3ll)l3s7/2,12

.56
- .36

.22

.28

.24

.27

.58

.36

.20

.21

.20

.37

.39

.23

.25
- .30

.26

- .59
- . 3 3

.20
- . 2 5

U/2)2

1
3,12
3,12
(3(1) 23)1/2
<3ll)23}3/2,12

(3/2)3

1,12
3,12
3f,12
(l*)03(;3/2
(3(1) 2%) 3/2

(5/2)3

1.12
($2)21;5/2
3(,12
$.24
(3(1) IS1; 5/2,12

(9/2)j

3.12

(3 l)4l;9/2
(Kt)2%f9/2
(3(l)2'*i;9/2,12

-.46
.40

,21
.31
,25

.65
- .22

.26
- .21

.24

- .46
- .23
-.42

.20
-.21

.65

.23

.30

.22

(3/2)i

31
3,12
(5"l)2l)3/2
(3l)23j3/2
(3(1)23)3/2
(3a)2l|3/2,12
<3J)41)7/2,12

(5/2)x

3
3,12
3,20
(3')2l)3/2,12
(32)4l»7/2,12

(7/2)x

3,12
(3!)4l)7/2

(11/2)^

3,24
(32)43(;ll/2
(32)4l;7/2,l2
(3(l)23j7/2,12
(3(1) 23 ,-9/2,12

- . 2 1
.54

- . 3 5
- . 2 2
- . 2 2

.21
- . 2 1

.64

.26

.22

.22

.30

.60
- . 4 0

- . 4 3
- . 4 0

.46

.27
- . 2 4

See Cor the description the caption of table 6.2.
The number of valence-shell particles is n=9.
(l!)o3t stands fort -O.I3|3(> + 0.07| (3C)o3l> + 0.641 (t2)o3(> - 0.351 (?(2)o3(>
(ll)0?l stands for-. -0.n|?l> + 0.02| d')&> + 0.65|(12)0%> - O.42|(^J)O%>

f

h.

with main configuration

Another representation of the wave functions is given

in tables 6.6 - 6.9, where is shown how the wave func-

tions are decomposed into four types of configurations.

v^a.:
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1) one-quasiparticle states (1QP)

2) one-quasipartlcle plus phonon(s) states (1QP + ph)

3) three-quasiparticle states (3QP)
4) three-quasipartlcle plus phonon(s) states (3QP + ph)

From these tables the importance of the 3QP cluster states

is clearly seen; the average percentage of the 3QP (+ph)

states is 50.

Let us discuss the (3/2)~ states. In 6i'63Zn the

(3/2)~ is the ground state and in 6 S' 6 7Zn it is (in the

QCV model) the first excited state. Prom tables 6.2 - 6.5

it is seen, that the (3/2)^ state in 6 1' 6 3» 6 5Zn has the

1QP state |3f> as the largest component (amplitude a 0.7).

The (3/2)7 state in 6 7Zn, however, is of a different

character: the largest component is the one-phonon multi-

plet state |5*,12;3/2>. In fact, the (3/2)~ state in 6 7Zn

is analogous to the (3/2)~ states in the lighter Zn iso-

topes. Going from 65Zn to 67Zn the (3/2)" and (3/2)^

states seem to have exchanged their character. This situa-

tion is clearly reflected in the quasicluster-type compo-

sition of the (3/2)~ states. The 1QP components are

sizeably larger than the 3QP ones for ei'GS'SSzn, as seen

from tables 6.6 - 6.8. For the (3/2)~ state in 67Zn the

1QP components are small and the 1QP + ph and 3QP compo-

nents are large. In the quasicluster composition of the

(3/2)2 s t a t e the situation is reversed.

In all four Zn isotopes considered, there appears a

low-lying triplet (1/2)", (3/2)", (5/2)^. For the (l/2)~

states the largest individual components are of 1QP and

1QP + ph type. However, the total contribution to the

norm from the 3QP and 3QP + ph states is comparable to

that of the 1QP and 1QP + ph states. A similar situation

appears for the (5/2)~ states with clearly the largest

component being \%>.

The pronounced feature of the QCV model for odd Zn
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Table 8,8 The quasicluster-type composition of the states in s lZn.
in second to flSth column the squares of the amplitudes in percen-
tages ace given with which components of the typesi one-quasipart-
icle, one-quasipartlcle plus phonona, three-quasipartlcle and
three-quasipacticle plus phonona, respectively, appear in the
wave functions of the *lZn states.In the sixth and seventh column
we present the sum of the percentages in the second and third,
and fourth and fifth column, respectively.

*n

(1/2)x

a/2)2

(3/2)l

(3/2)2

(3/2)3

(5/2)x

(5/2)2

(5/2)3

(7/2)j

(7/2)2

(9/2)t
(9/2)2
(U/2)j

1QP

13

29

39
2
7
37
0
6
-
-
-
-
-

IQP+ph

31

30
6

33

39

18

32

39

33

40
47
13

10

3QP

15

9

9

23
19

10

21

17

23

18

20

26
24

3QP+ph

41
32

47
42

35

9

46
38

44
42
34

61

66

lQP(tOt)

44
59
44

35

46
55

32

45

33
40

47

13

10

3QP(tot)

56
41
56

65
54

45
68

55

67

60

53

87

90

Tabl* S.? The quaslcluster-type composition of the states in " z n .

The description is analogous to the caption of table 6.6.

xn

(1/2)x

(l/2)2

(3/2)x

(3/2)2

(3/2)3

(5/2)x

(5/2)2

(5/2)3

(7/2)j

<7/2)2

(9/2)t

(9/2)2

(11/2)1

1QP

33
16

47
5

3

SO
0

2

-

-

-

-

-

lQP+ph

37
42
17

48
57
14
60

59

59

65

65

35

37

3QP

6

14

3

16

15

3

14

14

10

10

9

15

14

3QP+ph

24
28

33

31

26

33
26

25

31

25

.26

50
49

lQP(tot)

70

58

64

53

59

64

60

61

59

65

65

35

37

3QP(tot)

30

42
36

47

41

36

40

39

41

35

35

65

63
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Tabla 9.8 The quaslcluster-type composition of the states In >9Zn.
The description is analogous to the caption of table 6.6,

Jn

U/2)j

(3/2)l
(3/2)2

(3/2)3
(5/2)x
(5/2)j

(5/2)3
(7/2)j

(7/2) 2
(9/2)!

(9/2)2
(11/2^

IQP

40
19
44
1

4
SS
0

3

-

-

-

-

-

lQP+ph

28
42

22
59

59

10

62

60

62
66

65

48
52

3QP

4

12

2
17

13

1

14

13

14

a
9
8

3

3QP+ph

28
27
31
22

24
34
24

24
24

26

26

45

46

lQP(tot)

68

61

67
60

63
65

62

63
62

64

65
48
52

3QP(tot)

32

39
33
40
37
35

38

37
38
36

35
52
43

Table 6.9 The guaaicluster-type composition of the states in (7Zn.
The description is analogous to the caption of table 6.6.

*n

(1/2)!

(l/2)2
(3/2)j

(3/2)2

(3/2)3

(5/2)x

(5/2)2
(5/2)3
(7/2)x
(7/2)2
(9/2)x

(9/2)2
(11/2)!

1QP

31

21

4

33

1

41
1

3

-

-

-

-

-

lQP+ph

21

25

35

22

51

14

41

44

43

43

46

21

20

3QP

8
15

23

5
19

3

22

20

22

21

19

19

16

3QP+ph

40

39

38

40

29

42

36

33

35

36

35

60

64

lQP(tot)

52

46

39

55

52

55

42

47

43

43
46
21

20

3QP(tot)

48

54

61

45

48

45

58

53

57

57

54
79
80

isotopes is a strong mixing between 1QP (+ph) and 3QP

(+ph) states, induced by the quasicluster-vibration

interaction. In the QCV model are no almost pure 1QP and

1QP + ph states. This appears in spite of the fact, that

the particle-vibration coupling strength is of an inter-

mediate value.
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6.3 ELECTROMAGNETIC PROPERTIES

By using the QCV model wave func t ions , we ca lcu la ted
the matrix elements of the E2 and Ml ope ra to r s (see
chapter 5, formulas ( 5 . 1 8 ) - ( 5 . 2 1 ) ) . The same parameters
in the electromagnet ic opera to r s have been used as in
the CV model ca l cu la t ions for 67Zn of r e t s 1 ' 2 - * ;

r, - ~free _ .
VIB

0.5 e

2.0 e gp = -

In table 6.10 we present the calculated (and experi-

mental6 9J, where available) static electric quadrupole

and magnetic dipcle moments for 6l'63'65'6?zn. ̂ e note

that the identification of states, derived from the wave

functions, can also be traced in the electromagnetic

Table $.10 Theoretical (QCV model and shell model) and available experi-
mental values for the static e lectr ic quadrupole and magnetic dipole
moments in «»'*>'«»»«'2n.

u(nm)xl00 Q(eb)xl00

'zn
5Zn 7Zn lZn 5Zn 7Zn

QCVM

SH
exp

QCVM

QCVM

SH
exp

QCVM

SH
exp

QCVM

SH
exp

QCVM

QCVM

(l/2)2

(3/2)j

(3/2)2

(5/2)j

(5/2)2

(7/2)a

40

68

-105

64

116

-32

113

42

69

-90
-71
-28

44

113
149

-17

117

51

61

-87
-106

-78±20

48

52

73±25

100

143

77

113

134

53

66

58+3

53

42
-26
S0±6

-79

103

147

88

121

117

8

-24

-5

-13

16

23

1

-16

-10

-4

-6

16

22

5
12

4
-1

-a
a
-i

-17
-l

18

18

10

15±2

6

12

The experimental values are taken from ref "'•'. The shel l model results (SM)
are from ref11'' with e (eff)=1.6e, en(eff)»1.0e and bare g factors.



98

properties. Specifically, |Q(5/2)~(67Zn)|=0.l8 eb »

|Q(5/2)~(65Zn)1=0.04 eb. This decrease in magnitude is

already a zeroth-order effect; the electric quadrupole

moment for a one-quasiparticle state is proportional

to uz-v2. In $7Zn and 65Zn u|-v|=-0.44 and -0.02, res-

pectively (see table 6.1). Obviously Q(5/2)~(65Zn) is

small and very sensitive to slight changes in the BCS

solutions. In 63Zn it becomes larger in magnitude and is

negative.

The magnetic moment of the (5/2)~ states in all the

Zn isotopes hardly changes with particlenumber (and

with occupation probabilities v|); it is proportional

to Ue+Vg=l. The experimental values are in agreement

with these simple predictions of the QCV model. A simi-

Znlar situation appears for the (1/2)7 states in 6 5' 6 7

in the QCV model: U(l/2) ~(67Zn)=0.53 nm=]i(l/2)~(6 sZn) =

0.51 run.

For the (3/2)~ and (3/2)" states we noticed, looking

at the wavefunctions, a crossing between 65Zn and 67Zn.

Indeed in the QCV model u(3/2)~(65Zn)=-0.87 nm=u(3/2)~

(s'Zn)=-0.79 nm; both states arise from the 1QP state

13* in the zeroth-order approximation. On the other

hand v(3/2)~(6SZn)=0.48 nm has the same sign as y(3/2)~

(67Zn)=0,24 nm; both states arise from the configuration

|5,12>, The available experimental data corroborate this

(3/2)~ - (3/2)2 crossing. It would be interesting to

measure the missing magnetic moment U(3/2)~(67Zn).

We point out here that for some effects the 3QP

states, altough they mix strongly in the wave functions

of the low-lying states, do not change the qualitative

(or even semi-quantitative) predictions of the simple

one-quasiparticle case. This can be understood as a

systematic feature due to a Ward-like identity for the

coupled particle-vibration system3 "• '*). In fact, what
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!
{

is lost due to the decrease of the main components, is

approximately recovered by the additional components.

Therefore, strong 3QP admixtures do not influence

strongly some 1QP features. In the diagram language,

the vertex corrections (of the same sign as the zeroth-

order component) and the self-energy corrections (of

the opposite sign to the zeroth-order component) appro-

ximately cancel. On the other hand, for properties, for

which a Ward-like identity does not hold, a completely

new pattern arises; for example, the particle-vibration

coupling brings in 6 5 f 6 7Zn one (3/2)~ state with zeroth-

order component |$,i2> to low energy. This is caused by

the strong coupling to the 3QP state |($3)3/2>. This

pushing down of the state |̂ f,12fj-l> by the configura-

tion j(^3)j-l> is a well known feature in the CV model

and cannot be reproduced in a one-quasiparticle-phonon

model.

IK

In tables 6.11-6.13 we present the calculated (and,

where available,experimental) B(E2) and B(M1) values for
61Zn-G7Zn. Also some shell model11J results are given;

we compare the QCV model and the shell model in section

4. Experimental B(E2) and B(M1) values are scarcely

available for 61Zn and G3Zn. For 6SZn and e7Zn there

occur experimental data, which are derived from mixing

ratios and branching ratios with large errors; so, these

values are very uncertain (the errors may be as large as

50 to 100 per cent). In the table these values are prece-

ded by the symbol =. The agreement of the QCV model re-

sults with the experimental B(E2) and B(M1) values is

rather good. Note, that the single-particle B(M1) tran-

sitions of the (3/2)~ and (3/2)~ states in 67Zn and the

(3/2)j state in 6SZn to the ground state are ^-forbidden,

if the term |Y2®I|1 is neglected in the effective Ml ope-

•v i
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Table 6.11 Theoretical (QCV model) B(E2) and B(rtl) values for (>Zn and

B(E2)(eJ£ra1') BlMDtnml'xlO11

(V2)x *
(5/2)x +

(l/2)l -

(3/2)2 -

-

(5/2)2 *

-
U/2)2 *

(7/2)j -
-*•

(7/2)2 -

-»

(9/2)x *

(H/2) 1 *

(3/2)t

(3/2)!

(1/2)1
(5/2)x

(3/2)l

(l/2)l
(5/2)j

(3/2)x

(1/2)!

(5/2)j

(3/2)j

(l/2)a

(5/2)j

(3/2)!

(5/2)!

(3/2)1

(5/2)!

(5/2)!

(7/2)!

66

4

76

111

84
84

180

49
9

86

0.4
10

135

153

6

168

181

12

8

157
14

7
173

212

Z
17

116

20
23

168

153

29

195

173

1097

80

46

1124

1

277

3

6589

0.5

61

571

5771

60

1095

4
7

970

94
460

11

25

223

rator. If this term is omitted in the QCV model, our

results would be about the shell model results, which

were calculated without |Y2®2|^.

In figures 6.2 - 6.4 the calculated and experimental

(if available) branching ratios are presented, together

with the half-lives for 63Zn - 67Zn, respectively.

In 63Zn only three half-lives are known experimentally.

Two of these values are reproduced reasonably well.

In B5Zn the half-lives are reproduced quite well. The

most branching ratios agree well with experiment; only the

branching ratios of the (1/2)^ and the (3/2)^ states are

not good.

The calculated branching ratios for 67Zn agree very

well with the experimental ones. The half-lives are

reproduced reasonably well, except for the (l/2)~ state,

the half-life of which is a factor 8 too low.
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Table 6.12 Theoretical and available experimental B(E2) and B(HX) values
for t5Zn.

B(M1)

QCVM SH exp QCVM SH

(3/2)j *

(3/2)2 +

•+.

(5/2)2 *
-+•

(7/2) x ••

U/2>2 -
(7/2)2 -

(9/2)x *

(9/2)2 -

11/2), -

(5/2)l
(5/2)x

n/2)l
(5/2)t

(1/2)!

(3/2)!

(5/2)x

(1/2)!
(3/2),

(3/2)2

(5/2)j

(3/2)t

(3/2>2

(5/2)2

(5/2)j

(5/2)j

(5/2)!

(5/2)x

(7/2)j

(9/2) !

87

60

73

220

25
20

125

55
57

0.1

213

27

0.6

10

17

12

201

0.6

195

75

98

0,4

41

410

6.6

13

260

10316

=240 398

1290

=160 24

=450 594

342

78

75
11

1

900

14

5

130 450150

370 >680

20 50

1300 540

210

80

The experimental values are taken from ref11'.
See also the caption of table 6.13.

Summarizing: we have shown, that especially for a

good reproduction of the spectra it is not enough to

couple 1QP states to phonons. The QCV model (a three-

quasiparticle cluster coupled to phonons) produces

spectra, which agree with experiment for 61's3'65zn

equally well as for 67Zn. For all these nuclei the

same parametrization was used. The electromagnetic

properties, calculated with the QCV model wave func-

tions, are desctibed rather well. The QCV model wave

functions are rather simple and give therefore an easy

insight into the structure of the odd Zn isotopes.
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Table e.13 Theoretical and available experimental B(E2) and B(H1) values
for "zn .

B(E2) (e'fm11) B(M1)
1 •»

n

(l/2)1 +

(3/2)t -

13/2)2 +

(7/2)j +

-*•

-••

(5/2)2 *

-••

U/2)j *

(9/2)x -

(7/2)2 -

(9/2)2 *

U/2) t •»

• •

H

n

(5/2) x

(5/2) x

(1/2) x

(5/2) x

(1/2*!

(3/2)j

(5/2) 1

(3/2) x

(3/2) 2

(5/2) x

(1/2)!

(3/2)j

(3/2)2

(7/2)x

(5/2)x'

(5/2)j

(5/2)j

(5/2)x

(7/2)j

(9/2) 2
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285±21
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=300

220120
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86±6

= 160

QCVM
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S56
9
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108
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124
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8
5600

2

3700

40

50

exp

5512

34*1

= 100

=700

Ml
=7

=210

The experimental values are taken from r e f s 1 ' ' " " T t 1 1 J . The values,
preceded by =,are very uncertain. The shell model results (presented
In column "SH") are obtained with e_(eff)-1.6e and e (eff)-l.Oe and
bare g factors. p "

6.4 COMPARISON OF THE QCV MODEL WITH OTHER MODELS

The Zn isotopes were described earlier with two

types of models:

1) the one-quasiparticle-vibration model (the QV model)

2) the shell model.

In this section we compare the QCV model with these

models.
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?igun 6.2 QCV model and experimental branching ratios for "2n. The experi-
mental values'*J are presented above the levels and the calculates ones below.

6.4.1 Comparison of the QCV model to the QV model

The QV model space is included in the QCV model

space, so it can at best produce similar results. The

wave functions of the QCV model (see tables 6.2 - 6.9)

contain 1QP components and 3QP components in equal

strength. This means, that a description of only one

quasiparticle coupled to phonons is expected to be

poor. In the spectra, calculated with the QV model,

some states are missing already at low energy. For

example the (3/2)^ state in 67Zn and the (3/2)2 s t a t e

in 65Zn, for which the configuration |(53)3/2> is
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,;> important cannot be described in this model. In refs10' 1SJ

:i it is assumed, that these states are a pure configuration

! |(5"3)3/2> and it is hoped, that the other (3/2)" states

are described well. The QCV model wave functions show,

that this assumption is not valid. The same arguments

apply to other spins also. The QCV model shows, that

one may not expect good results of the QV model.

\ 6.4.2 Comparison of the QCV model with the shell model

Van Hienen et al.11J performed shell model calcula-

tions for the Zn isotopes, in which 56Ni was assumed to

be an inert core. The two protons and the remaining

neutrons could occupy the 2p, . , if5. and 2p3 . orbits.
/2 /2 /2

No truncation was made, which means, that matrices had

to be diagonalized with a dimension up to 2000. The

maximum dimension in the QCV model is 124; in practice

one needs an amount of computertime in the shell model

calculations, which is about a factor of hundred times

as big as the time, needed in the QCV model.

The effective one- plus two-body Hamiltonian was

derived in refa3J for the Ni and Ca isotopes. In the

calculation of the spectra all the parameters were taken

to be constant, just as in the QCV model!

.. The calculated spectra are shown in figure 6.5. The

;| spectra below 1.5 MeV excitation energy are very similar

|v_ to ours (see figure 6.1). The ordering of the lowest

& six states is reproduced a little better in the QCV

model: the spin of the ground states are all correct

and the triplet (1/2)~, (3/2)~, (5/2)" in 6aZn is repro-

duced roughly.

Above 1.5 MeV the shell model produces more states

than the QCV model. This can (partly) be explained by

the fact that the maximum number of phonons in these
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Figure e.S The negative-parity spectra of 6l'6a'65t67Zn,calculated with the
shell model11'. No free parameters are contained in the calculation.

calculations was only two. Paar2J used in his CV model

calculation for 67Zn also three-phonon states and pro-

duced above 1.5 MeV more states than the QCV model

calculation does.

The calculated shell model B(E2) and B(M1) values

for 65Zn and 67Zn are shown.in tables 6.12 and 6.13.

The effective charges for the proton and the neutron

were found by fitting to the experimental B(E2) values.

In the QCV model no such fit was done. Nevertheless,

the QCV model B(E2) values are a little better, espe-

cially for the (3/2)" states.
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For the Ml transitions bare values for the g factors

were used; the results were not very sensitive to the

values of these g factors. In the QCV model the core

polarization effects were simulated by

a) a renormalization of g= (=0.7 g " )

b) the addition of the term proportional to |Y^aS J A to

the effective magnetic operator.

The B(M1) values are reproduced clearly better in the

QCV model than in the shell model. For the (3/2)" states

this is largely explained by the additional term in the

Ml operator, which is present in the QCV model, but not

in the shell model calculations of refllJ.

The calculated shell model electric quadrupole and

magnetic dipole moments are shown in table 6.10 to-

gether with the QCV model results. The parameters for the

effective Ml and E2 operators in the shell model are the

same as used for the calculated B(H1) and B(E2) values.

In almost all cases the results of the two models have

the equal sign and about the same magnitude. The magne-

tic dipole moment of the (3/2)~ state in 672n is badly

reproduced in the shell model; also the transitions of

this state to the (5/2)7 state is not correct. The

wave function of this state is clearly not as good as

the one of the QCV model. Probably, the one- plus

two-body Hamiltonian, which was derived for the Ni and

Cu isotopes is not correct any more for 67Zn.

I Let us summarize the comparison of the QCV model
I:

results and the shell model results. The spectra of

the QCV model are slightly better than the ones of the

shell model. Also the electromagnetic properties of

the QCV model are slightly more in agreement with the

available experimental data.

The conclusion of this comparison is , that the

degrees of freedom of the QCV model(uis.a few quasi-
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particles and quadrupole vibrations) are well chosen

for the odd Zn nuclei. The QCV model results are at least

as good as the shell model results. Since the computa-

tional efforts are much less for the QCV model than for

the very large shell model calculations, we think , that

the QCV model is to be preferred as a predictive tool in

nuclear spectroscopy for nuclei away from closed shells.
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STELLINGEN

1. In berekeningen aan oneven tin-isotopen, die door Kuo et al. met drie
quasideeltjes zijn uitgevoerd, zijn de onechte ('spurious') toestanden niet
correct verwijderd. Dit leidt tot verkeerde energieën en golffuncties voor
toestanden, die een component met één quasideeltje bevatten.

T.T.S. Kuo et al., Nud. Phys, 79 (1966) 513

2. In tegenstelling tot hetgeen Gambhir beweert, tonen de resultaten van zijn
berekeningen niet aan dat zijn computerprogramma correct werkt.

Y.K. Gambhir et al., Phys. Rev. C2Q (1979) 381

3. Het feit dat mengverhoudingen in Nuclear Data Sheets niet in een vaste
conventie worden opgegeven, maakt deze gegevens onnodig lastig hanteer-
baar.

4. De voorlichting door artsenbezoekers moet onder controle van de overheid
worden gebracht.

5. Tijdens de rijopleiding dient meer aandacht te worden besteed aan verkeers-
situaties, die in de praktijk veelal anders worden opgelost dan de verkeers-
regels voorschrijven.

Wit aan zet

6. De beste promotie is het promoveren tot paard.

8 november 1979 P. Hofstra


