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THE BROKEN-PATR MODEL FOR NUCLEI
AND ITS EXTENSION WITH QUADRUPOLE VIBRATIONS

a description of odd
N=50 isotones and Z=30 isotopes

Chapter 1

SURVEY AND MAIN RESULTS

In this thesis calculations are presented for low-
energy properties of nuclei with an odd number of parti-
cles. So either the number of protons or the number of
neutrons is odd. The kind of particles of which the number
ig odd will be referred to as odd particles; the other
kind as even particles. In all the presented calculations
the odd particles are described in the Broken-Pair approxi-
mation, which is equivalent to the number-projected quasi-
particle model. It is assumed that all but three particles
occur as ordered Cooper pairs; the unpaired (one or three)
particles are called guasiparticles.

First it is attempted to describe nuclei of which the
even particles form a closed shell in terms of three types
of states:

1) one-quasiparticle states which take into account the
simplest excitations of the odd particles.

2) three-quasiparticle states. These states are obtained,
when in addition to the one gquasiparticle one pair of
the odd nucleons is broken.

3) one-quasiparticle states coupled to the 1lp~-1lh states

of the even particles. These states account for core
excitations.
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In the second part of the thesis a model is developed
with which it is hoped to describe odd nuclei with two
open shells in terms of both single-particle and collective
degrees of freedom. The odd particles are again described
with a (one-plus) three-quasiparticle cluster. The even
particles as well as some neglected states of the odd par-
ticles are approximated by quadrupole vibrations. It is
hoped that this model may be useful for nuclei in the
trarsitional regions, 7.e. with two, four, six even parti-
cles outside a closed shell.

1.1 THE BROKEN-PAIR MODEL

The single-particle degrees of freedom are treated with
the Broken-Pair model!’, In this model most particles are
assumed to occur in pairs of identical nucleons. These
pairs consist of two particles in orbits which are each
other's time reversed state. The attractive effective inter-
action produces a nuclear ground state which is similar to
that of a superfluid system. States of a higher energy may
be generated by breaking sne or more pairs in the ground
state wave function. The Broken-Pair model is equivalent to
the number-projected BCS model., The particles which do not
occur in superfluid pairs are referred to as quasiparticles.

The BCS model was - designed in the field of so0lid state
physics to describe superfluidity?’; it turned out to be
useful also in the nuclear spectroscopy. In the BCS model
the number of particles is treated in an average way. In
the solid state physics where the number of particles is
of the order 10%2?, this approximation appears to be valid.
In nuclear physics, however, the number of particles is
about a hundred; projection on the desired number of parti-
cles results in sizeable effects on the spectra and wave
functions. The method used for the particle-~number pro-




jection was developed in refs®’"/

+ The basic notions of
the BCS model are presented in chapter 2.

The parameters which occur in the Broken-Pair model
are the same as in a shell model, v<z. single-particle
energies and the effective nucleon-nucleon interaction.
Gillet et al.®) have shown, that the single-particle
energies and the strength of the force, to be used in the
unprojected BCS model, can be extracted from the spectros-
copic data of the odd single-closed-shell nuclei with a
simple method and in a unique way. Allaart et al.®’ have
developed a possible extension of this method to the num-
ber-projected BCS model. Since it is interesting to inves-
tigate the meaning of the parameter values which are thus
obtained, chapter 3 is devoted to the question whether
these parameters may be applied to more complex calcula-
tions. It appears then, that these parameters are model
dependent.

In single-closed-shell nuclei one expects that the
collective effects are not strong. It is interesting to f
check if just single-particle degrees of freedom will suf- :
fice for the description of these nuclei, when only two |
or three nucleons (of one kind) are allowed not to be
bound in Cooper pairs. Recently number=-projected two- and
three-quasiparticle calculations have been performed for
the even N=50 isotones’’) and Sn isotopes®’®’ and for the
odd Sn isotopes®’®’!!J, respectively. In these calcula- S
tions only one kind of particles was assumed to be excited ’
within one major shell. Many cxperimental states could be
described reasonably well; for states with a collective -
character (for example: the 2; and 3; states in the even |

A

nuclei), however, the collectivity was not strong enough.
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Core exeitations; application to odd N=50 isotones

In chapter 4 it is attempted to improve the number-
projected three-quasiparticlie BCS model for odd nuclei by
including core excitations, Z.e. excitation of particles
out of the closed shell into the higher empty shell. This
model is applied to the odd N=50 isotones %%y, °!Nb and
%3pe, The protons could occup, one major shell and the
neutrons two major shells in such a way that at most one
proton or neutron pair was broken. Using a Gaussian resi-
dual interaction between the nucleons, the spectra as well
as the electromagr:tic properties can be reproduced in
reasonable agreement with experiment. The results for the
N=50 isotones are better than the results for the 2Z=50
isotopes. The inclusion of the neutron (core) excitations
appears to be essential, especially for states with a col-
lective character. Analogous calculations for even Z=50
isotopes and N=50 isotones show that the collectivity of
the 2; and 31 states improves considerably!®/.

1.2 THE EXTENSION OF THE BROKEN PAIR MODEL WITH
QUADRUPOLE VIBRATIONS

When we consider odd nuclei with two, four, six, .....
particles (holes) beyond closed shells, collective effects
become more dominant. If one would try to account for these
effects with single~particle degrees of freedom only. too
many excitations in a large model space would be needed.

In chapter 5 a model is proposed to describe this type of
nuclei with a model in which both the single-particle de-
grees of freedom and the collective degrees of freedom are
explicitly taken into account.

We will illustrate this for the example of 7 neutrons
outside a closed shell and 2 protons outside another shell.

.
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As the number-projected BCS model is rather successful
for odd single-closed-shell nuclei, the neutrons are re-
presented by a three—quasiparticle cluster. This means
that 4 neutrons are distributed in ordered pairs over the
valence shells. The other 3 neutrons are not paired. All
the other excitations such as protons excitations and
neutron-core excitations are represented by quadrupole
vibratiors. This model is an extension of the three-
particle cluster vibration model (Alaga model)'?’, which
is meant to describe nuclei in the transitional regions
with three particles or holes in tne valence shell.
Recently many applications of this model have been pu-
blished by Paar. The three-quasiparticle cluster vibration
model is developed in close collaboration with Paar; it is
designed to describe nuclei in the transitional regions
with three, f7ve, seven, ..... particles in the valence
shell.

The three-quasiparticle cluster vibration model may
also be considered as an extension of the one-quasiparti-
cle vibiation coupling model of Kisslinger and Sdrensonl!?/,
These authors have indicated, that for many states three-
quasiparticle components should be included in their model.

Truncation of the model space

The dimension of the configuration space for a certain
spin and parity in the three-quasiparticle cluster vibra-
tion model may become about a thousand. The calculations
become very time consuming then. So when one has to fit
the model parameters it may be preferable to truncate the
number of basis vectors for reasons of economy. In general
the resulting spectra will depend on the method of selec-
tion of these vectors. In section 4 of chapter 5 the spec-
tra, resulting from two selection methods, are compared
with a spectrum, resulting from a complete diagonalization.
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The first method is used frequently in the Alaga model,
vi3. a selection based on diagonal energies of the basis
vectors, only. The second method (see section 5.4) takes
also the off-diagonal matrix elements:into account. This
method appears to be preferable over the first one, espe-
cially, when the coupling between basis vectors with a
large energy difference is large, as may be the case when
the valence shell is about half filled. The second method,
however, is still not a very good approximation of a com-
plete diagonalization. The latter has to be preferred for
the production of final results,

Appliecation to odd 2=30 tsotopes

A nice property of the three-quasiparticle cluster
model is that it can be applied to a whole series of odd
isotopes or isotones; the single-particle energies and
the strength of the interaction between the particles
should be considered then as constants for the whole
series of nuclei. The phonon energy and the coupling
strength between the single-particle and phonon degrees
of freedc are the only parameters, which may be allowed
¢o change from nucleus to nucleus. This is reasonable,
since the softness of the core nucleus, which is treated
as the model vibrator and which represents the nucleons 3
which appezr not explicitly in the excitations, will %
change when two particles are added.

In chapter 6 the three-quasiparticle cluster vibration
model is applied to the isotopes ®'Zn, ®%2Zn, ®%2n and °72n.
The neutrons occupy the orbits 2pi/:, 1fs5/: and 2pi1/2. The
interaction is assumed to be a pairing force. All parame-
ters (except the number of valence-shell neutrons) are
kept constant for all Zn isotopes. The nucleus °’Zn has ‘
been described before!*’ rather successfully with the
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Alaga model (three holes in a N=40 "closed shell"). With
the same parametrization it is now tried to describe the
other Zn isotopes (five, seven and nine holes in a N=40
"closed shell"), to which the Alaga model is not applica-
ble. The three-quasiparticle cluster vibration model pro-
duces the same results for °72zZn as the Alaga model, be-

cause the two models are equivalent for cases with three
particles or holes beyond a closed shell.

The spectra and electromagnetic properties produced
by the three-quasiparticle cluster vibration model agree
reasonably well with experimental values; the agreement
for 8176831657, ig of the same quality as one obtaing with
the Alaga model in the case of three holes (®7Zn).

These Zn isotopes have been described earlier with a
one-quasiparticle vibration model!®’ and with the shell

model’®’/., The three-quasiparticle cluster vibration model

shows that the one-quasiparticle and three-quasiparticle

states are strongly mixed, so one cannot expect that a
model with only one-quasiparticle states is a good tool to
describe these nuclei. In the spectra obtained by the one-
quasiparticle vibration model levels are missing with an
excitation energy as low as 0.5 MeV. The results of a shell
model calculation, in which matrices had to be diagonalized

with ten times larger dimensions are comparable with the

results of the three-quasiparticle cluster vibration model.

The latter model has a smaller configuration space (maxi-

mum: 124 vectors) and is therefore a more convenient tool
to describe this type of nuclei.

1.3 FUTURE PROSPECTS OF THESE INVESTIGATIONS

pes

Up to now the Broken-Pair model has been applied to
the following single-closed-siell nuclei: even N=50 iso-
tones’/, odd N=50 isotones'!’’, even and odd 2Z=50 isoto-

378711

« The results were found to be better for the
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N=50 than for the 2Z=50 region. It seems interesting to
apply this model to other single-closed-shell nuclei,
for example, the N=82 isotones, so as to obtain more
conclusive results.

One can apply the Broken-Pair model also to nuclei
with one open shell and one or two particles or holes in
the other shell. We may think for example at °“Zr with
2 protons and 4 neutrons outside a ®®Sr core. Both the
protons and the neutrons can be handled in the Broken-
Pair Approximation. Such calculations are in progress!®’!?J),

The three-quasiparticle cluster vibration model is
able to describe the low-energy properties of the odd Zn
isotopes. It is evident that such an agreement of experi-
mental energies and electromagnetic properties for one
series of isotopes is not a sufficient proof that the low-
est states of the spectra of nuclei in transitional regions
are generally described well with this model. To investi-
gate further the applicability of the three~quasiparticle
cluster vibration model, it should be applied to many
other cases, such as the odd Te, Xe, Ge, Se, ..... isotopes
and the odd N=52, 54, 48, 46 isotones.

A similar model, in which a two-quasiparticle cluster 3
is coupled to quadrupole vibrations can be applied to the %
even nuclei in transitional regions. Such a model has been :
applied recently to the even Zn and Ge isotopes?®’/. Parti-
cle-number projection was not performed in this work, how-
ever; so one has to consider the results with care. g
Particle-number projected two-quasiparticle cluster vibra-
tion model calculations have not been reported so far.
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Another possible interesting line of investigation is:
modifying the description of the vibrator. This may be
done in several ways. Firstly, one can introduce an ’
anharmonic term in the phonon Hamiltonian. Secondly, one
can replace the harmonic phonon Hamiltonian by the
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Truncated Quadrupole Model Hamiltonian?!’ (TQM). This
Hamiltonian is a realization of the Bohr Hamiltonian. The
TOM is equivalent to the Interacting Boson Approximation?2/
With these extensions it might be possible to describe
strongly deformed odd nuclei as well,

Chapter 4 will be published in Zeitschrift fiir Fysik;
it is reproduced here with kind permission of the Springer
Verlag, Heidelberg.
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Chapter 2

THE NUMBER-CONSERVING QUASIPARTICLE MODEL;
FORMALISM AND METHODS

2,1 INTRODUCTION

In this chapter the basic notions of the guasiparti-
cle model or BCS model are given; the BCS model may be
considered as an approximation of the shell model!’, In
the BCS model!”™7Jone calculates with so~called quasi-
particles, which can be dealt with as particles, but they
also incorporate an important property in nuclei, viaz.:
the pairing correlations of nucleons.

The shell model Hamiltonian is written in second
gquantization in terms of particle creation and annihila-
tion operators as:

+

H=Je a'a +}% v atat
g a‘aa ‘agyé aBy82a?p2sdy (2.1.1)

L e

where aE(na,la,ja,ma)E(a,ma) are the quantumnumbers of
the particle orbits; €, is the single=-particle energy of
shell a; VuBYG is the antisymmetrized matrix element of

KPP IR RO

the residual interaction V.

Without interaction V the particles would stay in the
orbits with the lowest energies €q¢ obeying the Pauli
principle. Due to their interactions, however, they may
be scattered over all possible orbits. Therefore the wave
function of the nuclear states will be superpositions of
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all possible particle configurations within these orbits
in general. The coefficients of these configurations in
the wavefunctions are obtained by diagonalizing H within
the choosen configuration space., The number of configu-
rations rapidly increases with the number of nucleons
and the number of orbits which one choses to consider.
For example: consider the orbits, shown in fig. 2.1, the
lfs/z, 293/2, 2p1/2 and lgg/2 orbits (this major shell
is important in the calculations on the N=5C isotones;
see Ch.4).

E (MeV)

11

“F — . 1g 972 (10)

3] ————— 2p 12(2)

2L

2p 312 {4)
1L
oL —— _v¢5012(6) i

Figure 2.1 (Proton) single-particle orbits for the N=50 isotones with their
maximum occupation number in parentheses.

LT e n 1 VT e

If one particle moves in this single-particle space i
there are 3 possible ways to obtain a state with negative &
parity and one way to obtain a state with positive parity.
If three particles are distributed in this space the num- B
ber of ways to distribute them increases drastically.
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Table 2.1 Number of configurations for the negative-parity states with three
particles in the shells lfs/z, 2p3/2, 2p1/2 and lgg/z.

3T Yz %7 S/z Tz %77 ‘Yz Y37 'S/ Y7/ Y%/ e

—

T o TR S
- -
—

- e
N NN
= N W N
=N W N
= N W e
= N W

w

N}

[

12 11 7 6 5 4 2 1 total 87

o

total 8 15 1

Every configuration is determined by the quantum numbers Eab)Jc:]j1T where a,b and ¢ are the guantum number:s
of the single-particle orbits; the particles in shell a and b couple t.. angular momentum J; the total angular
momentum is j; if the number of configurations for a certain choice of a,b,c and j is larger than one, more

choices for J are possible.
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In table 2.1 the number of configurations for negative
parity states is shown; vertically the orbits are listed,
which the particles occupy; horizontally the total angu-
lar momentum is shown; the numbers in the table are the
numbers of configurations - 7.e, possible ways to dis-
tribute the particles over the subshells, while they are
coupled to a certain angular momentum -~ for the negative
parity states. The total number of configurations is 87.
Although the number in the example can be easily dealt
with by computertechniques, for larger spaces reductions
are required.

There are a few approximations which reduce the num-
ber of configurations. In section 2 the low-sen_ority
approximation is introduced, which relies upon the pair-
ing correlations of nucleons.

In section 3 the basic notions of the quasiparticle
formalism are explained. It appears to be necessary to
perform particle-number projection, the method of which
is outlined in gection 4.

A method to determine the parameters, used in the
quasiparticle model is discussed in section 5.

2.2 THE LOW-SENIORITY APPROXIMATION

Nuclear binding energies depend systematically on
whether the protonnumber Z and the neutronnumber N are
even or odd?®/

A 2 even , N even
§B = 0 A odd (A=N+2Z)
-A 2 odd , N odd

where A = 12/A% Mev.

‘This feature indicates, that it is preferable for




i

i,
|3
g
&
i

£

&
b
?
L,‘;
F
A

o epe———

14

A .'m
J'
|
1
Figure 2.2 Classical picture of two
k =M nucleons with angular momentum j,
A j which form a pair,.

nucleons to move in pairs. Fig 2.2 shows a pair in a
classical way. Two particles (with angular momentum j)
form a pair, if their angular momenta are coupled to
zero. The overlap of their orbitals is then very large.
Therefoxe the two pariicles can gain more than 1 MeV
energy in spite of the short range of the nucleon-nucleon
interaction®’/. This pairing property is the basis of the
low-seniority approximation3’*’°71%)  In this approxima-
tion it is assumed that as many nucleons as possible move
in pairs. The assumption of the occurrence of pairs yields
two important simplifications of the formalism:

1) The number of pairs, that have to be distributed
over the single-particle shells is only half the
number of particles.

2) Angular momentum coupling of pairs is trivial.

The number of unpaired particles is called the seniority
number v!!J, The number of configurations is rapidly in-
creasing with seniority number. If one restricts oneself
for ground states of even nuclei to v=0 basis states then
the number of configurations in a shell model calculation
is about a hundred for five single-particle shells. For
the description of excited states at least v=2 states are
necessary, the number of which is then several hundreds.
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So still the number of configurations is very large.
There exists a helpful formalism to simplify the descrip-
tion of many-body systems with pairing properties by sup-
posing a special ordering of the pairs. This is the BCS-
superfluidity theory, which will be touched upon in the
next section.

2.3 THE BCS FORMALISM FOR SUPERFLUID NUCLEI

In the theory of superfluidity one assumes that
fermions occur pairwise in states which are each other's
time reverse and moreover that all these pairs may be
described by the same pair-wave function. In terms of our
formalism this means that the nuclear wave function is
described as

¥(1,2....8) = #(s") P |0> (2.3.1)
where S*=2a ¢aSZ is the creation operator of a pair which
has coefficients ¢a for the particles to be createdrin the
shell a. If one releases the condition that (2.3.1) should
describe a system with a specific number of nucleon pairs,
one may replace this expression by the exponential

1. A
¥ = N'exp(S')|0> ;
BCS | (2.3.2) !

RV
I,

which is more convenient to perform simple calculations.
The form (2.3.2) may be rewritten as

ERb

e

L w1

|BCS> = 1 (u_+v._s a*ai)|0>

>0 @ aoaa (2.3.3)

which was (for the case of plane waves) introduced by
Bardeen, Cooper and Schrieffer (BCS) in their original

e
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treatise on superfluidity!?/. In (2.3.3) o runs over all

- Jg~m
available states with ma>0; aE(a,-ma); sa=(') a a,

!

uy and v, are the BCS parameters, which satisfy the norma-

lization condition

ul + v; =1 (2.3.4)

The gquantity v; is the occupation probability of shell a.
These occupation probabilities completely determine the
BCS wave function, which again illustrates the simplicity
and coherence of its structure. It is therefore completely
specified by a drawing like fig 2.3.

The parameters u, and v, are usually determined by the
conditions:

minimum
No (2.3.5)

<Bcs|§|Bcs>
<BCS|N|BCS>

where N denotes the particle number operator:

~ ot
N = g aya, (2.3.6)

and H is the Hamiltonian (2.1.1). The second condi-

\
N\
MN\\J\NM x ( V; = “2)

Figure 2.3 Sketch of a BCS pair dis- ~
tribution. The dotted line connects .
the occupation probabilities v? of AN
the shells a. The level A a \
indicates the Fermi energy. \

-
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tion gives the BCS wave function the desired average
number of particles no (from definition (2.3.3) it is
obvious that the BCS wave function contains components
with different number of particles).

The equations (2.3.5) can be solved by introducing
a Lagrange multiplier A. One then obtains the so~called

gap equations“’!?/);

-t =})=(12ey?
2uava(ea LR A) (ua va)Aa

§(2ja+1)v;=no (2.3.7)

‘52 sustaaBEubvb

where Aa
= 2
LP gvaBanb

The self-energy vy represents the binding for a particle
in shell a with all other varticles. The gap parameters
Aa are related to the energy gap which occurs in super-
conductors. They are a measure of the diffuseness cf the
pair distribution; if Aa is large then the diffuseness is
large. A typical value in nuclei is A‘___‘=Aﬁ12/l\.g5 MeV. The
Lagrange multiplier A is the energy of the Fermi level.
One easily proves that (2.3.3) is the vacuum for

objects created by the operator:

- T o_ _
N, = v a, V. S,az (2.3.8)

These operators obey the same anticommutation rules as
the particle creation and annihilation operators. They
are called quasiparticle (creation) operators. One has:

nalacs> =0 (2.3.9)

w
o

%
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-f.
nE]BCS> = a; i (ua+vasaaaa§)|0> (2.3.10)

a>0

ot8

e
Equation (2.3.10) shows that “E destroys the pair sBaéa

Wi+

and creates a particle a;. The state (2.3.10) is called
a one-quasiparticle state (ld.p.} and has components with
an odd number of particles only; this state should have
its counterpart in an odd nucleus. Other states in odd
nuclei may be generated by creating any odd number of
quasiparticles.

The states of an even nucleus can be described by a
superposition of states with an even number of quasi-
particles.

As a quasiparticle operator destroys a coherent pair
it will create a wave function with higher energy. The
increase of energy is about 1 to 1.5 MeV for each quasi-
particle, if one adopts a current nucleon-nucleon inter-
action. This follows from a transcription of the Hamil-
tonian in terms of quasiparticle operators.

The Hamiltonian (2.1.1) can be expressed in quasi-
particle operators by transforming the particle operators
into the quasiparticle operators by the inverse of (2.3.8):

t +
a, = u n, + vos n= (2.3.11)

Then the Hamiltonian has the form:

H = Hy + Z Eanzna + Hz2 + other terms, which

change the number of quasiparticles.
(2.3.12)
where H,, describes the interaction between quasiparticles.
More details may be found in refl?’? St14J

If one approximates the energy of a n-quasiparticle state
by taking only the second term in (2.3.12) (the first term
gives for all states the same constant E(BCS) = Hg), then
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one has:
0 q.p. |BCs> E=0
+ _
1 q.p. na|BCS> E=E,_ >A
ten 19 -
2 q.p- [“a"“b]mlBCS> =E_+E, >2A
SVt I N B _
3 q.p. [[ naan]Mxnc]mchs> E=E_+E +E_ 234
(2.3.13)
- o oav2.n2lE
where E_ = [(ea u,—A) +Aa] >4, (2.3.14)

All Aa are roughly equal to A, which has a value of about
1.5 MeV in our applications,

So, if one neglects the interactions between the
quasiparticles, then the energy difference between v-
quasiparticle states and (v+2)-quasiparticle states is
2A=3MeV. If one wants to calculate states of a single-~
closed-shell nucleus below 2 MeV one may therefore hope
that it is sufficient to consider 0 q.p. and 2 q.p. for
even nuclei and 1 g.p. and 3 q.p. for odd nuclei.

2.4 PARTICLE~NUMBER PROJECTION; THE BROKEN-PAIR MODEL

The BCS model presented in section 3 is simple. It
has the drawback however, that the wave functions don't
have a fixed number of particles. It is obvious, looking
at (2.3.3), that the BCS wave function has components with
0,2,4,..... particles. This means that the BCS wave func-~
tion for a nucleus with ne particles also contains compo=-
nents for nuclei with net2, net4,..... particles. One
even can construct states, which do not have any component
with the desired number of particles'’, the so-called
spurﬁous states. These spurious states describe in fact
only states in neighbouring nuclei. It is necessary that
these spurious components are removed from the model space
by performing particle-number projection. The method of
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v particle-number projection, used for the calculations in
» this thesis is the one of refs“!571%J),

ég The particle-number projected BCS model is equivalent
to the broken-pair approximation®®)
P v=0,2 broken-pair states are:

. The unnormalized

shHPjo> (2.4.1)

Al (ab) (TP 0> (2.4.2)

o where |0> denotes the closed shell state and
st = Za %éva(ua)-lAto(aa) in the notation of refl®*J,

The relation of the broken-pair states (2.4.1) and

(2.4.2) with the number-projected gquasiparticle states
of refl*) is:

-1 Qa +\p
(p?) [g u, ](s 10> =y, > (2.4.3)
Q
((p-l):)'1(1+sab)'*A§M(ab)[g uaa](s*)P‘1|o> -

& uaublwzp'JM(ab)> + %GJOGabauava|¢2P> (2.4.4)

For the odd nuclei the relation of the broken-pair states
with the number-projected quasiparticle states can be
found in the appendix of Chapter 4.

; 2.5 RELATIONSHIP BETWEEN ODD AND EVEN SPECTRA
e IN THE BCS MODEL

In section 3 it is argued and globally indicated in
(2.3.14), that a one-g.p. and two-g.p. state are about
. A and 2A respectively higher in energy than the BCS state.
This leads to the picture, shown in fig 2.4 for the case
of which the single-particle energies are shown in fig
2.1, The interaction is the pairing force with strength
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Figure 2.4 The spectra of odd and even nuclei as predicted by the BCS model.
The single-particle energies of figure 2.1 and a pairing force with strength

Gio.d MeV are adopted. No number projection was verformed, but the spurious
0 state was removed.

Vo=0.4 MeV. The ground states of the even nuclei are con-
sidered to be BCS (0 g.p.) states and the excited states
the 2 q.p. states. In the odd nuclei the lowest states

are considered to be 1 q.p. states. If the relative single-

particle energies €% and the force strength Vy, are Ynown

the gap equations (2.3.7) can be solved; then the quasi-
particle energies Ea (2.3.14) are obtained.

Gillet et al.!%) proved that one may reverse this pro-
cedure, viz.: starting from the experimental quasiparticle
energies Ea one calculates the relative single-particle
energies and the force strength.

The quasiparticle energies are derived from the expe-
rimental spectra of the odd nuclei in the following way.
First one needs the odd-even mass difference (which mainly
determines the force strength). Secondly one needs for all

single-particle levels with angular momentam and parity j1T

the lowest level with j.'T in the odd nucleus. These levels

E

b
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are considered as 1 g.p. states., If more than cne level
with a certain j1T have been observed then a sum of the
energies, weighted with the spectroscopic factors from
one-nucleon transfer data is used., The gquasiparticle
energies are the sum of the odd even mass difference and
the excitation energy of this lowest state.

With these quantities the inverse of the gap equation
(2,.3.7) can be used to calculate U rVor€y and Vp; this
method is known as the Inverse Gap Equation method (IGE)!®J,

For even nuclei the parameters can now bs obtained by
interpolation of the parameters found for the odd nuclei.
In this way one can perform for even nuclei calculations,
which are free of further adjustable parameters. In the
method IGE no particle-number projection is used. Particle-
number projection may have a considerable effect on the
excitation energies. Therefore one should use the Inverse
Modified Gap Equations (IMGE) + v=1 fit or equivalently a
IMGE +1q.p.GCM fit. This was introduced by Allaart®’ and
applied by Van Gunsteren®’ as the particle-number projected
analogue of IGE. In Chapter 3 this procedure is used for
several single-closed-shell nuclei in the pf shell. The
meaning of the resulting parameters is discussed there.

The procedure IMGE + 1 g.p.GCM fit yields good results
for single-closed-shell nuclei. Examples of these calcula-
tions can be found in refs®’5"7) and in Chapter 4 of this
thesis.

E TR
SO ey ST

In Chapters 5 and 6 quasiparticle degrees of freedom
are coupled to harmonic vibrations. In this model it is
not so easy to extract parameters from the odd nuclei as
described above; phonon admixtures can play a large role
in the low-lying states; in this. case these states cannot :
be considered any more as 1 q.p. states. Therefore in such »
cases on¢ normally considers the single-particle energies
€4 and force strength V, as free parameters.
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Chapter 3

APPLICATION OF THE SUPERFLUIDITY MODEL TO SCS NUCLEI
IN THE PF SHELL

3.1 INTRODUCTION

In chapter 2 a brief outline has been given of the
number-projected BCS model. In the Shell Mbdel Hamiltonian
it was assumed that the single-particle energies are
independent of the magnetic quantumnumber m,. Therefore
the formulas given there apply to spherical nuclei only.
Nuclei with a single closed shell are indeed expected to
have a spherical shape. Examples of this type of nuclei
are the Ca and Ni isotopes and the N=28 isotones.

First, single-particle energies will be determined for
these nuclei with the method IMGE + 1 q.p.GCM fit, men-
tioned in chapter 2. The single-particle shell model space
for the protons and the neutrons consists of the pf shell.
As residual interactions the Kuo Brown force, the Mc Grory
force and a Gaussian Serber force are used.

Next, the obtained values of the single-particle ener-
gies for %2Cr will be used in a HFB calculation to see
whether the intrinsic groundstate is spherical or whether
it turns out tosbe deformed. In the former case the model
would be consistent; in the latter case we conclude that
one should not consider the parameters obtained by the
IMGE + 1 q.p.GCM fit as suitable parameters in other model
spaces.

Finally these parameters will be used in a projected

s
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two-quasiparticle calculation for °°Ti, 52Cr and °"Fe.
3.2 DETERMINATION OF THE PARAMETERS

In the pf shell single-particle energies were deter-
mined for protons as well as for neutrons. For protons the
spectroscopic data of the odd N=28 isotones‘’ were used.
The quasiparticle energy for an orbit j“, given in table
3.1, is the sum of the odd-even mass difference'?’ plus
the sum of the energies of the levels with j1T in the odd
nucleus weighted with the spectroscopic factors for one-
nucleon transfer. The number of levels we used to calcu-
late a quasiparticle energy for these nuclei was mostly
less than five; for a few cases it was even about ten.

For higher levels the available experimental data become
less clear. This introduces considerable uncertainties of
the order of 0.5 MeV. The neutron single-particle energies
were extracted from the nuclei *27*3+45727Cca and S7738Ni.
In both cases only one kind of particles is assumed to be
excited. The obtained quasiparticle energies are listed in
table 3.1. Three residual interactions were used.

The first is the Kuo Brown force!’, which was deter-
mined, starting from the Hamada~Johnston nucleon-nucleon
interaction.

The second is the Mc Grory force?’, which is a modifi-
cation of the Kuo Brown force, to fit better the spectra
of light pf shell nuclei for some shell model calculation.

The third interaction is the simple Gaussian Serber
force ‘

-r?
V(r1z) = - Vo PS exp[ ;z}
H
where Vo is the force strength,
Pg is the singlet even projection operator,
U= 2,0 fm is the range.
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Table 3.1 Proton and neutron quasiparticle energies (Mev)
used to determine the single-particle energies.,

Protons

M!sc Slv San Sico

£, 170 161 1,56 1.48
2pa,, 523 407 397 4.05 4
l.fs/2 6.47 5,76 5.29 5,03 i
21, 7.60  7.09  6.03  4.79

Neutrons

“lca “1ca “Sca “Tca 7Ny TN

]'f’/z 1.68 1,78 1,68 1.50 5.37 5.65
29;/2 3.86 3.76 3.68 3.50 1.25 1.55
lfslz 6.57 5.72 6.18 6,50 2,03 2.05
291/2 5.76 5.43 5.18 5.50 2.36 2,35

For these interactions first overall force strengths were
adjusted so as to fit the odd-even mass differences with
the IMGE method. For the Kuo Brown and Mc Grory interactions
the resulting factor was within a few percent 1.0. This
shows some consistency of these forces with our method to
fit these parameters. For the Serber force the result was
V9=44.0 MeV. These values were next used in the one-quasi-
particle GCM fit.

For the resulting single-particle energies for the ‘
N=28 isotones and the Ni isotopes a correction was made for ;

the binding by 8 nucleons of the other kind in the 1f7/z
shell:

e B I

Be, = -%(23,+1) 71 [ (23+1) G(K7/,k"/23T) (3.1)

[4
This means that the energies for all nuclei are calculated
relative to a “%Ca core. Without the correction {3.1) the
energies would be given relative to a “%Ca core for the

MY R O N v

N=28 isotones or a “®Ni core for the Ni isotopes. The cor-

rection amounts to a downward shift of the 2p;, , lfs/
2 2

and 21:n/2 single~particle levels relative to the 1f7/2
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level of 1.35 MeV, ~1.81 MeV and 0.80 MeV respectively for
the Kuo Brown force and of 4.16 MeV, 1.02 MeV and 3,63 MeV
respectively for the Mc Grory force. The shifts of the
Mc Grory force are 2,83 MeV larger. This is due to the fact
that this force has stronger matrix elements
G ("/2 /2 /2 7/2 JT); this results in a stronger binding
for the 1f7/2 single-particle level if the 8 particles of
the other kind are included. The energy shifts (3.1) for
the Serber force are much smaller, viz, 0.32 MeV, -0.62 MeV
and 0.21 MeV for the 2p3/2, lf,r,/2 and 2p1/2 level. The
single—-particle energies are drawn in figure 1. Especially
important for a calculation on an even N=28 nucleus is the
gap between the lf-,/2 proton and neutron level and the other
levels; therefore let us consider the relative single-
particle energies e(pslz) - a(f7/2).
For the protons the results for the Kuo Brown and
Mc Grory matrix elements are nearly identical relative
to a "%Ca core. Due to the binding correction (3.1) there
is a difference of 2.83 MeV relative to a "’Ca core. The
result for the Serber force is a little different. The
main difference with the other forces is again the cor-
rection (3.1). For the neutrons the situation is almost
the same as for protons; the large differences between the
three forces for 9 and 11 particles are due to the cor-
rection(3.1): Z.e. relative to a “®Ni core they are al-
most the same.
We consider single-particle energies to be acceptable
if they satisfy the following two criteria:
i) The variation of the single-particle energies as a
function of particle-number should be smooth!?/;
ii) the difference between the relative proton and
neutron single-particle energies should not be too
large. The only relevant difference between protons
and neutrons is the Coulomb potential but the relative

effect on the single-particle energies is known to be
small,
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Figure 3.1 S5ingle-particle energies for protons and neutrons in the pf shell for
the Xuo Brown interaction (KB), the Mc Grory interaction (MG) and the Serber
force (S). The nuclei, from which the quasiparticle energies were taken are given
below in the figure.

From figure 3.1 one may notice that the Kuo Brown force
satisfies the two criteria best. The Serber force and the
Mc Grory force show discontinuities in the relative single-
particle energies e(pa/z) - e(f7/2) for the neutrons; for
the Mc Grory force the difference between the energies of
the éroton and neutron pa/z level relative to the f7/2
level is about 3 MeV. Mc Grory's ad hoc changes of the

Kuo Brown force, to fit the light pf shell nuclei better,
are responsable for this effect.

3.3 THE HARTREE-FOCK-BOGOLYUBOV (HFB) GROUND STATE

The HFB theory may be considered as a generalization of
the Hartree-Fock (HF) theory. Therefore, it is first indi-
cated, how the HF ground state energy is calculated.
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Thereafter the extension to the HFB case is simple.

31.3.1 The Hartree-Fock ground state®’

In second guantization the Hamiltonian H in the HF
theory is given by:

: H ) <a|T|B>aZaB + % ) <uBIV|76—6y>aZa2a6aY (3.2)
3 aB aByd
\ where T is the kinetic energy operator,
V is the nucleon~nucleon interaction.
One deternmines the nuclear wave function ¢, which is

a solution of the Schrddinger equation
HO = E} (3.3)

in an approximate way by assuming, that for a nucleus,
consisting of A particles, ¢ can be written as a Slater

determinant
Ao
> .
The precise nature of the single-particle states u are not
jj yet specified. Only orthogonality is required. ¢ has to
o satisfy:
. §<¢|H|®o> = 0 (3.5)

which is equivalent to

5. <6¢|ﬁ|¢> = <¢|ﬁ|6¢> =0 (3.6)

where §¢ is orthogonal to ¢. In second quantization 6¢ is
given by:

+
|6¢> = na_a, |o> (3.7)
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with n infinitesimal; ¢ should refer to an empty state and
A to an occupied state.

Then equations (3.6) lead to: :
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A
<g|T|A> + } <ou|v[Au> = 0 and (3.8)
u=l1
A
A|T]e> + ] <au|viou> = 0 (3.9)
=1

To specify the single-particle states i in (3.4) one dia-
gonalizes:

A
<alT|B> + ] <on|v|Bu> = .8 (3.10)

W=l ob

The resulting single-particle states automatically fulfill
equations (3.8) and (3.9). The self consistent HF potential
U is defined by:

A
<a|u]g> = ) <au|V|Bu> (3.11)
u=1

Equation (3.10) can be written as:
<a|T+U| B> = <a|sa|3> (3.12)

Notice, that U is still dependent on the single-particle

wave functions u. The solution of equation (3.12) is ob- .
tained by starting with trial single-particle wave functions. %
This process has to be repeated until the solution is stable. §
The energy of the ground state is then given by:

A A
T <A[T[A> + % ] <Au|v]|Aaw

Eq = <¢|ﬁ|¢> ;
_ 1 u=1 j

]
> >
e~ 1l
[}

A ‘
€y - gxi <Alulas (3.13) i
=1

3.3.2 The Hartree-Fock-Bogolyubov ground state®) 4

The essential difference between the HF theory and the
HFB theory is, that the trial wave function is chosen in a
different way. Here one first defines the quasiparticle
operators ni by:
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T2 t 2
"k = E (Rok3a * Baxo!) (3.14)

The quasiparticle operators should satisfy the anticommu-

tation rules for fermions; this requirement gives a

restriction for the matrices A and B. The trial wave

function ¢, given by:

2> = & n, |o> (3.15)

is a vacuum for the quasiparticle operators,
The choice A= 0 for occupied states and

RIS Lo T RN

ﬁf Bak' 0 for empty states

- leads to the trial wave function in the HF theory. The
quasiparticle wave functions are determined by the HFB
equations: '

¥ ((<a|T|B> + 1 <au|v|gv><s*sT> v)AE +
g P

uv "
N <uu|V|Bv><ABT

L, >uvBBp] = EaAap and (3.16)

) ((<B|T|u> + ) <Bu|V]uv><BTB>
B

)B +
uv uv’'TBp

T % _ ,
%§v<8u|VIav<>B A >UVABP] = EByp (3.17) i

From these equations the BCS gap equations can be derived g
with the choice Aak=uk6ak and Buk=vk6uksn' Then the quasi- 7
particle operator (3.14) is the BCS quasiparticle operator.
Apparently the HFB equations generalize both the HF and
BCS equations. The HFB equations determine self consistently k.
the single-particle energies. If the single-particle shell :3
model space is too large (for example for 52Cr) then an
inert core is assumed and the binding for a particle in
shell A by this core is simulated by a single-particle ener-
gy EA' which includes also the kinetic energy term. This

f single-particle energy is set equal to the single-particle
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energy found in section 3.2.
3.4 RESULTS

For 52Cr a HFB calculation was performed with the
parameters obtained with the Kuo Brown force, because
this gave a smoother behaviour of the energies of the
single-particle levels as a function of the particle num-
ber. Besides, the results with the Mc Grory matrix ele-
ments will not be very different, because the energies
relative to a “®Ca core are not very different.

First a HFB calculation was performed, while the nu-
cleus was restricted to a spherical shape, i.e. essential-
ly a BCS calculation.

Next, in another calculation the nucleus was allowed
to deform to find the minimum enexrgy for the intrinsic
ground state. The results of the second calculation are
the following. It shows a minimum for the ground state
energy for a prolate deformation. The energy gained by
deformation is about 2.5 MeV. The quadrupole moment of
the intrinsic ground state is 142 fm2?. This means, that
the single-particle energies obtained by the IMGE + 1 q.p.
GCM fit should not be used in a HFB calculation; the as-
sumption that the N=28 nuclei are spherical is not con-
sistent in that case. Therefore our parameters should be
considered as connected with the model space in which one
considers at most two particles which are not coupled to
a (spherical) pair.

Next, we proceeded to perform a two-quasiparticle cal-
culation, to see what the result would look like. The pro-
ton single-particle energies for °°Ti, %2Cr and 5'Fe are
listed in table 3.2 In the figures 3.2, 3.3 and 3.4 the
results are compared with the experimental spectra and
other calculations.

In figure 3.2 the results are shown for °Ti. The model
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of Kuo and Brown is identical with ours. Only the single-
particle energies are different, viz.: s(f7/2)=0.0,

. e(pa/2)=4.4, e(fs 2)=5.9 and s(p1/2)=6.9. The dominant

£ configuration is (f7/2)2. Therefore the result of Kuo and

Brown and ours are much alike.
We also compare with the shell model calculation of

Chuu et.al.!?’/, In that calculation the neutron 1f7/2

s

ot

‘

Yo e




T T T,

L e

ool e

S P S e S e g R T TN 1

34

Table 3.2 Proton single-particle energies in MeV for the
Kuo Brown interaction, used in the 2-quasiparticle calculation,

nucleus E(f'l/z) E(ps/z) E(fs/z) E(Px/z)
Stpy 0.0 3.1 4.93 6.27
S2cr 0.0 3.39 4,96 6.09
S'pe 0.0 4.11 5.46 5.61

shell is closed; all protons but one are assumed to occupy
the f7/2 shell and the interaction of Schiffer and True'!!/,
the 14 parameters of which are fitted to the spectra of the
N=28, N=29 and N=30 nuclei, is used. For °°Ti their result
is not very different from ours.

The results for *“Fe are shown in figure 3.3. Like for
*'7i our result does not differ much from that of Chuu et.
al, The spectrum can be exblained to a large extent by the
configuration of two holes in the 1f, , shell.

In the calculation of Mrs. Parikh’’ protons and neu-~
trons were assumed to occupy the pf shell. As an effective
interaction she used the Mc¢ Grory interaction and two bands’
were calculated:

1) a prolate HF band

2) a second prolate HF band
The first has the ground state with the lowest energy. The
single-particle energies were varied to fit the spectrum of
*“Fe. The two band were mixed. The result looks more like
rotational than our result and experiment.

Figure 3.4 shows the results for °2Cr. Our calculation
is able to reproduce the energies of the levels, which can
be understood in terms of v=2 configurations. The calcula-
tion of Chuu et.al. can also describe some levels with a
v=4 character. The GCM and HFB calculations of Miither et.al.
are interesting. They find using a Mc Grory interaction a
HFB intrinsic ground state with a prolate minimum. This
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minimum is 0.2 MeV lower than the spherical solution. The
quadrupole moment was 121 fm?, which is near our result
(142 fm?). The calculated spectrum is too rotational.
Later Miither decreased the energy of the lf-,/2 single-
particle level by 1 MeV and his results improved; the
shape of 32Cr was then almost sphericall®/.

3.5 CONCLUSION

All spherical models, shown in section 4, give reason-
able results for N=28 nuclei.
The calculations of Parikh and Mither have a freedom for
the nucleus to deform. The Kuo Brown interaction then pro-
duces a deformed solution, unless the gap between the 1f7/2
single-particle level and the other single-particle levels
is increased arbitrarily, so that a spherical solution is
obtained. Then this model gives reasonable results for the
spectra.

It is apparent, that good results are obtained, only,
if the shape of the nucleus is (almost) spherical.
When the single-particle energies which are determined with
the spherical IMGE method and the 1 q.p.GCM fit, are used ;
in a HFB calculation, a deformed solution is obtained. This
is an indication, that these parameters should not be used
in a HFB calculation. Apparently parameters and model are
coupled, so that one may not use parameters from an essential-

ly spherical model 1 q.p.IMGE to perform calculation with
deformed degrees of freedom.

gt

This conclusion is not completely unexpected. A depen-
dence of the parameters on the model space was also present
in earlier calculations by Van Gunsteren for example'?®/,
There the single-particle energies from the IMGE + 1 q.p.GCM
fit did not give good results in 3 gq.p. calculations for the
Sn isotopes. The extension of the model space by including
states with two extra quasiparticles shifted the lowest
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levels by a few hundred keV. So a new determination of

I . the parameters, which was essentially a three-quasiparti-
, cle fit for the single-particle energies, had to be per-
5. formed!?/. When one allows nuclear deformation, this is

iy

¥

P equivalent with including many-quasiparticle states.
So the appropriate model parameters may then differ con-
& siderably from those found in our treatment.
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Chapter 4

A Broken-Pair Description of *°Y, ?'Nb and **Tc a

The low-energy propertics of #°Y, ®'Nb and **Tc are described in a broken-pair mode!.
The shell model space for the protons consists of one major shell and for the neutrons
particle-hole states within two major shells are taken into account, The effective in-
teraction is assumed to be a simple Guussian Serber force, which has proved to be the
most successful in adjacent even nuclei.

Energy spectra up to about 3 MeV excitation energy and one-nucleon transfer data can
be described very well. Also electromagnetic properties can be reproduced rather well if
reasonable effective charges are used. No indication for deformed states, as found in Sn

nuclei, is observed.

1. Introduction

For many years attempts have been made to describe
the N=>50 isotones. The main reason for this has
been the supposition that $5Sr,, might be treated as
a proper inert core, so valence protons were restricted
to the 2p 1/2 and 1g9/2 single-particle levels. Within
this small model space relationships between the
energy spectra of several nuclei as predicted by the
shell madel can be shown to be satisfied to a large
extent [1-6].

In several investigations it has been remarked howev-
er that also excitations from the 2p3/2 level are
important, especially to describe electromignetic pro-
perties [7-12]. In the work of Vergados and Kuo
[11] both proton and neutron excitations from the
883r core were allowed for the description of the
energy levels of %Y. In a recent, rather extensive
study of both the even and odd N=50 isotones
Fujita and Komoda allowed one - or two-proton
excitations from the 2 p3/2 level [12]. Although this
is sufficient to obtain non-zero values for M 1, E2 and
E3 transitions, the comparison with experimental
data points out that the results are not always satis-
factory, especially for collective transitions in even
nuclei. Such collective transitions have been studied
extensively by Gillet et al. [13] in the framework of
the BCS model. They found that the EJ excitations

can be reasonably well accounted for by this model,
but the description of E2 excitations was found to be
poor.

Allaart and Boeker have demonstrated however that
the latter are considerably improved for N =350 iso-
tones by a systematic particle-number conserving
BCS 1reatment [ 14].

There are several reasons why one may prefer a
number-conserving BCS quasiparticle model [15],
which is equivalent with a broken-pair model [16] or
the generalized seniority scheme [17], rather than a
straightforward shell model treatment. One reason is
that one can easily deal with more than one major
shell to describe the pairing properties [18]. Also
when one restricts the model to one major shell the
projected quasiparticle or broken-pair model yields a
good prescription how to select a few model states
out of a many times larger shell model basis without
loosing much accuracy [19]. It also provides a trans-
parent picture of the structure of the nuclear states,
supposing that most nucleons occur as unbroken
pairs (which are supposed to be the microscopic
equivalent of S-bosons in [20]).

In the present paper we report the application of
the projected quasiparticle [15] or broken-pair [16]
model to odd N =50 isotones. So far this model has
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been applied to odd Sn nuclei only [21, 22]. Since it
is known [23] that in Sn nuclei certain deformed
structures may appear at rather low excitation en-
ergy, the N =50 isotones might be more suitable for
the application of the model. As the description of
the odd nuclei can only be expected to be successful
when also the lowest (collective) excited states can be
described by the sume method, these states are con-
sidered first, iand improved by the inclusion of neu-
tron particle-hole excitations, Therefore the busis sta-
tes for the description of the odd isotones are states
with one broken proton pair or a neutron particle-
hole pair. In Sect. 2 the model and the computational
method are out-lined. Section 3 contains the resulting
spectroscopic properties and a comparison with ex-
perimental data. Section 4 contains a summary and
conclusions,

2. Model and Computational Procedure

2.1. The Model Space

The model space consists of states of the following
three types
a) states without a broken pair:

ar (S Fe) @n
b} states with a broken proton pair:

a7 ap (S5, 2.2)
¢} states with a neutron particlchole pair:

al by b (STVI0) (2.3)
where (6) denotes the closed shell (Z=28, N=350)
state and S* =L§%A;,,(uu) in obvious notation

(19]. The BCS-parameters t,,u, are determined such
that the presence of unpaired particles is accounted
for in an average way [23]. The technique how to
calculate matrix elements of a shell model hamil-
tonian in the space of states {2.1) and (2.2), coupled to
proper angular momenta, is well known {15, 21]. In
{157 extensive formulas have been given. The exten-
sion to include the particlehole stzies (2.3) is straight-
forward. Formulas are given in the appendix.

The shell model orbits included are the 1/5/2, 2p3/2,
2p 1,2 and 1g9/2 shells for protons, the 1£5/2, 2p 3/2,
2p 1;2 and 1g9/2 for the neutron hole and the 2d 5/2
1g7/2, 2d3/2, 35 1/2 and 1h 112 shells for the neu-
tron particle. A restriction, which was justified by
some test calculations, is that the neutron particle-
hole configuration should have natural parity (J*
=2%.3",4",...). The J*=1" configurations were ex-

Table L. Relative single-purticle energies and force strengths used
in the caleulation of **Y, *'Nb and "*Tc in MeV

Protons Neutrons

Koy YIND MTe

152 00 00 00 52 =30 2dS2 40
32 150 L9 204 22 -20 1gI2 50
202 322 336 3K 312 -0 3512 50
1892 380 336 326 1g92 00 2432 60

1h11/2 70
v, 361 360 32

cluded becuuse they only produce a low-lying spu-
rious (center of mass motion) state and high-lying
states which do not contribute significantly to the
lowest part of the spectra,

2.2. The Model Parameters

The shell model effective interaction is assumed to be
of the form

Vil,2)= —V, Bexp (%’—) (2.4)

where R, is the singlet operator, The range parameter
Jt is taken to be 1.9fm. Although this force is very
simple it appears to give good results in practical
calculations of even single-closed-shell nuclei; better
than several more complicated forces {24]. The pro-
ton single-particle energies were determined from
cxperimental data by the number-conserving anal-
ogue of the inverse gap equations {25]. In °'Nb these
cnergies were taken slightly different from those of
(257 in order to reproduce the fragmentation of the
P 3/2 and f5/2 single-particle strength better. For the
neutron single-particle energies a reasonable guess was
made. The results are not sensitive to small changes
in these energies. The parameters are listed in Table
1. For the even nuclei, of which we need the ground
state wave function for the calculation of one-nucleon
transfer spectroscopic factors, interpolated parame-
ters are used. Further model parameters are the
effective charges e =1.4¢ for protons and 0.4e for
neutrons und the effective spin-gyromagnetic factors
£ =329 n.m. for ptorons and —2.50n.m. for neu-
trons. With these values we reproduced the
B(E2;2} »gs) and B(MI1; 1} —gs) in ®8Sr

3. Results and Discussion
3.1. Spectroscopic Factors

Table 2 shows that the experimental values for one
proton transfer reactions are reproduced reasonably
well by the calculation, (The pick-up data for 5°Y
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Table 2. Spectroscopic factors for one-proton transfer reactions

Jr Stripping Pick up
keV cale,  exp. citle, exp.
wy 12" 0 077 092 .41 191
9/2¢ 909 088 074 0,77 L0
32 1,507 01l 040 355 425
52~ 1,744 00 013 494 780
MIND 2 0 086 092 261 26
12- 104 022 043 .19 1.66
52" 1,187 001 wenk 086 055
¥2- 1313 002 M 1.50 Li5
2 1613 002 0 182 235
BTe 92" 0 066 073
12" 390 032 022
32 1,193 007  weuk
572~ 1.406 0002 wenk

The experimental data are taken from [27, 29, 30]

appear to be at least 25 percent too farge). Since these
datd have been used in the parameter fit they are
only a weak test on the model. The description of the
other states, which is now free of further parameters
is a much more crucial test.

3.2. The Nucleus *°Y

Figure 1 shows the experimental and calculated spec-
tra. Also the positive parity states, obtained by a
calculation without core-excitations, are given. Es-
pecially the energies of the two lowest 5/2* and 7/2*
states, which can be described to a large extent as a
Py2 quasiparticle coupled to the 3~ state in *Sr. are
lowered by core-excitations. The energy of this 3~
state is caiculated about 1.2MeV too high, when
neutron excitations are neglected; inclusion of these
excitations makes the nucleus “softer™ and gives a
downward shift of the 3~ state by | MeV. The effect
on the 5/2* and 7/2* states is clearly seen in the odd
nucleus ®%Y. One notices that the calculated levels
are almost in the right order; all experimentally
observed levels are reproduced by the calculation. So
there is little doubt about the nature of these states,

A comparison with the shell model calculations [12]
onfirms the above statements about the 5/2* and
7/2* states. Within the limited (although large) shell
model space these states are not predicted at the
ofrect position, as also the 3~ states in the even
wclei cannot be described, when the 1f;,, proton
shell is omitted and, more importantly, when no
1eutron core-excitations are considered {13]. In their
study [11] of *®Y Vergados and Kuo included such
:xcitations and consequently they find the 5/2* and
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7/2* states at lower energy. In [11] there seem to be
too many low-lying states however, We think that
this is due to the fact that much attention was paid to
core excitations but relatively little to pairing cor-
relations which increase the splitting between zero-
and one-broken-pair states. Around 3.2MeV states
with a different nature scem to appear. Figure 2 shows
some high spin states, The spin assignments given by
(28] are tentative, [t has been suggested that the state
at 5.58MeV is a gy, quasiparticle coupled to the 7-
state in *Sr. The 7- state in 3%Sr, however, is an
almost pure configuration (rge,, nf;;;) in a one-
broken-pair calculation. So, when a gy, quasiparticle
is coupled to this configuration, the Pauli principle
forbids a 23/2~ ussignment, Within our model spuce
the first 23/2- state occurs around § MeV, but we
cannot exclude the probability of a lower state when
more pairs are broken.

Table 3 shows transition rates, half-lives and mixing
ratios. The BE/ values and half-lives for most states
are reproduced reasonably well. This indicates that
the configuration mixing of these states is correct, The
2.873keV state is presumubly a 7/2* state, for in that
case the calculated BE3 value and the half-life are
much closer to the experimental values than for the
5/2* assignment, as one may notice from the table.
As expected our results are much better than those
obtained in shell-model calculations, e.g. [12].

3.3. The Nucleus °'Nb

In °'Nb some 20 states are known which have a one-
broken-pair (or a more complicated) character. As
one may notice from Fig. 3 the calculation can
account for them reasonably well. The resuits are
especially reasonable in view of the well known fact
[23] that a careful optimization of the pair-distribu-
tion for the broken-pair states may bring them down
by a few hundred keV. It cannot be excluded however
that substantial admixtures of components with more
than one-broken pair are important to improve these
states. The calculation predicts that the second 13/2~
state lies only slightly above the 15/2 state, so it
might be observable by a weak gamma branch in the
decay of the 17/2 state. So up to about 3.2 MeV, like
in »”Y, essentially all levels can be explained as one-
broxken-pair states. This is also confirmed by the
transition rates and half-lives, which are shown in
Table 4.

The hall-lives of the 9/2* state at 1,637keV and the
11/2~ state at 2,413keV are quite seqsitive to the
effective gyromagnetic factor for the neutrons. For

example, if g (neutron)=0 then T,2(11/275 2,413)
=4.2ps.
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u times two. Spectra (B) and {D) are the calculations

- foe the positive and negative parity states respectively, with the purumclcrs from Table [. in cafculution (A) the neutron excitations were

omitted. The experimental data sre taken from [27]

The branching ratio for the 9/2- state at 1.791 MeV
is not reproduced in the calculation, probably be-
cause within our model space E! transitions are not
possible.

For a comparison with the most extensive shell-
model calculations [12] we should mention that our

first 1/2%, second 3/2*, 5/2* and third 9/2* shown in
Fig. 3 consist predominantly of configurations outside
the (2p,,5,2py,5,18¢,;) proton space. The latter is
found to be a kind of pairing vibration with respect
to the ground state whereas the first 1/2% and the
second 3/2* and 5/2% states are mainly built of
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The numbers near the levels indicate -
the angulur momenta times two. The

experimental data are taken from [28] -

Initial level Final level Calculated gamma transition probability Branching ratio and hall-life (ps)
in s~ ! (Weisskopl units)
J* keV Je keV E2 M cale. exp. exp.
9/2* 909 1/2- 0 3Ix10-%(12) 6.8 x 10-2(6.1) 10.2s 16,06 s
32- 1,507 1/2- 0 53x%10'1(2.3) 19 % 10'7(0.18) 261s 244150 6=-0,154005"
52 . 1,144 1/2= 0 1.0x10'3(2.2) 0.68 0.53+004
52+ 2222 1/2- 0 1.1x10°(16) 1.9 x 10°(0.08) 0} BE3}=184+2W.U.
92+ 909 52%10'1(46) A 0354014
7/2* 2,530 1/2- 0 1.9 % 10°(10} 0} _
92* 909 15x107@5)  26x10'*(002) 10071696 762356 BE3=19£2W.U.
11/2* 2,566 9/2+ 909 32x10'%(8.9) 42x10"(3.0x10-3) 0.19
9/2+ 2622 9/2* 909 31 x1013(7.2) 8.7 % 10'1(5.5 x 10-%) 017 0.12 3
(5/2%) 2873 1/2= 0 1.7 x 10%(0.38) 8.8 x 10°(0.10) 0'} 14 0} <02 BE3=36+3W.U.
or 92+ 909 49 x 10'1(0.58) 100f 100/ =™ . N
(7/2*) 28713 1/2- 0 25x%10%(5.8) 0} 00 o} BE2=27+3W.U. i
92+ 909 30x10'3(3.5)  56x10'3(002) 100/098  ygpf=02

® 8.4(3/27,1,507T keV) = —0.16. The experimental data are taken from [27]
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neutron excitations from the 1g4,, shell to the 35—24
shell. We suggest therefore that the experimentally
observed 5/2* state at 2.58 MeV should be consid-
ered as a neutron excitation; our third 5/2* state
may be compared with the second state in [12]. In
the shell model calculation [12] the high spin posi-
tive parity states 11/2* —21/2* have large admixtures
of excitations of the #Sr core. In our wave functions
these excitations are rather small, especially for the
highest spins. Nevertheless we reproduce the
21/2* = 17/2* transition equally well as [12], so this
transition does not yield conclusive evidence for the
importance of the admixtures,

3.4. The Nucleus ¥ Te

The experimental information on 3Tc is scurce; al-
ready around 2MeV excitation energy many spin-
ussignments are missing. Therefore an attempt to
identily the calculuted levels with experimentally ob-
served ones up to 3MeV would be too speculative.
As far as well-identified states are concerned the
description seems satisfuctory, with the 2172~ state as
a possible exception. The scarce decay data (Table 5)
are of little help to clurify the picture. The mixing ra-
tio for the 7/2* state at 680keV indicates 'that the
M1 strength is too much hindered in the model,
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Table 4. Transition rates, branching ratios and hali-lives in*'Nb

Tnitial level Final level

Calculated gamma transition probability

ins~! (Weisskopl units)

Branching ratio and half-life (ps)

J* keV J* keV Ei M2 cule, exp, eap.
12" 104 9/2* ] 3 x10-° (12} LEx10-7(30) 41d 62d
+1.7
520 LR 20 104 37k 10184) 14 2670 ‘
LA 125 108 65x10MEBS) 58X 103010 ol 017¥008 ~01558525"
+0.09 <
720 1S 9/2~ 0 19%10'3(6.5)  L7x10%(1.3x 10-%) 0,36 033 _q06 o=0-(:)u_24
32 el - 104 1L0x 10" (044)  7Ax1T365x 10 96 (s 544 17(s 201
2 .
9/2* 1637 9/2+ 0 2Ix 1022 1.8 10°(LAx10-%Y a8 18 f_(‘); $=0,53£0,164
92 1791 92+ 0 L6 10M009% 49 x107(59x10-Y) 0}% 93}) 6
527 1,187 R0 x 10(3.3) 100 77"
52- 1845 \/2- 104 84 x 10°(0.01) 3 }3_2 64} :
52~ L1871 24x 1040060 31 x 10' (003 97 36 .
530 1963 92 0 LIk 0.1 0,2of8'$
1372- 1944 9,2+ 0 74x1070.22)  8.7x107(62x10-Y 80} 51 ) vy
9/2- 1191 23 10729) 20 59ns f 100+ 04ns BEX=29W.U
17/2° 2035 1372 1984 10 x 10% 1.0y 50ps 37610.12ps
72 2120 g2+ 0 46x10°(085)* 3.6 x 10"(1.9x {0-%) i 10
5/2- 1,187 T4x 104035 44x 10" (LTx10°%) 1378 »
- 13 22x 101922 25 9
9/2- 1,791 47x10°(004)  55x 10" (48 x10-3) 6! 42
132¢ 2392 8- 0 79x10'(42) 0.09 o.:zfg-g‘;
574
11,2* 2330 9,2+ 0 76x 101337 34x10'(B4x10°%) 0.09 o1 8= mff
320 2345 122- 104 30x10'018)  1.6x10" 45 1D~ 1 a7
512 1187 55x10'(090) 65x 10" (1.3x10-3) 17 18
325 13 15x10M4d)  LTx10'3(49x10-2) a3 [ 016 5 (0102002
32 1,613 8.3 %10%(1.3) 1.2x 10" (9.6 x 10~ %) a8 9
720 23T 132 1984 29x 10%().0) 24ns 100
13- 2413 9.2 0 24 x 10M(1IBY 1B x107(5.0x 107%) 0.2 67
92~ 1.791 BSx 107(0.03) 79x107(1,0x10-% 0.f -
132 1984 24xI0M0S5) 13 10'1(008) v5(>3 33]0'651""3 :
720 24 LIx 1032 0.2 - :
92 2632 92- 0 17x10'2(098) 7.5x10'(1.3x10-%) 93] %] .
42 1.581 32x 1011085 7.8 x 10%(21 x 10-%) Wora 41,00
93¢ 1,637 16X 101012 14x10°(4.6x10-%) l] - o “_om »
2" 1.963 8.6 x 10%(0,21) 0 0 |
2120 3467 17,20 30 4.5x 10*(2.6) 1.5ns 09240.10ns K

The numoers marked with an asterisk are E3 transition probabilities. The experimental data ure tuken from [29].
{(124)=15

g 13 27)=003, 6,

il

(7.27)=33, 4,

ale

(9,2°)=6.5. d,

aly

Tt

possibly the inclusion of the proton g, , level might
improve this.

We are unable to check the statement in [12] that
seniority four admixtures are large in the 5/2-, 9/2~
and 13/2- states, because components with two bro-
ken pairs are omitted in the present treatment.

There is one more point we want to mention. In the
odd Sn nuclei, especially for '*”Sn, one finds [22] in
the samu type of calcuitions that more levels (of low

b
,
spin) are observed than cun be described. This could RN
than be understood from the fact that also in even Sn i
nuclei collective bands hive been observed [26] -

which do not fit into a spherical description, The
spectra of the odd N =50 nuclei do not exhibit in-
dications of the existence of more levels than de-
scribed below 3 MeV. From this we expect, that in
the even N =50 nuclei no collective bands, like those
in Sn, will occur below 4 MeV excitation energy.
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Fig. 4. Energy levels of **Tc. The numbers near the levels indicate the angular momenta times two, The experimental data are taken from

(30]

4. Summary and Conclusion adjustable parameters, From the nice reproduction of

the energy spectra, typically the lowest twenty levels
We have checked whether the states, up to about being calculated in the correct position, we conclude
IMeV excitation energy in odd N =50 isotones can  that such an interpretation is indeed very likely to be
be interpreted as states with at most one broken pair. correct, although admixtures of more complicated
For this purpose a simple Gaussian Serber force was  configurations may not be negligeable. These may
applied which also has proved to be the most useful also improve the calculated transition rates al-
to describe spectra of even single-closed-shell nuclei, though the agreement with experimental data ob-
As the single-particle energies are derived from the tained here, which is mostly better than within a -
lowest few states, which are assumed to have the  factor two, should be considered as quite good in

O R R T e DRI ISR S NOPIURDNE P SaF

unbroken-pair state as the main component, the de-
scription of the broken-pair states is free of further

microscopic model calculations, !

We conclude that the results of the applicaticn of the
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Table 8 Transition rates, branching ratios and hall-lives in **T¢

Initial level Final level Calculated gamma transition probability Brunching ratio and half-life (ps)
in s~ (Weisskopf units)
Jr keV J keV Ei Mi. culc, exp, exp.
12~ 390 9/2* 0 40x10-''(0.14) 28 % 10-4(49) 3 min 43.5min
7/2* 680 9/2* 0 6.5% [0°°(15) 6.6 % 10%(6,7 x 10 %) 10,5 a=0,7+02"
32 1,193 12 390 18x 10(1L.7 2.5x 10'2{0.16) 0.26
52 1406 12~ 190 32x 10t (9.6) 22
1372 1434 9/2* 0 1.8 x10°2(9.6) 043 &5ns
s 1516 9/2+ 0 1.5%10'1(6.0) 15x 10°(13x 10-5) 0.46

1372~ 2,145 132 1434 9.9 x10° (037)*

8.6 % 10°(5.2% 10~3) 651 0 63}
HAY 1816 Alx10-Y36x10-%% 24x10%53x (0-Y 35 ¥

2

20 2085 1327 143 L3x10%(0.L8) o 0s2ns  5ms

772 285 1320 14M LIx10Y(028) LIxI0N0x10°Y 87 2 _
132 2045 S3x102(0.47) 13f 3788 5p132410ks

w2* 253 172 2085 25x107{0.16) s <5ns

The numbers marked with an asterisk are EJ transition probabilities. The experimentu! data are taken from {30]

2 3, (7/2)=99

one-broken-pair model to the odd N =50 isotones
are considerably more convincing than earlier appli-
cations to odd Sn isotopes [21, 22]. One reason for
this is that here also particle-hole excitations of the
closed shell were included, which makes the nucleus
sufficiently soft to lower collective excitations of the
vibrational type. Another point is however that in Sn
nuclei (Z=50) more’ complicated collective states
have been observed in even nuclei [26] which possi-
bly also play a role in the odd nuclei [22]. ‘In the
present investigation we do not find indications for a
similar situation around the N =50 closed shell.

This investigwtion was part of the research program of the Stich-
ting voor Fundumenteel Onderzoek der Muterie (FOM), which is
financially supported by the Nederlundse Organisatie voor Zuiver
Wetenschappelijk Onderzoek (ZWO}.

Appendix

For the formulie in the quasiparticle formalism we
muke use of the notation and the results of [15, 31].

Al Matrixelements of the Hamiltonian

In [15) the matrixelements of the Hamiltonian H
between two number-projected | quasiparticle (1 q.p.)
or 3 quasiparticle (3q.p.) states and the overlaps of
these states are given. In Eq. (2t) of [15] a misprint
has to be corrected. The term

- R (ss'tr pJ')

has to be replaced by
~RI{ss'trpJ')+ RI- 2 (ss' e pl’) -

Using the projection method of [18] the residium
integrals I*(pq...t), in the expressions of [15] are
replaced by the quantities *(pq...t), 4=fined in Eq.
(4.3) of [18].

The relation of the broken-pair states (2.1) and (2.2)
to the number-projected quasiparticle states of [15]
is:

“:l'f’zp>="a|'/’2p+|(“)?
Y UMjm i m)G,m,mlIM)af at al |y, _2>

ey (A
= uu“b“:llplpe- l(ab‘,c:jr mr))

+H (@b udy,,, (o)) (A2)
with

ll/f;,)=Uu?'(p!)"(S*)"lb>. (A3)

v, d
S+=Z;—5Ago(au)

and

H (abd ¢ir)=0,,0,,0,,du,v,

~Jetup Plabh)[d,.d,] (A4)
where

PlabJ)[expressinn] =[expression]

~(—)"*b+/ [expression with interchanged a and b]
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- We define the particle-hole state related to the state

(2.3) as:
b (JMj(mtlj,m,)U,,m,,ipm,,lJM)b;mfV o

mym
meM

(P bl W fi‘:; IR

=ulVaplbpdciiomd (A

“where b* and b are the neuimn creation and annihi- =
lation operators, One finds the following expressions

for the matrix elements of H:

<¢2p+ l(p)”:” ¢2p+ 1 (hp"‘l‘.ir'"r)>

= ~J# ' [uu, Flcrhpd) Bo(re)

(! ve,Fle rphd) 2P~ rd] (A.6)

(Uapsslabd c:jpm)H W 5, 1 (hpd' '3 jum, )>
=(=rmprire=< P(ab.l)[u,,l,,l-"(abph.l)orc Oy

+Jis. ,,{a('l }P(cu.l )

« {u, vf(abph.l')]] 2*-2(abc)

+HabJe,r)J'#!

-[u, F(e rhpd WP~ ace')— PMace)
F(=yrerd g, F(rphd')

(P Mace) =P *Haced)] (A7)

g hpd e m ) Y, 00T )

=800 0y LW 2p 1 (N HIY 241 (D)
+(E,~Ey) ZP(0)] 40,8, Flhph' p ) 7 (c)

. . - ~ e d”
— Oy S +hiprd 4 w2 e
(=) Jy {m

pp
KJ'J

JII , . Jl’l ,' -
Z"“z{‘:,f]' }(_)&'+t +J Z(("Ch'm{p";";} (A8)

4

VAl pp){ } 5",(_):‘+r+h-+p'jj'

where (5,1 (0)|H|¥,,, (¢)) can be found in [15],
B=¢;+i' L gv; Flijggo) (A9)
1

in whick the summation runs over the quantum
numbers (n, [,j) of the quasiparticle states,

and

Z(cc'nn')

=(=)~*"" F(cc'nn' J")u u.*P(cc')

—F{c'ennd"y o0, P~ cc) (A.10)

= Qg (0PI (O Wap (D -
i "'(_)'"' Ay ('ﬁz,n L0 Y ap thpd ey ")) -i e o n

A2, Matrixelements of Magetic
and Electric Operators

The definition of the onc body {electric and magncllc) -
operator and the conventiones used can be found in

[31]; also the matrixelements_for, .this_operator be- i
lween two 1q.p. and 3q.p. states are given there. A "
The matrixelements involving particle-hole states are:”

= (AL 8 AT LCRIO Y BN |
(A1)

where x indicates the behiviour of the operator un-
der time reversal, x=1 for magnctic and x=0 for
electric operators,

apeithpd 0V IO Wy (LN P T 50D

=(=) T8y By O FE (N0, D

. { ',‘:’} [~ uu ey —et,

ari - ‘
22 (ee)]

(e 5 pE T {”".} 27(c) ‘ L

J'r
- [(_)h r=i¢p0; HP)(—)‘{h ’;pJ}th
Y Y W -
(=P, um{,u}d ] , wey o

Wap,  hpd N0 a,,  labd L))

==Y R Y @b (031 2y 1 Uhpd i) \
=0, 0 B pe B, H (A CF) P :
- ChIO Y (= I~ ac) - P(ac)] (A13)
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Chapter &

THE CLUSTER-VIBRATION COUPLING MODEL

5.1 THE PARTICLE-VIBRATION MODEL

The particle-vibration model was originally suggested
by Bohr and Mottelson!’/. One odd particle moving in the
potential due to the other nucleons experiences a potential
V(r) when these other nucleons (the core) have a spherical
distribution. A vibration of the core, described by the
nuclear surface

R(8,¢) = Rull + Xxuaquxu(e,¢)], (5.1)

is assumed to change V(r) into

= ]. (5.2)
1+ Eku“AuYXu(e'q’) '

which is approximated to first order in the deformation

v(r,8,¢) = V[

parameter %
V(E,8,0) = V() = I, 0, ¥, (8,0) rIv(r). (5.3)

The Hamiltonian of the vibrating core is in lowest order
that of a set of independent harmonic oscillators

HVIB = %Xku(BklaAulz + Cklaku|z) (5.4)

where BA is a mass parameter and CA a stiffness parameter.
After quantization this Hamiltonian acquires the form

Hyrp = Loy (s + b)

Sub2y) (5.5)

et e e 0 R n e T e
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c. 1%
A
where wy = |—§g— (5.6)
A
and b;u is the creation operator of a vibrational quantum

(phonon) . The second term of (5.3) now appears as the
particle-vibration interaction or particle-phonon coupling:

- =X d bt
Hpye = qu(Zﬁ”xcx) flu, rggV (r) Y, (8,6) (by  + (=)"by _
(5.7}
One often introduces a parameterz'aJ
h(ﬂ)\ % da
a)\ = % ﬁE; r-d—r-_V(r), (5.8)
thereby neglecting the dependence on the radial wave
function of the particle. One may then write
= - * t M
Hpye = ak/EFququ(9.¢)(b2u + (=) b2.-u) (5.9)

which is the form which we shall also use in our numerical
work, which is described in this thesis. The total
Hamiltonian of the odd nucleus is now

H H {(5.10)

odd = Hsingle-particle * Hypg + Hpye

where one may add in the Hamiltonian for the particle a
spin-orbit term etc. to reproduce empirical single-parti-
cle energies.
The effgct of Hpy, may be illustrated by the diagrams"’
in figure 5.1. Arrows pointing up (down) represent a
particle (hole) with gquantumnumbers a or b; the wigly line
represents a phonon with angular momentum A. The diagrams
show the following physical features:
a) a particle in orbit a is scattered to orbit b and a
phonon is created.
b) a hole in orbit a is scattered to orbit b and a phonon
is created.

c¢) a phonon is annihilated and a particle-hole pair is
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{(a) (B) (c) (d)

Figure §.1 Diagrams illustrating first-order coupling between
particle and vibration.

created.
d) a phonon is created and a particle-hole pair is created.

In the particle (hole) vibration model only the diagrams
a) and b) contribute.

5.2 THE CLUSTER-VIBRATION MODEL (CVM)

In the cluster-vibration model -the nucleus is described
as a systeﬁ consisting of a few particles which show up in a
pronounced, explicit way (the cluster) and the remaining
nucleons (the core) which are accounted for by collective,
vibrational degrees of freedom. In this model one usually

considers quadrupole vibrations only?2?’%). The Hamiltonian
now reads

H= Hoarticles ¥ Bvip * Heve (5.11)

where Hoye is the sum of Hy,. (5.10) over all the cluster
particles. For example one may adopt a cluster of three
nucleons instead of only one in the particle-vibration
model. In this manner an important part of the Pauli prin- i
ciple is accounted for and a broken-pair of nucleons or a ;
promoted pair of particles appears explicitly. The impor-

tance of including cluster- and vibrational degrees of
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freedom simultaneously has been demonstrated in
refsS711122) Tt is customary to write

n

n
H =] H (1) + § v(i,3) (5.12)
particles j=1 S+P- <3 '

where n is the number of particles in the cluster. V(i,3j)
is the residual interaction between particle i and j.
We note that the quadrupole residual interaction is al-
ready effectively included by phonon exchange as shown in
figure 5.2. The most important components of the residual
interaction are the quadrupole force and the pairing force.
Therefore we take the pairing force with a force strength
G as residual interaction in (5.12). )
Then one may write

Ho .. = Y.e.ala, - %G]_, 4BA}, (aa)Aoo (bb) (5.13)

particles o a“aa ab
with aE(na,la,ja,ma), aE(na,la,ja), aE(Zja+1)%, a; creates
a particle in a state with quantumnumbers o and

AIo(aa) = Zm (jamaja—maIOO)a;ag, (5.14)
a
where EE(na,la,ja,-ma). The model defined by eq. (5.11)

with the assumptions (5.5), (5.9) and (5.13) is the sim-
Plest version of the CVM.

Q«Q

¥
EX
o

— —— -
a
E

Figure 5.2 Phonon exchande causes an effective quadrupocle residual interaction.
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This simplest version of the CVM has some nice properties:

1) The leading effects of the pairing and the quadrupole- P
) quadrupole force between nucleons are consistently
taken into account.

2) The number of model parameters is relatively small,
viz. the single-particle energies €q¢ the phonon energy
hwz, the pairing force strength G and the particle-
vibration coupling strength a.

i 3) The transparency of the model allows an analysis ‘in

o terms of leading diagrams and thereby enables one to
give simple gualitative interpretations of some pro-
nounced features of the results. :

4) The Pauli principle is explicitly treated in the cluster.

Point 4) leads us to mention the fact that the Pauli
principle is violated to a certain extent. One can express
V the phonon in shell model degrees of freedom. Some of these
fi degrees of freedom will also be described by the cluster
}s degrees of freedom. However, since many shells are avail-

e - AR

able to nucleons from the vibrational core and since we

expect that the important contributions to these vibra-
tional excitation within the valence-shell for valence-

T

shell nucleons are of another type than those included in ;
the cluster, it seems that the contributions to the wave ;%
function of an effective vibrator which involve excitations E
& to the valence-shell of the clusi~r are not sizeable.

P
L
S
v,
7,
31

Furthermore, the phonon might be or a very complex internal
structure; for example, in TQM it is a combination of two- )
quasiparticle, four-quasiparticle,..... components. This ‘% A é?
might lead to an additional destructive interference. \
More complex versions of the CVM may be constructed by
including anharmonic vibrations and/or additional compo-
S nents of the particle interaction V(i,j). Anharmonicities
: may be explicitly introduced in several ways, for example:
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=+
= t
a) Hyp = hwzxu(g + by by ) + A, ((b 2b2)0 + h.c.] (5.15)
where Ay is the strength of a cublc anharmonicity (h.c.
is the hermitian conjugate of (b2

b))
2 0
b) the SU(6)Hamiltonian for quadrupole motion

Bypp = BN + hz[(b;b;)o LN, =) (N ~N-1) }F h.c.] +

tot
h3[(b2b2b2)0 (N

- &
max N)? + h.c.| +

ot
h [(b b,): (b,b,) ] {(5.16)
120,2,4 4L | ‘U272 272'Lj0 .
where f
o +
N = E by, bay

Nmax is the maximum number of phonons.

In the latter case the CVC term of the Hamiltonian is
changed into

Hpye = Xu[Kl(b;u + ()% ) (N "N)!s

2,-u max

+ —yV2 *
K22V1v2(2v12v2l2u)b2v1( ) b2,-v2]Y2u(e'¢) (5.17)

The form (5.16) of the vibrational Hamiltonian may con- é
veniently produce vibrational as well as rotational states
as limiting cases, both for the axial®’ and the triaxial?’
rotor. In the rotor limit the coupling (5.17) produces
states similar to those of the Nilsson model and rotational
bands of odd nuclei appear®/. The model with the Hamiltonian

(5.16) is also referred to as TQM; it is equivalent to the
IBA model®’.

When introducing a more complex nuclear interaction
between the particles one should beware of double counting.
The particle-vibration coupling (5.9) already induces an
effective quadrupole-quadrupole force between the particles
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of the cluster, so it is not allowed to adopt an extra
force of this type between the cluster particles with the
same strength as one needs in models without vibrations.

Electromagnetic properties in CVM
The E2 and M1 operators contain single-particle and

vibrational parts. For n particles in the cluster they
read:

n
M:p(Ez) = _%- R%es?zlyg(i) (5.18)
Mh o (B2) = 3= VTRRE (BT + (-)¥,™M) (5.19)
B, 1) = /§TZF[gzL + g8+ gp(yze§)1] (5.20)
KVIB(M1) = /3747 gR§ (5.21)

Here f, % and R are the orbital and spin angular momentum
operators of the cluster and the angular momentum operator
of the phonons, respectively. eSP ana V1B are the effec-
tive single-particle and vibrator charge, respectively;
9gr 9gr gp and gp are the gyromagnetic ratios.

Let us comment on the effective charges and gyromag-
netic ratios. The single-particle charge incorporates both
the bare charge and the polarization charge; in this way
we simulate excitations of particles of the cluster to
higher shells, which are neglected in the model. The rough
estimate for this polarization charge is 0.5 for both pro-
tons and neutrons.

In the vibrational E2 operator the estimate for the
vibrational charge is

eVIB _ AT (p(r2) (2 %

+ At
+0.)
3R% 1 "1'ViB




55

Throughout the periodic table (except deformed nuclei) it
is mostly between 2 and 3.

y For the gyromagnetic ratio gp the hydrodynamic estimate
3} is 9p = %, which represents an upper limit. For the gyro-

o magnetic ratio gy free values are used, Z.e. 1 for protons
and 0 for neutrons. For 9g guenched values are used, as

T g2 o

usually, in the region 0.6 = 0.8 ggree' where ggree= 5.59 ?
o for protons, and -3.82 for neutrons. The tensor term, when 4 ;i
8

included, has gp = 0,2 giree' in accordance with the usual
estimate!®/ .

) CVM calculations have been performed for a number of

: odd-even and even-even nuclei in the region A=40-150 and
A=190-220. The overview of these calculations can be found

N in refs.t1712),

5.3 THE QUASIPARTICLE (CLUSTER)-VIBRATION MODEL (g(cyvm)

5.3.1 Introduction

The particle-vibration model is especially suited for
the description of a nucleus which has just one particle 7
x (or hole) beyond a magic number. Then this particle (ox § ' i
; hole) plays a rdle which is quite distinct from the other
particles; Z.e. this particle moves in the space of valence
shells while the other particles form a closed shell core. é
similarly the cluster-vibration model applies to nuclei t
which have a small number of nucleons, two or three, beyond F

s,

%k a closed shell core. The vast majority of nuclei however E -
@ has more particles in the valence space. Especially if one ;ﬁ

% wants to study nuclear systematics, vii. the change of nu- é

g clear properties with varying number of nucleons, the %

% treatment 6f nuclei with more than three particles in the

1 valence shell is inevitable.

% In chapter 2 we have already discussed a model which

is hoped to be especially suitable for nuclei with many
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valence nucleons, This BCS or quasiparticle model relies
upon the pairing correlations of nucleons which give the
nucleus the properties of a superfluid system. The essen-
tial point is that in such a superfluid system almost all
particles occur in so-called Cooper pairs of time-reversed
orbits and all pairs have the same pair wave functions,
Therefore the description of the system may be mathemati-
cally reduced to the description of only those very few
particles which do not occur in such well-arranged Cooper
pairs. This is further elaborated in chapter 2, sections
3 and 4.

Extensive calculations with a quasiparticle-vibration
model have been performed by Kisslinger and Sdrensen!?®/,
These authors assumed that only one particle of odd nuclei
does not occur in a Cooper pair. All remaining nuclei, z.e.
those that do occur in Cooper pairs in the valence shell
as well as those which form the lower-lying closed shells,
were accounted for by considering their quadrupole vibra-
tional degrees of freedom. This model appeared to be fairly
successful in several regions of the periodic table. These
authors also concluded however that the assumption of only
one quasiparticle is often too restrictive. Some nuclear
states should obviously be interpreted as built of at least
three unpaired particles.

Extensive studies of nuclear structure employing the
three-quasiparticle cluster-vibration coupling model have
not been reported so far. There may be several reasons for
this, of which we mention three.

Firstly the number of configurations which one may build
by angular momentum coupling of three nucleons in five or
six valence shells to the lowest few states of a quadrupole
vibrator is very large and therefore the calculations re-
quire much computational effort. This problem we shall

o gt
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return to in section 4.1 of this chapter.

P SO

Secondly with three active nucleons appearing expli-
citly one may build states which may to some extent be
{f considered as the microscopic analogue of one& nucleon
- together with a guadrupole vibration. So there is some
danger that certain physical states may appear in two
ways. This problem is slightly diminished by using only
a pairing force between the nucleons, but should perhaps
be solved by partly removing certain basis states from
o the model space. Related with this is the problem how to
choose the parameters of the vibrator as one cannot simply
state that it is the nucleus with one or three particles
less.

Thirdly an extension of the work of Kisslinger and
Sorensen!?’) to three-quasiparticle clusters is only mean-
ingful if these are treated with sufficient care, Z.e. by
employing nuclear wave functions which properly conserve
the particle number. Such number-conserving studies with
three or more gquasiparticles have been performed only a
few times so far'*’'7) and a coupling of such wave func-
tions to vibrator states, which is the main subject of i
this thesis, has not been attempted before. The formalism
of this is presented in the next section.

5.3.2 Quasiparticle cluster-vibration coupling for ;
kY odd nuclei (Formalism) b

In this section we present the formalism which we used
in the calculations for odd nuclei which are reported in
this and the following chapters. The assumption is that
the nucleus has an odd number of nucleons, so an odd number o
of protons or an odd number of neutrons, and that this odd

number of nucleons of one kind is more than three beyond fr
a closed (magic) shell.

Then we proceed as follows:
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a) The odd number of nucleons of one kind is treated in

b)

the BCS formalism (chapter 2) and only number-projected
one~ or three-quasiparticle states are considered.
These are of the form: (assuming a certain ordering

a=c + asb=c)

= =1_t g™ P
) [Woper (P)> = Hylup) Tag (s1)F]0> (5.22)
an
|w2p+1(abJ,c:jrmr)> = Illp_l(uaubuc)_1 % (3 My 3Ty, | T
a’bc

¥ _+ . . t et p-1 - ~1
xaBau(JMJGmclerr)ay(s P70 Ny (uupu) {850%ancr

Ta-l a+b+J t ot P
xdu v, - J2 "u v (8, 68, ~(-) $ )}ap(s )21 0>,

)
ar “bec (5.23)

wher N_=|T uQi ("1
e p ivi. p-

From these formulas it is obvious that this set is
overcomplete:

):aa""aval"’zl:.WI(a‘a‘:r'—'o’c;jcmc)> - (ucz_vcz)l¢29+1(Y{; ;4?
Therefore we have used as basis sets in our computer
codes the state (5.22) and a set of states (5.23) ortho-
gonal to this one. This required a transformation to a
new basis; in appendix 1 the transformation is given.
After the transformation the number of states is the
same as for the case of three particles. They read:

1(3132) 33553, m > (5.25)

The assumption is made that excitations of the other
kind of nucleons as well as excitations of the same
kind of nucleons which do not play an active rdle in
formulas (5.22) and (5.23), that is the particles in
closed major shells as well as the unbroken p-1 pairs,

B VR — —_
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may be simulated by a (harmonic) quadrupole vibrator.
These oscillator states are denoted as

| NR> (5.26)

where N is the number of oscillator quanta (phonons)
and R the total angular momentum of these phonons.

As we never consider states with more than three pho-
nons these two gquantumnumbers are sufficient to specify
the states completely.

The model space of nuclear wave functions for a certain

spin and parity J" is now built of all possible products
of states (5.25) and states (5.26) coupled to J +R=J

and w=parity of the cluster states (5.25), since (5.26)

has m=+. So we have states

' m
1(3132)3125 353 >0 nr> |7 (5.27)

The Hamiltonian is assumed to be of the form:

H=H , . + +) Hpon (1) (5.28)
valence particles HVIB i=valence PVC

particles

where Hvalence particles is of the form (5.13), HVIB
the harmonic vibrator (5.5) for A=2 and Hpvc(i) is the

expression (5.9} for the ith particle and A=2, so

H = J e ara, - 5G], 8BAL, (aa)Roo (bb) + Eﬁhwz(%+b;ub2u)
-a,/AF) by +(-)"b, _ )] g<alv} (8,0) [R>ala,.  (5.29)

The matrix elements of this Hamiltonian in the space
of states (5.22) and (5.23) may be wWritten as follows:

<¢2p+1(o)|0<NR|H|N'R'>s|w2p+1(p')> =

NN'SRR'<¢2p+1(°)|Hvalence pa::'ticil.esl‘p2p+1(p')><NR|NR>
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+8 o1 Syyr Sgreitip e+ <ULy (P) [W50, 4 (P) ><NR|NR>

pp!
- T h(y)M
a,/am Xu<NR|b2u+( ) b2,_u|N'R'>

XYy (O 15¥5, (850050 [0y, (01)> (5.30)

and similar expressions with |w2p+l(p)> and/or
|¢2p+l(p')> replaced by projected three~quasiparticle
states. The last term of (5.30) may be rewritten by
introducing reduced matrix elements?%/ as

RJ + ¥
—a2/4ﬁ{§,r.2}<nnl|b2+b2||N'R'><¢2p+1(r)||Y2||w2p+1(r')>
(5.31)
The explicit form of the matrix elements occurring in
(5.30) and (5.31) will be given in appendix 2.

5.4.1 TRUNCATION OF THE MODEL SPACE; COMPUTATIONAL
PROCEDURE

In the CVM with a space built of four or five valence
shells for the cluster and up to three quanta of the vibra-
tor one has typically a thousand or more states for each
value of spin and parity. This means that one has to con-
struct and diagonalize a matrix of the Hamiltonian (5.11)
of dimension one thousand or more for each J" value and
each nucleus. Moreover if one does not know the model para-
meters (the single-particle energies €qr the phonon energy
ﬁmz, the strength parameters G and az) from the beginning,
one will perform the computations with several parameter
sets.

Another reason why one would like to choose a smaller
model space is that in a complete calculation several hun-
dreds of the thousand basis vectors will appear with unin-
terestingly small components in the lowest few eigenvectors
which may be compared with experimental data.
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The problem one faces is now that much computational
labour could be saved if one knew from the beginning which
basis vectors contribute very little to the lowest states
and therefore may be discarded. We shall consider here two
criteria:

I: The basis vectors with smallest expectation value of

H are the most important ones.

II: One should include the basis vectors which are con-
nected to the (few) most important vectors according
to the criterion I by large off-diagonal matrix
elements of H.°

We shall now illustrate how these criteria work for an

example. ‘

A number 'of 7 particles are supposed to be in the
2ds/2, 197/2, 2da/2, 351/2 shells with single-particle
energies 0.42, 0.00, 1.60 and 1.85 MeV respectively.

The other model parameters are ﬁm2=1 .0 Mev, a=0.6, G=0.2.

At most three phonons were considered. Then one has for

the 7/,% state 973 basis vectors and for the °/.% state

-894 basis vectors. For each J" value these vectors are
‘now first ordered in a sequence with increasing diagonal

energy'(crlterion I). Then according to this criterion we
choose the first (lowest) 150 vectors and diagonalize H
within this subspace. The number 150 is the same as
usua12°'5’ in‘calculations with the CVM.

Figure 5 3 shows the results of this procedure when one
adopts 147, vectors for the /z and 152 vectors for the
s/z states as well as the results when 140 vectors are
adopted for both 7/, and 5/,%. oOne may notice that the
lowest 5/z+ state is strongly depressed (by about 500 keV)
when a few more ba51s vectors are adopted. From a closer
inspection wé. learned that this is due to the basis vector
I(gv/ ' ds/ )Gda/ /2,12> which is connected by a large
off-diagonal matrix element to lower vectors. This illu-

ey

e -

S R

D



L et e,

R

62
2L 72 72
%2 —_—32
— 5/2 7
8/2 —=
-
> 30
4 512
2 52 n =28 m
~ 2 N2
>
4
W — SR — 52
2
o 41
572
’
rd
—_— 2 ,I 742
512,”
SL
%2 152 vectors 542 140 vectors
712 144 vectors 712 140 vectors

Figure §.3 Energies

of the 5/2+ and 7/2+ states calculated with selection
criterion I.

strates that the use of criterion I only is not a very
safe procedure and therefore also the second criterion
should play a role. Before we discuss our adopted proce-
dure in more detail we comment on the applicability of

criterion I oniy in CVM calculations which have been per-

formed until recently?’%’5729r22) vfpor there is a reason

why this truncation method may work better in the CVM

7 NEA

Uy Uz = vv;

TIRVAE AAT

Firgure 5.4 Diagrams illustrating first-order coupling between quasiparticle
and vibration. The strength of the vertices are dependent on the pairing
factors, which are presented below the diagrams,
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than in the QCVM. This may be seen from the diagrams,

DI S e e L

presented in figure 5.4, which represent the matrix ele-
ments of HCVC' The pairing factors, with which the matrix
elements are multiplied due to the superfluidity correla-
tions, are uu,=v, v, for the first two diagrams and

U, Vytv,u, for the other four diagrams. In the CVM one has
u,=u,=1 {particle cluster) or u,=u,=0 (hole cluster) then
only the first two diagrams contribute. In the QCVM the 13
other diagrams become increasingly more important as one :
approaches the middle of a shell; u1=u2=v1=v2=k/§. One

may notice that among these diagrams there are two which
increase (or decrease) the number of phonons (by one) and
the number of quasiparticles (by two), so they connect
basis vectors of which the diagonal energies differ by as
much as ﬁw2+El+E2§hm2+2A. (A is gap parameter, A=l to

1.5 MeV). Therefore the mixing of basis vectors with quite
different diagonal energies becomes much more important in
the QCVM then in the CVM.

Cepm o
VA e e e

The procedure which we have adopted in our computations
is as follows (for each J" value):

i) First all basis vectors with certain spin J are
ordered according to the criterion I, so the one
with the lowest expectation value of H is given )
the first position etc. Then we adopt a certain ;
boundary energy Eg such that all basis vectors P
|i> with <i’HVIB+Hparticlesli> larger than Eg are ‘g

rejected. This energy EB is chosen in such a i

way that the number of remaining vectors is large 2

(about one thousand) but small enough to be handled :

in the subsequent procedure. This large number of

selected vectors spans the "total" space {Ni(Eg)}.

ii) From the "total" space {Ni(Eg)} a small number Ni . ' i

with lowest diagonal energies is taken (say 30 vectors).
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ii1) In this small basis {N]} the (total) Hamiltonian
H is diagonalized. This results in N, eigenvec-
tors |J> = Xi={Nl} aj |i>, N=1,2,... N, with
energies EN.
Assuming that for a comparison with experimental
data only the five lowest states of each J" value
are interesting, we choose the five lowest states
which have resulted from this diagonalization and
now wish to improve these by including more basis
vectors |k> which do not belong to the space {Ng}
but do belong to the preselected "total" space
{Ni(Eg)}. In order to have a selection criterion
which of these vectors |k> should preferentially
be included we now calculate for each vector |k>
the quantit

; 5 L{Nl} (a3) | <t | Hop %> 2

N (5.32)

E, -E

k °N

which is a measure for the contribution of the vector

Sk =

)
N=1

|k> to the energies of the lowest five states sug-

gested by first order perturbation theory.

Next the Ng vectors with the largest sum (5.32) are
added to the basis {Ni}, so one obtains the new basis
{Ni+Ng}. In practice we chose Ngﬁ40.

iv) The procedure iii) is repeated but now starting with
the basis space {Ni+Ng} instead of {Ng}. Again a new

set of basis states {Ng} which do not belong to

) {Ng+Ng} but do belong to {Ni(Eg)} is selected by the

criterion (5.32) and added. So our final selected

basis space is {Ng+Ng+Ng}. In practice we take
Ng+Ng+Ng§150 for all spins. An argument to accept this
total number spin-dependent is that also the total

number of basis vectors of the complete space depends

on J". So we take Ng+Ng+Ng a constant fraction of this

Chel e
e Pt

;
j
X,
¢
4
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dimension of the complete spaces. In this way we
hope to have treated different spins on equal footing
and thereby to have obtained a result which is the
best to be compared with experimental data. The rea-
son why the criterion (5.32) is used twice to select
another set of vectors is that H connects vectors
which differ by one phonon. So in two steps one may
connect states which differ by two phonons and in
large model calculations we mostly find that vectors
with three phonons contribute very little,

This procedure was checked by comparing its results with
those of a diagonalization in the complete model space
using the Lanczos diagonalization method?3®/ .

An example is given in table 5.1. It concerns the
&+state of a system of 7 valence shell particles in the
orbits 1g7/2, 2d5/2, 2da/2 and 351/2 with single-particle
energies 0, 0.42, 1.60, 1.85 MeV respectively. The other
parameters are'ﬁm2=0.6 MeV, a=0.8 -MeV, G=0.2 MeV. The
dimensions in the different steps were NE=180, N§=20,
N§=20, N§=15. The table lists the sum of the percentage

Table 5.1 "Overlaps"” (Zg=1(a¥)z) in percentages of the basic vectors and for
the wave functions of the J=‘/z+ states. For parametrization see the text.

1 2 3 4 5°6 7 8 910 11 12 13 14 15 16 17 18 19 20

1| 6145 5 4454230 5 2 0 8 1 1 4 9 0 0 1 a4 2 { 20
20 5 2 3 4 15 1 1 3 5 40
41 E) 41 1 1| 60
61! 3 11 4 5 2 3 3 1 2 3 314555 1] 80
81 a 1 _ 5 100
10 3 2 1 13 1120
121 2 1 1 | 140
141 2 2 2 2 3 1 160
161 2 111 2 180

Each position of the 20 x 9 matrix corresponds to one of the 180 basis vectors.
For every basis vector [i> the "overlap” is given. Only "overlaps" >1 per cent
are presented. The 20 vectors of the preliminary basis are presented in the
first row. In the rest once underlined "overlaps" correspond to the step (iii)
and those which are twice underlined correspond to {(iv), The total number of
selected basis vectors is 55.
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Figure §.5 Energies of the 5/2+ and 7/2+ states. The spectrum (a) is
calculated with selection criterion I. The other spectra are calculated
using 100 vectors selected by criterion II; the number of vectors used
in the selection is given below.

of the 180 basis vectors in the lowest five states after
the complete diagonalization (the numbers should add up
to five, but numbers smaller than 0.01 have been omitted).
The first 20 vectors belong to the set {N?}, the under-
lined ones belong to the set {Ng} and those of the set
{Ng} have been underlined twice. One may notice from the
table that our procedure has indeed selected practically
all the important vectors. This selection was obviously
much better than a straightforward selection of the first
55 vectors based upon the diagonal energies only. An impor-
tant point is that no relatively large component, which
could cause a large energy shift, has been missed.

Another illustration is shown in figure 5.5. Displayed
are the results for the 7/z+and 5/z+states calculated with
147 and 152 vectors respectively, which were selected with
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the diagonal energy as the only criterion. These are the
same as in figure 5.3. Next the results of our selection
procedure are shown for several cases, viz. the vectors
NI=15, Nj=15, NJ=70 were chosen out of NJ=250, 500 and

all possible 973 vectors. As expected the higher states
are the most sensitive to the number Ni. One may notice
the 100 vectors selected by our stepwise procedure yield
lower energies than 150 vectors selected by the diagonal
energies only. We mention here that the same calculations
as presented here for particle number 7 were also performed
for particle number 3 (the CVM). Then our procedure also
yields an improvement over straightforward energy-trunca-
tion. The effect is smaller then, because, as we discussed
in the beginning of this section, the coupling between
vectors which differ much in energy is not so strong.

Finally we present a comparison of our procedure with
a complete diagonalization for a case with very strong
mixing of basis states. For this purpose‘ﬁm2 was lowered
to 0.6 MeV and all other parameters were kept the same as
before. The maximum number of phonons was now two, however.
In figure 5.6 the results of a stepwise selection procedure
(N1+N2+N3i150) and those of a complete diagonalization
(N<436) are displayed as well as those of a truncation
based on diagonal energies only (N<150). One may notice
that although in this case of very strong mixing of basis
vectors our procedure is not quite satisfactory, especially
for the a7z+ states, it does yield a large improvement over
the old energy-truncation procedure.

From these illustrations one may conclude that our
truncation procedure is a useful improvement over straight-
forward truncation by considering the diagonal elements
of H only. It is certainly to be recommended when many
calculations with different model parameter sets have to
be performed. In cases of strong configuration mixing a
straightforward diagonalization by the Lanczos method
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Figure 5.6 Spectra calculated with selection criterion II, the Lanczos
method (diagonalization with all basis vectors), with selection
criterion I. The numbers below the spectra are the energies of the
ground itates. In ghe Lanczos  method the+number of ¥ectors used+are: !
180(1/27), 328(3/27), 413(5/2"), 436(7/27), 395(9/27), 323(11/27).
For the other calculation these numbers are 58, 105, 133, 144, 135
and 117 respectively.

(which is for a thousand basis vectors at least ten times 3

) E

E more time consuming than our procedure selecting 150 ‘ .
0 vectors) may be required to obtain more precise final -
ﬁ' spectra.

5.4.2 Some properties and illustrations of the QCVM

O Fo L E et el
,

In order to demonstrate the main QCVM features, we
v compare here the results of models with a different com-
position of the cluster, viz.:

o
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1QP

one-quasiparticle cluster, no particle-number
projection

i 10P+NP: one-quasiparticle cluster, with particle-number
' projection

3Qp one- or three-guasiparticle cluster, no particle-

nunber projection
3QP+NP: one- or three-quasiparticle cluster, with particle-
number projection (QCVM)

gt
P i

The model 1QP coincides with the familiar quasiparticle-

vibration model for odd-A nuclei!®’), Models 1QP+NP and

3QP are developed as transitional models between 1QP and

3QP+NP in order to illustrate the physical correlations of

CVM. We are now able to investigate:

a) the effect of particle-number projection (NP) on the
spectra,

o) the effect of including a three-quasiparticle cluster
in addition to a one-quasiparticle cluster,

2) the dependence of the excitation energyics on the (odd)
number of particles.

Before presenting results we comment on these points.
" a) The effect of NP has been investigated earlier in
.%f (number-projected) two-quasiparticle?!’, three-quasi- 3
?g particle!*) and four-quasiparticle!®) calculations.

In these calculations the effect of NP on the energies

calculated for the Hamiltonian of the valence-particles
is important. If one couples a quasiparticle clusterxr

to phonons then also the coupling matrix elements of

H
PV
coupling dominates. Therefore, when discussing NP, we 23

shall now only mention the effect on the coupling.

c become important; in general the effect on the o

b) The type of states one allows for by admitting three-

guasiparticle clusters in addition to a one-quasi-~-
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particle cluster is in principle the same as in the
case of particles. This subject has been discussed
in ref.2?2J,

c) The QCVM enables us to calculate the spectra (and other
spectroscopic properties) of a series of odd nuclei
with the same parameters. So systematic changes of
nuclear properties with particle-number should be ac-
counted for by this model, where in principle. the same
parameters should be suitable for a whole sequence of
nuclei.

We shall now present results of calculations with the
parameters of ref.2??) for !3%%e:

E(dalz)-—- 0.0 Mev E(S1/2)=—0.6 MeV E(h11/2)=-0.8 MeV
e(d5/2)=-1.7 MeV G = 0.1 MeV fiw = 1.0 MeV
a= 0,4(in ref.2%%a = 0.3)

In figures 5.9-5.11 the excitation energies of the negative

parity states are given for n=3, 5 and 7 holes in the

single-particle space. Figure 5.7 shows the single-particle

space with the energy of the Fermi level for these
situations.

First we comment on the most important configurations
and coupling matrix elements in these calculations, in
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Table §.2 Some important coupling matrix elements

g
o,
I
-

n=3 n=5 n=7 n=9
3QP  3QP+NP 3QP 3QP+NP 3QP 3QP+NP 3QP JQP+NP

1Y 211772
2u;yvy

Jaty2 1t:7/.
2u31v1

»

111>

|lez‘vllz|

1.66 2.50 0,96 0.81 1.00 0.92 0.95 0.88
0.93 (0.87) 0.55 (0) 0.56 (0) 0.53 (0)

-0.81 -0.39 ~-1.73 -0.,75 =2,61 ~2.43 ~3,07 =-3.21
0.23 (0) 0,53 (0) 0.80 (0.55) 0,94 (0.87)

3.71 3.80 3.25 3.73 2,30 2.72 1.31 1.58
0.97 (1.0) 0.84 (1.0) 0.60 (0.83) 0.34 (0.5)

Coupling matrix elements in the models 3QP and 3QP+NP are given between the
configurations |1I> and the configurations listed in the first column. Also
the corresponding pairing factors are presented. Between brackets the pairing
factors for a normal distribution (without pairing correlations) are given.
The symbol n denotes the number of holes in the 50-82 shell.

order to clarify the effect on NP. The most important
configurations are

l1Y:1=21/,>
|1%,12; 1>

| 32)2 1%;1>
| 32 1Y;1>
| (¥%)2 1%;1>

|1},22; 1>

»

{ I= 7/2.........15/2 (5.33)

4

Y
We have adopted the notation 1Y = !!/, etec.

The most

matrix elements which connect the states (5.33). In table

5.2 a few of

and 9, both with and without NP, together with the pairing

important coupling matrix elements are the

these matrix elements are shown for u=3,5,7

factors 2uv or u?-v?. The numbers in parenthesis in the

colums "NP" are the values of the "pairing factors" calcu-
lated with a distribution without pairing, Z.e. the parti-
cles are placed in the orbits with lowest energy. The main

effect of NP

is that the pair-distribution becomes less

diffuse; as should be expected because states with wrong

particle number are removed. This changes effectively the

factors 2uv and u?-~v?,
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o] 2uv
—1r vt
Lo - .
0 1 Figure 5.8 2uv and u?-v? as functions
of v, The function 2uv has steep
OCCUPATION PROBABILITY v2 slopes at v=0 and v2=1,

In figqure 5.8 the factors 2uv and u?-v?are given as
functions of the occupation probability v2, The steepest
slopes in this figure occur in the curve for 2uv near
v2?=0 and v?=1, These values of v> correspond to the fac-
tors for the coupling matrix elements, which connect
states containing a one-quasiparticle cluster with states
containing a three-quasiparticle cluster; the two addi-
tional quasiparticles should be both almost particles
(v220) or both almost holes (v2=1). The NP changes ef-
fectively the occupation probability v?; the effect of
this change on the coupling matrix element will be strong-
est in the above mentioned cases.

In table 5.2 the factors for a distribution without
pairing correlations are indicated in brackets. In general
one sees from table 5.2 that if the pairing factors in
brackets are larger (smaller) also the corresponding
matrix element become larger (smaller). There are twyo
‘exceptions vig.?

<) 1va]) 322 1Y;7/2> for n=3 and
<11 |v.|] 1Y2)2 1¥;7/2> for n=9.
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15~ 212,103,151
5 holes 92 W2 13,2 972
r—-l /. pe—1F]
2 = ™ 93 nr
& =1
== _enuwang
2 92 w2 eeiidlN2 W
~ 10 18/2 wm
| ™27 22 9 — MR

G =mn —uw
@ —_—2 s
‘g V218 ——2d
‘é‘ Smmr W
[0 /2
= 05
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¥)
x
w

0 L 172 w2 w2 112

1GP  1QP+NP* 3QP 3IQP+NP

Figure §.10 The negative parity spectra
obtained by the models 1QP, 1QP+NP, 3QP
and 3QP+MP for five holes.

15~ w2 w2 .
7 holes 9-—1—2—‘—-' 572,132

-
3 nz
b3
~ 10 912,12 L“;? wa
6 MBI s —_2
ﬁ 2 173
uzl' 132, %2,15/2 72,132,182
w 972 CTF]
o]
= A5k
2 .
=
Q
x
w

oL W2 _m 372 nn

1QP 1QP+NP  3QP 3QP+NMP

Figure 5,11 The negative parity snectra
obtained by the models 1QP, 1QP+NP, 3QP
and IQP+NP for seven holes.

15

1.0

— 02
n2 R.n 1 —=
3 holes ——‘;/Ig"g/a _—_:5;;.'"
"'"'Lz'sn
W29 32
8.2 2 ===11/2,)3/2 __‘;l;_;
~ 22,1502 12,192 W2 ——uzm’ __ﬁﬁ
—? e 1312 YR
-2’ 13/2.9/2
n2
=2 33y
—152 132,972
7
1872
—T12
L ey ns2 12 w2
10pP 1QP+NP 3QP 3QP+NP

Figure 4.9 The negative parity spectra
obtained by the models 1QP, 1QP+NP, 3QP
and 3JP+NP for three holes.
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For n=3 the 3/z+ level is near the Fermi level and for
n=5 the '}/  level is near the Fermi level. In such a
case it is difficult to predict what effect NP will have
on the matrix elements. The matrix elements

«1Y||¥z|] (¥%)2 11;1> are important for n=3,

«a1t)|¥2|| 1?2 1}:1> for n=7 and 9 and

<1Y||¥2||1}> for n=3,5 and 7, because they are large in
these cases and connect the dominant configurations of
the lowest states.

Let us now turn to the calculated spectra, which are
shown in figure 5.9. For n=3 the models 1QP and 1QP+NP
show a quintuplet 7/z ......'®/z with configuration
|11;12> at about 1 MeV. The NP has hardly an effect on
the spectra. The important configurations for the quin-
tuplet are |11,12> and {1},2r> (R=0,2,4); quasiparticle
states are coupled by the matrix element <1Y)|va||1Y>,
and this does not change much by NP.

The spectrum calculated by 3QP shows an additional
quintuplet based on the cluster configuration
[(32)2 1T;I>. As we have seen before the coupling of this
configuration to the configuration |1T;12> increases con-
siderably by NP. This is reflected in the large downward
shift of the 7/2", Y5/, '*/,” and /. states, if NP is
performed.

The spectrum of 3QP+NP resembles the spectrum shown
in figure 2 of ref.?®’), which was calculated with the
CVM, but with a=0.3. The model 3QP+NP (gcvM) for n=3 is
equivalent with the CVM. In figure 5.10 the negative-~
parity spectra are shown for n=5. The Fermi level is now
closer to the 5: level. Therefore the
|(T§)2 11;1 = 7/23 ve...Y5/,7> configurations become more
dominant instead of the configurations

| (3)22 1Y;1=7/," .....%%/2">. The coupling matrix ele-

ments (which are not shown in table 5.2) are not influenced




S EERERRTIRC g T, L T

AT gt

A A, .

.75
much by the NP.

In figure 5.11 the negative parity spectra are shown
for n=7. As the Fermi level is now closer to the hi,
level the configurations l(sz)Z 1Y;1 =7/, .....15;2 >
become important. The coupling of these configurations
to |1T,12;I =7/2" .uu.. '%/2> is also much stronger
than for n=5. Kisslinger?"/ pointed out the importance
of the inclusion of configurations |(3j®)I = j-1> for the
lowering of the lowest state with spin I = j-1. This
state is indeed the lowest of the gquintuplet now. For
stronger coupling this state even may become the ground
state.

Summarizing we conclude that NP is important for the
coupling matrix elements and therefore for the excitation
energies. With the QCVM one is able to calculate the pro-
perties of a series of nuclei in the same parametrization.

In the next chapter we shall apply the model to the odd
Zn isotopes.
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Appendix 1

The transformation of the overcomplete three-quasiparticle
basis to an orthogonal and normalized basis is done as

follows.
. The overcomplete unnormalized basis reads:
[Wope1 (P> = ¥,
l‘pzp+1(j1jlorrip)> = wl
[¥p41 (32350,770)> = ¥, p (Al.1)
[¥5041 pdp0erie)> = ¥, ‘

From the space, spanned by wl.....wn one vector is removed;

then a basis $pene. b is formed by Schmid-orthogcnalization.

where ¢2.....¢n are orthogonal to wo and to each other.
The new normalized basis reads:

v v o, Y _
:(3131)03r> (=13,2) = ¥,
(3,3,)03,>
272" Vr (a1.2)

)0§r>

— e e

vV
L i Y
The transformation matrix Aik' which is printed in the com-~
putercode TQD, gives the relation between the overcomplete
normalized basis and the new normalized basis:
n v
oy " k .
1G3;35)03,> = 1 A, ———< (i=l...n) (Al.3)
k=0 <wk|¢k>
Another orthogonalization problem may also occur.
i If jrig/z and jszg/z then |(3S§S)2?S;jr> is not orthogonal
to the basis (Al.2). In this case the vector
|w2p+1(jsj52js;p)> is added to the basis (Al.1) before the
removal of the spurious state and the orthonormalization.
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Appendix 2
THE MATRIX ELEMENTS OF HQCVM
The matrix elements of HQCVM between two states reads:
<qazp+1.(1)|0<NR|H|N'R'>e|wzp+l(2)> =

B GNN'GRR'<w29+1(1)IHvalence particles‘wzp+1(2)><NR‘NR>

+ GNNI GRR'hwz (¥+N) <‘|’2p+1 (1) |l|)2p+1 (2) ><NR'NR>
- az/??{;, 5. g}<NR|lb;+b2||NnR-><¢2p+l(1)||y§||¢zp+l(2)>
(A2.1)

where |w2P+1(i)>(i=1,2) are one-quasiparticle or three-

quasiparticle wave functions with angular momenta r and r'.

First we evaluate the matrix elements with the phonon

wave functions |NR>.

<NR|N'R'> = § 0 8pp,  for N<3 (A2.2)

<NR||b;+b2||N'R'> = <NR||b;||N'R'>6N N+t
’

R-R' -
(-)R°R <N'R']|b;||NR>6N,’N+1 (a2.3)
where
<NR||by| [N'R"> = (-)R*R' {N(2r+1) }H<wR] Jn-1R"> (A2.4)

The boson fractional parentage coefficients <NR|}N-1R'>
are given in table A2.1 (from ref.!?)),

Next the matrix elements

< e .
w2p+1(lnnvalence particlesl"’2p+l(2)> are given;

they are taken from ref.!'"),
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Table A2.1
N'=2
N=3 R]| R' 0 2 4
0 0 1 0
2 Y7715 v4/21 12/35
3 0 v5/7 -/277
4 0 11/21 10/2
6 0 0 1

> = Rzp(r)+R29(rr).
(A2.5)

<w2p+1(p)|Hva1ence particles|w2p+1(p)

<ll)21-"+1(p)|1'lvalence particles‘wzp+1(PqJ't=D)>

2p-2 2p 2

= ﬁupv 5J.0 tr{R (pr)-R (pr) + Rigkrrp) - (rrp) }-

N

2p-2

- %'utvt{Rgp(tr) - R, (tr) + RZP(rrt) - Rig—z(rrt)}*

B ' 2p -
P(pgJ )Gptsqr + SJ'OstrRZO(ppt)

A

*§R b (ttr)P(pgd’) s + R p(pqtrJ'), (A2.6)

Pt qr

<¢zp+1(ach;p)|H (paJ't;p)> =

valence particles'w2p+1

= {- [ J'08¢r (R 20 (PaPr) - R p(papr)) -

ZP 2(tatr) - R (tatr))*a P(pgd')s

-(R pt qr "

29 -2 .
(pqtraJ ) + R (pgtrad’ )]auaJaeJoecr +

~

J -
+ [a++c] 3 ucch(abJ)Gacdbr} +

+ {p++a,q++b,c++t,J++J'} +

T e AP
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* pu vPauavaGJOGJ‘OGtracr{ o~%(apr) - 2RGP™2(apr) +

2 2

+ Rop(apr) + R p"‘l(rrap) - 2R] p 2 (rrap) +

2 J
+ R P(rrap)] pupvp §3108¢r T UV P(abJ)B

A

ac br

(a++c) =~ &u va ) &V P(qu )8

30%¢r f pt qr’

o
G> o

ngl-

P (abJd) § uv u.v, ¥

(pert) + ac br cctt

(qu')Gpt qr

2p-2

(pe+g;s+rt) + RJrJ.(abc;pqt){R0 (abec) +

2p-2 2p-2 2p-2
+ R11 (aabc) + Rll (babc) + Rll (cabc)] +
2 = J+T " +qtl
+ sctGJJ.Rzg(abqut) - P(qu'){ccq( ) att g

x {2 E g } RS p (abptdc)} - P(abd) {ac+p,be+qg;cert;

Jl++J} + 2 ﬁ(abJ)ﬁ(qul)[Gapsslauz(_)a+b+r+c¥
Jll

[2 2 Ju () PrarTitp d gl}ngg(bcth"a)] (a2.6a)
The overlaps between the basis states are:
Vope1 () [V (P)> = L%P (x) | (32.7)
<¢2P+1(D)|¢2p+l(ach;D)> =

{au v GJO{ L?P 2 (ac) - LZP(ac)} % uv,
)

x B(abd) s, br[ L2P 2 (ap) - 1L2P(ap) ]} (A2.8)

Vapeq (aBICio) [V, ) (pad'tip)> =
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i 2 -2 o A
i L<P (abc) Ry, 51 (@bc,pqat) + auavaﬁupvp

x8 .6

2p-4 - o7.2p=2 ]
J0 J'O[L (apo) 2L {apc)

-{8uv, § 0V T Rad ")

pthr
x[L2p-4(an) - 2L2P 2 (apq) + sz(abq)}}- : ¥

- { a+>p,berg, cert, J+>T" }

37 = - 2p-4 _ C 2
+—;§ ucvcutvtP(abJ)GacébrP(qu‘)Gptaqr(L (ctr)

-21.2P 2 (ctr) + sz(ctr)] (A2.9)

The quantities R are defined as:

Ry g(abcja'b’c’) = F(aba')(a Spp18ect S

aa' " bb' cc'J'J +

~ A 1
+3'3B(a'b'J) 8 a‘b'J }, (A2.10)

ac'aa'cabb'{c r'J’

R§3(abcd.....ta) =}

{G(abch)(uaubudvc

Yy

ka-z(p.....t) - vavbvduch-4(a.....t)] +

+(-)J+°+dF(abacJ)[uaubudchk'z(a.....t) -

Jvavbvduch_4(a.....t)] ~ F(abcdJd)

x[ubucudvaLk-z(a.....t) - vbycvduaLk-4(a_,__,t) }' (A2.11) ‘% ’

N7
&
:)!

ey

e L

a - e

(ap.e....t) +

k 22,2
Rg(P.....t) = ga vy

+%agab[2v§ng(aabe)Lk_4(abp.....t) +
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k=2
+uavaubvbG(aabb0)L (abp.....t)], (A2.12)

k - - k-2 ¢
Rzo(pq..,..t) 2pupvpepL (Pdevssot)

~% §${4upvpV§F(aapp0)Lk-4(apq.....t) -
-u_ v G(aappo)[v;Lk 4(apq.....t) - u;L (apq.....t)]}
(A2.13)
2. k-2
Rtl(pq.....t) = € {upL (pgeeva.t) = vpL (pq.....t)]

k_2(apq.....t) -

2 k-

p (apge.eaat)

- uv.uv G(aappO)L 2(apg.....t)},

P
A"l 2
+ Zaﬁ {vaF(aappO)[u L
] aapp (A2.14)

Rgz(abcdeJ) Y P(abJ)P(ch){{u U u g

ka 2(abcde) + v a'bVe vd k 6(abcde)]G(abch)
+4v ubvcudL (abcde)F(abch)}

where G(abcdJd) and F(abcdd) are the particle-particle

and particle-hole matrix elements of Hvalence particles”

For the pairing interaction with force strength G they read

a*

G (abedd) -G§_, &

abSca®zodt(-)

(-)9*3a7 Iy 69,48 (A2.15)

F (abcdJd)

For the single-particle states the coupling order
T+8= 3 is adopted. The angular part of the single-
particle wave function is the (8,¢) of Condon and
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Shortley (1935).

P(pqd) (expression) = (expression) + (-)J+p_q(expression

with p and q interchanged), (A2.16)
{p++ql means: the last expression between the brackets
{ }with p and g interchanged. (A2.17)

The formulas above were taken from ref.!'*’; however, the
residuwal integrals Ik(pq.....t) were replaced by the
finite sums Lk(pq.....t). The advantage of the latter sums
is elaborated in ref. 1'%/,

The sums Lk(pq.....t) are defined by

M
k 1 -k -2 2
L ( q..'.lt) = == (Z ) (p p n-.-.p ) n p (A2.18)
P M mgl m pa t a>0 a
2 2.2\ %
where Py = (ua + vaa)
Zy = ©XPp (imm/M)

M should be odd. In ref. '®/ it is shown that the applica-
tion of the sums Lk(pq.....t) remove ali contributions
from the wave function with a particle number different
from 2p + 1 + 2rM (r integer). So for sufficiently large

M only components with particle number 2p + 1 are taken
into account.

Lastly we give the reduced matrix elements of a tensor of
rank A (A$0)

<w29+1 (abJe;x) | IQll Iw2p+1 (pad't;r')> =

= -££'33'P(abd)B(pad’) <p| 1o, |1a>

x[(-))‘uaupLZP-z(apqt) - vavpL2p-4(apqt)}

-
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’ _\T'=CHprq+A+I+IT A T I AT J
*|8¢t8pq ) { Flopa

cr'r b+

+ pd'c

a+r+c+b{a b J}]
Ar'r

chabt(-)
AAI - _ x zp_z
- 22'33' {F(abd) <t|{Q,|{a>{ (=) "u u L (abect)

- v vtLZP-4(abct)](_)a-r+J‘{r‘t I'L (2B T 1B (pqat) s

a araA cr J' cpsbq

- ﬁf'&&'(-)r-r'+A+A{a++p,b++q,c++t,J++J',r++r'}

3§
¥

- 22065, (1% T <t gy o> () Magu 2P (abet)

2p-4 r'tJ') 5
- v v, L P (abct)] {c 75 Blpad")s

apsbq
- {f'(—)x 8y 108, A L< oyl la>(u v + (=) v_u )
AJ' tr PHIR G P a P d

~ _ 130 A
r 5par o, 18 3] <tll0y] e (avg () vng))

- 2p-4
x[GJOGachrauava(sz 2(p_qat) - L“P"*(pqat)) +

S | 2p-2 _ 12p-4 5
Jr tu v (L (pgct)- L (pqct))P(abJ)Gacdbr]}

r-r'+>\+>\{

- (=) a++p,b++q,c++t,J++J',r++r'}

r-r'+\

+(=) <zl llr> *

.{GJOGJ,06ab6pq6cr6tr,auavapupva(ap)

A - -1 k1
- GJOGabécrauavaJ'f' utvtP(qu')épthr.N(pt)

A-l —
6J,06pq6tr.ﬁupva2 ucch(abJ)GaCGbrN(cp)

+JJ'2 ¢ ucvcutvtP(abJ)GagfbrP(pQJ)Bpthr.N(qt) (A2.19)
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3 where
i
?; N(ps) = (=) “r“r [ 2p(psrr') - ZLZP-Z(psrr') +
.
?f + LZP'4(psrr')] - vV ( L2P~2 (psrr') - 2L2p_4(psrr') +
LZP'G(psrr')],
a Vo (O 11031105, (RAT EiE1) > =
;1.“.\ - 2'(')A[6AJ'61: AT <p|]Q)‘||q>(u Vg ¥ (-) vpu )
+ 3'Blpgi*)s,__ (B 9 '} <tlQllg> (ugvy +(=) Av U )]
pr 't r'a A
12272 (pqe) + (=) P<x|lQ, x>
2p _ 12p=2
[GJ'Oqu tr'PUpY {( =) ur - [L (prr') - L (prr')]
- vrvr.[sz-z(prr') - LZP_4(prr')]}
. - 32 T hugv {pert)B(pad ) 8, 8 (A2.20)
Q <"’2p+1(r)||Q>\H"’2p+1(r')> = g
{ = <xlloyler>[ug0, 2P ern) - () v, 2P e | z.20)
E =
B
ﬁ; The reduced single-particle matrixelement of the Y2u ;
% operator between harmonic oscillator wave functions L
¥ is defined as:
<ally,]|p> = ()% Peb| |1, |a> =
l“::i n_+n ~
: = () @ P )P4 577map (35 2 (A2.22)
L N )
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Chapter 6

APPLICATION OF THE THREE-QUASIPARTICLE CLUSTER
VIBRATION MODEL TO ODD Zn I3Z0TOPES

Abstract: The three-quasiparticle cluster vibration
(QCV) model is applied to the odd Zn isotopes. It is
concluded that the inclusion of a three-guasiparticle
cluster is essential for the properties of the low-lying
states in the 2n isotopes. A comparison with other model
calculations is made; the QCV model yields spectra and
electromagnetic properties, which agree with experimental
values as good‘as a much larger shell model calculation.

6.1 INTRODUCTICN AND CHOICE OF THE PARAMETERS

In chapter 5 the QCV model was introduced. The model
contains collective and single-particle degrees of free-
dom, viz.: vibrational (harmonic) phonons (with a phonon
energy hw) and a number-projected three-quasiparticle
cluster, respectively. In chapter 5, section 4.2 the im-
portence of particle-number projection is shown. The
quasiparticles occupy certain shell model single~particle
orbits with energy e; the residual interaction is a pair-
ing force with strength G. The coupling between the pho-
nons and the cluster is a quadrupole coupling (5.9) with
strength a. The model is an extension of the Alaga model
or (three-particle) cluster vibration (CV) model.

As an illustration we have applied the QCV model to
the sequence of isotopes $3Zni;i, $3Znss, $8%n3s and
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neutron valence shell, respectively. Of these nuclei ¢7Zn
has been treated previously in the ¢V model, by assuming

‘a N=40 subshell closure, i.e. a three-neutron-hole clus-

ter in the N=28-40 subshell!’?/, So, the neutron can i
occupy the 2p3/2, 1f5/z and 21 . orbits. Here we adopt .
the parametrization from ref!) and perform the calculation”
ﬁpijthe whole sequence qf;annucleg,;by»chanqing only the:

ﬁﬁmbeirqfnyalgnqg-sheli neutrons. T
The parameters are'/:

0.76 MeV Hw 1.2 MeV
1.08 MeV a 0.81 MeVvV
G = 0.4 MeV

e(fs/z) - e(pa/z)
8(p1/2) - E(pa/z)

1l
i

The single-~neutron energies are taken from the experimen-
tal data for 57Ni. The phonon energy Tw is about the

energy of the 2; states in the Ni-isotopes. The pairing
strength G is a little higher than the estimate 23/A to
account for the omission of the gg/2 orbit; besides, the
results are rather insensitive to the value of G. The va-
lue of the coupling strength a is fitted-to the spectrum _
of $72n. The value of a=0.81 MeV is in good agreement with
the estimate for the particle-vibration coupling si:rength18

_ -1 + A+ b
a = Vdn/3(ZRp?) <k>{B(E2)(21+01)VIB} (6.1)

If we use for the radial coupling matrix elements <k> the
value 40 MeV, then we obtain for ®?Ni a=0.9 MeV and for
f4Ni a=0.8 MeV.

The parameters are taken constant for all Zn isotopes.
In a more detailed calculation, the dependence of the
phonon energy Tiw on the particle number A should be taken
into account. However, in even Ni isotopes these changes
are rather small, so we take the same hw, in order to
demonstrate clearly the effect of the particle number in
the valence shell. An analogous argument applies to the
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Figure 6.1 The QCV model and experimental’’?’®’'“/negative-parity spectra of 1752765+ free
are contained in the calculation. The parametrization is taken from a CV model calculation for °’Zn
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strength a. It should be stressed that we take here a
parametrization of the CV model for $72n, without read-
justing any of the parameters for S!’'¢37%%zn,

6.2 SPECTRA AND WAVE FUNCTIONS

First the BCS gap equations are solved; the resulting
values for u,v,A and E are listed in table 6.1. Without
the particle-vibration coupling the values of the quasi-
particle energies E. determine the states below 0.5 MeV.
For °’2n the ground state has spin 1/2° then, but the
structure of the low-lying states are already roughly re-
produced by the one-quasiparticle configurations only.

The spectra, calculated by the QCV model for this
parametrization are compared with the experimental spectra
in figure 6.1. In the calculation phonon states with only
up to two phonons are included. One may notice from the
figure that the spectra of the lighter isotopes are re-
produced equally well as the spectrum of %72n. This gives
some confidence, that the model may indeed describe the
states of these nuclei equally well as the CV model does
for nuclei with only three particles beyond a closed shell.
So we believe that the QCV model wave functions can tell
something about the properties of the nuclear levels.
These wave function are presented in tables 6.2 - 6.5 for
the low-lying states of ®!2Zn - ®72n, respectively.

Table 6.1 The BCS solutions for t!'%¥r88r87g,

2
v3 Bj (MeV)
b] Cj 3 S 7 9 3 5 7 9
/2 0 0.48 0.69 0.82 0.90 0.95 1.17 1.42 1.63
5/2 0.76 0.15 0.30 0.51 0.72 1.33 1.17 1.10 1.09
1/2 1.08 0.10 0.20 0.34 0.54 1,59 1.36 1.16 G.98
A {MeV) 0.95 1.08 1.10 0.98
< -
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Table 6.2 Wave functions for %!2n.

(a/2), /2, (3/2),
¥ 37 ¥ .54 y -.62
%2 A7 Y12 .50 (I0%3/2 -.24
(¥1)2%;1/2 .20 O 2%;5/2,12 .22 )2t ys/2,12 .25
(¥ 0Y¥;372,12  -.22 3,12 .185) (¥ %5372,12 .21
285172 .27
Bn2tis/sz2 a1
Mha2d:a/2,12 -2
(3/2), (3/2) 4 (5/2),
Y12 .39 k| -.26 ¥ .61
Y0y -.21 Y12 -.24 ¥,12 -.36
%2 .31 %12 .33 (¥*)0%;5/2 .20
28372 - T2 A4
528,172,102 .20 ¥2t:3/72,02 -.22
89 2t:372 ~.24
5/2), (5/2) /2),
%12 .54 3 .25 ¥,12 -.50
(¥%)2%;5/2 .35 3,12 37 37)28;7/2 .29
(¥ 12%;:5/2 -.21 (¥)2%;:5/2 .24 182)2Y;7/2 -.21
M 2%972,12 23 t.12 .40 ¥,24 .20
¥,24 .20 3na¥:77202 .20
(Y1) 2%;5/2 .25 3Ha%172,12 .24
M2%:3/2,02  -.22
/21, ©/2), 11/2),
Y2 .60 §12 .62 (314%;1172 .A4Y
(¥y2% .26 (32)2% .32 ¥,24 -3
(tn0%:372,12 .24 (M as .27 (¥2)2%;7/72,12 .30
23 .26 312%;9/2,12  -.20 312%;772,12 ~.27
1%;772,12 -2 a%;17202 - (n4%511/72,12 .24
347,772,122 -.20
(Ma¥772,02 .23
ha%0/2,12  -.25
3H4¥%7/2,22 .2

The following simplifying labelling is used for the gquasiparticle states: TEB,/I.

e g s

3Ep,/,, EEE,/,. The three-quasiparticle cluster is written as (gg)J,,E;j where
the angular momenta of quasiparticles a and b couple ‘to J,;; J is the total angu-
lar momentum of the cluster. The phonon guantumnumbers N(number of phonons) and
R{angular momentum of the phonon state) are added if N40. Only components with
amplitudes larger than 0.2 are presented.

The number of valence-shell particleas is n=3.

(Y?)0Y stands for: 0.25|%> + 0.51{(¥%)0%> - 0.11{(¥YH)0¥> - 0.53] (¥)o¥>

(Y2)03 stands for: 0.05(%> + 0.54| (¥31)03> - 0.26{(¥?)0%> - 0.49| (3% 03>
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Table 6.3 Wave functions for *‘zn.

VAN a/2), (3/2),
b .58 Y ~,39 k] .69
¥,12 .34 Y2 ~.59 Y12 .32
¥,12 -.21 &hetiy2 ~.26 ¥,20 .22
(/2), (3/2) 4 (5/2),
k] .23 3,12 .21 ¥ 7
¥,12 -.63 ¥,12 ~.52 %12 -.26
¥.12 - 22 T2 .46 ¥,20 .23
(32)2%;3/2 .21 3,24 .21
(M ed;a/2 .22
34)2Y;3/2 .22
15/2), (5/2), /2,
Y12 .21 ¥,12 .59 ¥,12 .68
Y2 -.72 ¥.12 .43 ¥,12, .32
{302%,5/2 -.20 3% 2t;5/2 .20 28772 -.22
(¥ 2%:5/2 .22 (8)4%;772 -.24
(/2), (9/2), a/2),
¥,12 .30 ¥,12 .78 82)4%;11/2 -.38
Y12 -7 (¥h2%9/2 .20 ¥,24 .50
Y,24 .35
(32%;7/2,12 .30
3 2%;972,12 ;7
I 2¥,9/2,12 .21
(32)41:7/2,22  -.30

See for the description the caption of table 6.2.

The number of valence-shell particles is n=5.
(¥%)0Y stanas for: 0.22|%> + 0.58] (¥32)0%> - 0.47](3%)0}>

(gg)leggj stands for the cluster state with three quasi-
particles in orbit with angular momenta j1=a/2, j2=b/2 and
j3=c/2; j1 and j2 are coupled to Ji2 and the angular momen-
tum of the cluster state is j. One-quasiparticle states
with angular momentum j/2 are written as 3. Phonon quantum-
number N{(number of phonons) and R{angular momentum of the
N-phonon state) are added if N$0. Note, that the configura-
tions of the type |(32)0¥> are in fact linear combinations
of seniority v=1 states for spin jr
linearly dependent (see chapter 5, appendix 1). The linear

the latter states are

940 2N

AR
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Table 6.4 Wave functions for “%zn.

(a/2), (a/2), (3/2),
¥,12 .35 ¥ A2 k] .67
Y12 -2 %12 ~,33 %12 -,22
(&y2t,572,12 .23 ¥,12 .52 Y12 .34
.63 (¥2¥/2 -,21 ¥,20 .23
(¥1)0t51/2
/2, (3/2)4 (5/2),
Y .70 k] .20 ¥ .74
Y12 .24 Y12 .89 ¥,20 .24
(¥12%,3/2 -.24 Y12 -.46 &n4t;972,02 28
31 2t372 -.26 () 285372 .20
(5/2), (/214 (1/2),
¥,12 -.61 ¥,12 .22 %12 KT
Y2 -.32 ta2 .31 ¥.12 .22
¥,12 .35 ¥.12 .65 182)4%;7/72 -.29
(¥)2%:5,2 .21 2)2%;5/2 .20
(Y2%;5/2 .25
(172, (9/2), a2,
¥,12 ~.24 ¥,12 .80 ¥,24 -.69
¥,12 .76 (31 4Y;7/72,12 .46
(Yh2%;7/2,12 .29

See for the description the caption of table 6,2.

The number of valence-shell particles is n=7.
(3%)01 stands for: 0.18]1> + 0.63| (¥*)0Y> + 0.40](3?)0}>

combinations may be different for different particle

numbers.

From tables 6.2 - 6.5 one sees, that the dominant
configurations of the low-lying states are one-quasi-

particle configurations and one-gquasiparticle-coupled-
to-one-phonon configurations. The admixture of the three-
. quasiparticle cluster states are considerable, however.
éﬂ In ®57%7%n the seniority three cluster state |(32)28;3/2>
is responsable for pushing down a 3/2  state with main
configuration |5,12> to low energy. This low-lying 3/2°
state has a large B(E2) value to the ground state 5/2°
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Table 6.5 Wave functions for ‘’zn,

(/2), /2, (3/2),
¥ .56 ¥ ~. 46 ¥ -.21
¥,12 -.36 %,12 .40 ¥,12 .54
(2% .22 Y12 ,21 (31)2%;372 -.35
¥.12 .28 () 285172 .3l (¥2)2%;3/2 -.22
Bhatiazenz 24 (Ma¥:3s2,12 .25 (¥ 2¥3/2 -.22
(302tis/2,02 .27 , (32%53/72,12 .21
(3% aty772,02 -2
(3721, (3/2), (5/2),
k] .58 Y12 .65 ¥ .64
¥.12 .36 ¥,12 -.22 ¥,12 .26
¥,20 .20 Y12 .26 ¥,20 .22
ha¥/2a2 2 (t*)0¥;3/2 -.21 3ny2t1372,12 .22
M¥22012 .20 (31 28,3/2 .24 314t:772,12 .30
(5/2), (5/2), (172,
T2 .37 T2 -4 T2 .60
¥ .39 (¥2)21;5/2 -.23 (32y4%;7/2 -.40
(Y1) o¥;5/2 .23 ¥.12 -.42
(3%)2%t:5/2 .25 ¥,24 .20
Y12 ~.30 1¥;s72,02  -.21
(¥ 28;5/2 .26
v, 19/2), a2,
¥,12 -.59 312 .65 $,24 -.43
(Mn8;772 -.33 (32)a%;:9/2 .23 31 4%51172 -.40
M 28;7/2 .20 (31 2%;9/2 .30 (32)4at;7/2,12 .46
Mndi772,12 -.28 ) 28:0/2,12 .22 (292,12 .27
(Mr23;9/2,12  -.24
See for the description the caption of table 6.2.

The number of valence-shell
{t*)0Y¥ stands for: -0.13]%
(1)0% stands for: -0.11|%>

particles is n=9.

+ 0.07) (¥%)0%> + o0.64] (F1r0%> - 0.35] (30>

+0.02] (¥7)0%> + 0.65| (¥2)10%> - 0.42)(¥2)0%>

with main configuration |B5>.

Another representation of the wave functions is given

in tables 6.6 - 6.9, where is shown how the wave func-
tions are decomposed into four types of configurations,

via.:




B T m——

b p————

94

1) one-guasiparticle states (1QP)

2) one-~guasiparticle plus phonon(s) states (1QP + ph)
3) three—-quasiparticle states (3QP)

4) three-quasiparticle plus phonon(s) states (3QP + ph)

From these tables the importance of the 3QP cluster states
is clearly seen; the average percentage of the 3QP (+ph)
states is 50.

Let us discuss the (3/2); states. In 5}'632zn the
(3/2)1 is the ground state and in ®5’67zn it is (in the
QCV model) the first excited state. From tables 6.2 - 6.5
it is seen, that the (3/2)I state in 817637652 has the
1QP. state |3¥> as the largest component (amplitude = 0.7).
The (3/2): state in %72Zn, however, is of a different
character: the largest component is the one-phonon multi-
vlet state |¥,12;3/2>. In fact, the (3/2); state in §72n
is analogous to the (3/2)I states in the lighter Zn iso-
topes. Going from $52Zn to ®72Zn the (3/2)I and (3/2);
states seem to have exchanged their character. This situa-
tion is clearly reflected in the guasicluster-type compo-
sition of the (3/2) states. The 1QP components are
sizeably larger than the 3QP ones for %1’%83'65Zn, as seen
from tables 6.6 - 6.8. For the (3/2), state in.®72n the
1QP components are small and the 1QP + ph and 3QP compo-
nents are large. In the quasicluster composition of the
(3/2), state the situation is reversed.

In all four Zn isotopes considered, there appears a
low-lying triplet (1/2);, (3/2)1, (5/2)1. For the (1/2)1
states the largest individual components are of 1QP and
1QP + ph type. However, the total contribution to the
norm from the 3QP and 3QP + ph states is comparable to
that of the 1QP and 1QP + ph states. A similar situation
appears for the (S/Z)I states with clearly the largest
component being |§>.

The pronounced feature of the QCV model for odd Zn

J e
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Table 8.8 The quasicluster-type composition of the states in $12n.
In secon@ to fifth column the squares of the amplitudes in percen=-
tages are given with which components of the types: one-quasipart-

iele, one~quasiparticle plus phonons, three=quasiparticle and
three-quasiparticle plus phonons, respectively, appear in the
wave functions of the

and fourth and fifth column, reapectively.

'2n states.In the sixth and seventh column
we present the sum of the percentages in the second and third,

In 1QP 1QP+ph Qe aqe+ph 1QP(tot) 3QP(tot)
(1/2)1 13 31 15 41 44 56
(1/72), 29 30 9 32 59 41
(3/2)1 38 6 47 44 56
3/2), 2 33 23 42 35 65
(3/2)4 7 39 19 35 46 54
(SIZ)l 37 18 10 9 55 45
(5/2), 0 32 21 46 K} 68
(5/2) 4 6 39 17 38 45 55
('1/2)1 - 3 23 44 3 67
(1/2), - 40 18 42 40 60
(9/2)l - 47 20 3 47 53
/21, - 13 26 61 13 87

(11/2), - 10 24 66 10 90
Table 6.7 The quasicluster-type composition of the states in ‘‘2Zn.
The description is analogous to the caption of table 6.6.

In 1QP 1QP+ph k{s) 4 ‘3gP4+ph  1QP(tot) 3QP(tot)
/72y, 33 37 6 b1 70 30
(1/2)2 16 42 14 28 58 42
(3!/2)l 47 17 3 Kk} €4 36
(3/2), 5 48 16 k31 53 47
(3/2)3 3 57 15 26 59 41
{5/2), S0 14 3 i3 64 36
(s/21, 0 60 14 26 60 40
(5/2)3 2 59 14 25 61 39
(1/72), - 59 10 31 59 41
(7/2)2 - 65 10 25 65 35
(9/2), - 65 9 26 65 35
(9/2)z - 35 15 50 35 65

(11/2)1 - 37 14 49 37 63

o\
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Table 6.8 The quasicluster-type composition of the states in **zn.
The deacription is analogous to the caption of table 6.6.

In 1Qp 1QP+ph 3P 3QP+ph 1QP(tot) 3QP(tot)
(w2, 40 28 . 28 68 32
w2, 19 @ 12 27 61 39
/2, “ 22 2 N 67 13
/), 1 59 17 22 60 0
(3/2), ‘ 59 13 24 63 3
(5/2), 55 10 1 M 65 35
(s/2), 0 62 ¥ 24 62 18
(5/2), 3 60 13 24 63 »
/), - 62 14 24 62 38
(7/2) 2 i 66 8 26 64 36
(9/2), - 65 9 26 65 35
9/2), - 48 8 a5 a8 52
(11/72) 1 - 52 3 46 52 438

Table 6.9 The guasicluster-type composition of the states in %72n.
The descriptivn is analogous to the caption of table 6.6.

I 1Qp 1QP+ph Qe 3Qp+ph  1QP(tot) 3QP(tot)
(w2, k1 21 8 40 52 48
(1/2), 21 25 15 39 46 54
(3/2), 4 35 23 38 39 61
/2), 33 22 ) 40 55 45
3/2)4 1 51 19 29 52 48
(s/2), 41 14 3 42 55 45
(5/2), 1 4 22 36 42 58
(5/2)4 44 20 33 47 53
/2, - 43 22 35 43 S7
2, - 43 21 36 43 57
(9/2), - 46 19 k1 46 54
(9/2), - 21 19 60 21 79
(11/2), - 20 16 64 20 80

isotopes is a strong mixing between 1QP (+ph) and 3QP
(+ph) states, induced by the quasicluster-vibration
interaction. In the QCV model are no almost pure 1QP and
10P + ph states. This appears in spite of the fact, that

the particle-vibration coupling strength is of an inter-
mediate value.

R N TN

i3
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6.3 ELECTROMAGNETIC PROPERTIES

By using the QCV model wave functions, we calculated
the matrix elements of the E2 and Ml operators (see
chapter 5, formulas (5.18)-(5.21)). The same parameters
in the electromagnetic operators have been used as in
the CV model calculations for ¢72Zn of refs!’?/,

5P

eVIB

0.5 e gp = Z/A gy = giree = 0

2.0 e g  =0.7 ggree g, = =1.0

In table 6.10 we present the calculated (and experi~
mental® *J), where available) static electric quadrupole
and magnetic dipcle moments for !763765/677,  we note

that the identification of states, derived from the wave
functions, can also be traced in the electromagnetic

Table 6.10 Theoretical (QCV model and shell model) and available experi-
mental values for the static electric quadrupole and magnetic dipole
moments in S17830830873,

I, 4 (nm) X100 Q(eb)x100

‘lzn E’zn G!zn G7zn Elzn G!zn ﬁszn E7zn
acw (1/2), | 40 a2 51 53
sM 66
exp 583
QcwM (1/2), | 68 69 61 53
acwm (3/2), | -105 -90 -87 42 -9 16 16 -17
sM -71  -106 -26 23 22 -1
exp =-28 ~78%20 506
QCVM (3/2), | 64 a a8 -79 8 1 5 18
sM 52 12
exp 73£25
QCVM (5/2), | 116 113 100 103 -24 -16 4 18
sM 149 143 147 -10 -1 10
exp 77 as -2 1542
QoW (5/2), | ~32 -17 113 121 -5 <4 2 6
QCVM (7/2)1 113 117 134 117 -13 -6 -1 12

The experimental values are taken from ref!"/. The shell model results (SM)
are from ref!!’/ with ep(ef£)=1.6e, en(e££)=1.0e and bare g factors,
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properties. Specifically, lQ(S/2)I(67Zn)|=0.18 eb >>
'Q(S/Z);(GSZn)i=0.04 eb. This decrease in magnitude is
already a zeroth~order effect; the electric quadrupole
moment for a one~gquasiparticle state is proportional

to u24b2. In 72n and ®°zn u;-v;=-0.44 and -0,02, res-
pectively (see table 6.1). Obviously Q(5/2)I(552n) is
small and very sensitive to slight changes in the BCS
solutions. In °?Zn it becomes larger in magnitude and is
negative.

The magnetic moment of the (5/2); states in all the
Zn isotopes hardly changes with particleénumber (and
with occupation probabilities vé); it is proportional
to u;+v§=1. The experimental values are in agreement
with these simple predictions of the QCV model. A simi-~
lar situation appears for the (1/2)I states in ®°'%72n
in the QCV model: M(1/2)](°”2n)=0.53 nm=n(1/2)](**zn)=
0.51 nm.

For the (3/2)1 and (3/2); states we noticed, looking
at the wavefunctions, & crossing between 652n and ®7zn.
Indeed in the QCV model u(3/2)'1'(°52n)=-0.87 nm=u(3/2)'2'
(®*2n)=-0.79 nm; both states arise from the 1QP state
|§> in the zeroth-order approximation. On the other
hand u(3/2);(552n)=0.48 nm has the same sign as u(3/2);
(®*72n)=0.24 nm; both states arise from the configuration
|§,12>. The available experimental data corroborate this
(3/2); - (3/2); crossing. It would be interesting to
measure the missing magnetic moment u(3/2);(672n).

We point out here that for some effects the 3QP
states, altough they mix strongly in the wave functions
of the low~lying states, do not change the qualitative
(or even semi-quantitative) predictions of the simple
one-quasiparticle case., This can be understood as a
systematic feature due to a Ward-like identity for the
coupled particle-vibration system?’“’5J, In fact, what
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is lost due to the decrease of the main components, is
approximately recovered by the additional components.
Therefore, strong 3QP admixtures do not influence
strongly some 1QP features. In the diagram language,
the vertex corrections (of the same sign as the zeroth-
order component) and the self-energy corrections (of
the opposite sign to the zeroth-order component) appro-
ximately cancel. On the other hand, for properties, for
which a Ward-like identity does not hold, a completely
new pattern arises; for example, the particle=vibration
coupling brings in %3'¢7zn one (3/2)  state with zeroth-
order component |§,12> to low energy. This is caused by
the strong coupling to the 3QP state |(§3)3/2>. This
pushing down of the state |3,12;j-1> by the configura-
tion |(§3)j—1> is a well known feature in the CV model

and cannot be reproduced in a one-quasiparticle-phonon
model.

In tables 6.11-6.13 we present the calculated (and,
where available,experimental) B(E2) and B(Mi) values for
$172n-¥72n. Also some shell model!!’/ results are given;
we compare the QCV model and the shell model in section
4. Experimental B(E2) and B(Ml) values are scarcely
available for ®'2n and %2?Zn. For ®52Zn and €7Zn there
occur expeiimental data, which are derived from mixing
ratios and branching ratios with large errors; so, these
values are very uncertain (the errors may be as large as
50 to 100 per cent). In the table these values are prece-
ded by the symbol ~. The agreement of the QCV model fe—
sults with the experimental B(E2) and B(Ml) values is
rather good. Note, that the single~particle B(M1l) tran-
sitioEs of the (3/2)1 and (3/2); states in %7zZn and the
(3/2), state in ®°Zn to the ground state are 2-forbidden,
if the term |Y2®§|1 is neglected in the effective Ml ope-
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Table 6.11 Theoretical (QCV model) B(E2) and B(M1) values for *12n and
an.

B(E2) (e*fm") B(M1) (nm) 2x10"
In * Il“l “Zn ”Zn “Zn €dqp
x/2), ~ (3/2), 66 12 1097 5771
(5/2)1 + (3/2)1 4 -] 80 60
* /2y, 76
(1/2), + (5/2), 157
3/2), = (3/2), 111 14 46 1095
+ (/) 84 7 1124 q
~ 15/2), a4 173 1 7
(5/2), ~ (3/2), 180 212 277 970
- (1/2), 49 2
~ 5/, 9 17 k] 94
1/2), + 3/, 86 116 6589 460
/), 0.5 11
+ (5/2), 0.4 20
/2y, » 3/, 10 23
- (5/2), 135 168 61 25
(7721, ~ (3/2), 153 153
+ (5/2), 6 29 57 223
(9/2)) + (5721, 168 195
(11/2)1 > (172, 181 173

rator, If this term is omitted in the QCV model, our
results would be about the shell model results, which
were calculated without |Y2@§|1.

In figures 6.2 - 6.4 the calculated and experimental
(if available) branching ratios are presented, together
with the half-lives for ®°Zn - ®7zn, respectively.

In ®%Zn only three half-lives are known experimentally.
Two of these values are reproduced reasonably well.

In ®%2Zn the half-lives are reproduced quite well. The
most branching ratios agree well with experiment; only the
branching ratios of the (1/2); and the (3/2); states are
not good.

The calculated branching ratios for ¢7Zn agree very
well with the experimental ones. The half~lives are
reproduced reascnably well, except for the (1/2)I state,
the half-life of which is a factor 8 too low.
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Tablgss,lz Theoretical and available experimental B(E2} and B(Ml) values

for Zn.
B(B2) (e?fm") B(M1) (nm) ¥x10"
I - I
n n QCcvM SM exp QCvM exp
(1/2)y + (5/72), a7 98 10326
a72), + 5/2), 60 0.4 =240 398 450450
/2, 73 §1 1230 >680
(372), + (5/2), 220 Q10 =160 24 50
* (v, 25 6.6 =450 594 540
+ 3/2), 20 342
(5/2) 5 + (5/2), 125 13 78
+ (v/), 55
+ (3/2), 57 75
+ (3/2)2 0.1 11
(1/2) » (5/2), 213 260 1
- (3/2), 27
> (3/2), 0.6
+ {5/2), 10 900
(1/2), + (5/2), 17
(1/2), *~ (5/2), 12 14
(9/2)) ~ (5/21, 201
(9/2), + (5/2), 0.6
11/2), * (1/2), 195
+ (9/2), 75 5

The experimental values are taken from ref'!),
See also the caption of table 6.13.

Summarizing: we have shown, that especially for a
good reproduction of the spectra it is not enough to
couple 1QP states to phonons. The QCV model (a three-~
quasiparticle cluster coupled to phonons) produces
spectra, which agree with experiment for €1763765gy
equally well as for ®72Zn. For all these nuclei the
same parametrization was used. The electromagnetic
properties, calculated with the QCV model wave func-
tions, are desctibed rather well. The QCV model wave
functions are rather simple and give therefore an easy
insight into tue structure of the odd 2n isotopes.
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for %7zn.
B(E2) (efm") B(M1) (nm) 2x10"
I - It
n n QCVM sM exp QcvM sM

(172}, ~ (5/2), 36 10 4,54.5

(3/2), =~ (5/2), 262 75 285121 k1] ]
~ /), 13 120 =200 30 5600

(3/2), * (5/2), 0 130 7.5%¢,5 305 2 =100
+ /2, 103 0.1 =300 3487 3700 =700
~ 3/, 9 556

772y, ~ (5/2), 232 220 220420 9 40
» (3/2), 63 =40
> (3/2), 37 =40

(5/2), > (5/2), 65 98 866 68 50 =210
> (/2), 127 =160
+ (3/2), 65 11
+ 3/2), a1 108
> (1/2), 3 845

(1/2), + (5/2), 42

(9/2), *~ (5/2), 175 170

(1/2), > (5/2), 2 249

(9/2), + (5/2), 4

1/2), > (1/2), 204
* (9/2), 91 124

The experimental values are taken from refsg'’*'€¢17¢11)  rhe yalues,
preceded by =,are very uncertain. The shell model results (presented

in column “SM") are obtained with e

bare g factors.

6.4 COMPARISON OF THE QCV MODEL WITH OTHER MODELS

The Zn isotopes were described earlier with twe

types of models:

1) the one~-quasiparticle=vibration model (the QV model)

2) the shell model.

In this section we compare the QCV model with these

models.

P(eff)-l.Se and en(eff)-l.()e and
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Pigure 6.8 QCV model and experimental branching ratios for *’2n. The experi-
uental values'*/ are presented above the levels and the calculates ones below.

6.4.1 Comparison of the QCV model to the QV model

The QV model space is inciuded in the QCV model
space, so it can at best produce similar results. The
wave functions of the QCV model (see tables 6.2 - 6.9)
contain 1QP components and 3QP components in equal
strength. This means, that a description of only one
quasiparticle coupled to phonons is expected to be
poor. In the spectra, calculated with the QV model,
some states are missing already at low energy. For b
example the (3/2)] state in ®’Zn and the (3/2); state
in ®%2n, for which the configuration |(5%)3/2> is !
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Figure 6.3 QCV model and experimental branching ratiocs for *¥2n. See also
the caption of fiqure 6.2.
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FPigure 8.4 QCV model and experimental branching ratios for *?zn. See also

i the caption of figure 6,2.
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important cannot be described in this model. In refslo’1s)
it is assumed, that these states are a pure configuration
| (3%)3/2> and it is hoped, that the other (3/2)” states
are described well. The QCV model wave functions show,
that this assumption is not valid. The same arguments
apply to other spins also. The QCV model shows, that

one may not expect good results of the QV model,

6.4.2 Comparison of the QCV model with the shell model

Van Hienen et al.l!!) performed shell model calcula-
tions for the Zn isotopes, in which 56Ni was assumed to
be an inert core. The two protons and the remaining
neutrons could occupy the Zp,/ ' 1f5/ and 2p3/ orbits.
No truncation was made, which xeans, that matrlces had
to be diagonalized with a dimension up to 2000. The
maximum dimension in the QCV model is 124; in practice
one needs an amount of computertime in the shell model
calculations, which is about a factor of hundred times
as big as the time, needed in the QCV model.

The effective one- plus two-body Hamiltonian was
derived in ref!3) for the Ni and Ca isotopes. In the
calculation of the spectra all the parameters were taken
to be constant, just as in the QCV model!

The calculated spectra are shown in figure 6.5. The
spectra below 1.5 MeV excitation energy are very similar
to ours (see figure 6.1). The ordering of the lowest
six states is reproduced a little better in the QCV
model: the spiﬁ of the ground states are all correct
and the triplet (1/2);, (3/2);, (5/2); in $32n is repro-
duced roughly.

Above 1.5 MeV the shell model produces more states
than the QCV model. This can (partly) be explained by
the fact that the maximum number of phonons in these
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Figure 6.5 The negative-parity spectra of ®'7%%785¢673, calculated with the
shell model!l), No free parameters are contained in the calculation.

calculations was only two. Paar?’/ used in his CV model

calculation for °7Zn also three-phonon states and pro-
duced above 1.5 MeV more states than the QCV model
calculation does.
The calculated shell model B(E2) and B(M1) values
for °5°2n and °’2Zn are shown in tables 6.12 and 6.13.
The effective charges for the proton and the neutron

were found by fitting to the experimental B(E2) values.

In the QCV model no such fit was done. Nevertheless,
the QCV model B(E2) values are a little better, espe-

cially for the (3/2)  states.
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For the M1 transitions bare values for the g factors
were used; the results were not very sensitive to the
values of these g factors. In the QCV model the core
polarization effects were simulated by
a) a renormalization of g, (=0.7 qgree)

b) the addition of the term proportional to |Y2@§|l to
the effective magnetic operator.

The B(Ml) values are reproduced clearly better in the

QCV model than in the shell model, For the (3/2)  states

this is largely explained by the additional term in the

Ml operator, which is present in the QCV model, but not

in the shell model calculations of ref!l’,

The calculated shell model electric quadrupole and
magnetic dipole moments are shown in table 6.10 to-
gether with the QCV model results. The parameters for the
effective M1l and E2 operators in the shell model are the
same as used for the calculated B(Ml) and B(E2) values.
In almost all cases the results of the two models have
the equal sign and about the same magnitude. The magne-
tic dipole moment of the (3/2)1 state in ®72n is badly
reproduced in the shell model; also the transitions of ;
this state to the (5/2) state is not correct. The %
wave function of this state is clearly not as good as
the one of the QCV model. Probably, the one- plus !
two-body Hamiltonian, which was derived for the Ni and -
Cu isotopes is not correct any more for 572Zn.

Let us summarize the comparison of the QCV model
results and the shell model results. The spectra of
the QCV model are slightly better than the ocnes of the 3
shell model. Also the electromagnetic properties of
the QCV model are slightly more in agreement with the
available experimental data.

The conclusion of this comparison is , that the
degrees of freedom of the QCV model(viz.a few quasi-

N
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particles and quadrupole vibrations) are well chosen

for the odd Zn nuclei. The QCV model results are at least
as good as the shell model results, Since the computa-
tional efforts are much less for the QCV model than for
the very large shell model calculations, we think , that
the QCV model is to be preferred as a predictive tool in
nuclear spectroscopy for nuclei away from closed shells,
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STELLINGEN

. In berekeningen san oneven tin-isotopen, die door Kuo et al. met drie

quasideeltjes zijn uitgevoerd, zijn de onechte (‘spurious’) toestanden niet
correct verwijderd. Dit leidt tot verkeerde energieén en golffuncties vaor
toestanden, die een component met één quasideeltje bevatten.

T.T.S. Kuo et al.,, Nucl. Phys, 79 (1966) 513

. In tegenstelling tot hetgeen Gambhir beweert, tonen de resultaten van zijn

berekeningen niet aan dat zijn computerprogramma correct werkt.
Y.K. Gambhir et al., Phys. Rev. C20 (1979) 381

. Het feit dat mengverhoudingen in Nuclear Data Sheets niet in een vaste

conventie worden opgegeven, maakt deze gegevens onnodig lastig hanteer-
baar.

. De voorlichting door artsenbezoekers moet onder controle van de overheid

worden gebracht.

. Tijdens de rijopleiding dient meer aandacht te worden besteed aan verkeers-
situaties, die in de praktijk veelal anders worden opgelost dan de verkeers-
regels voorschrijven.

Wit aan zet

6. De beste promotie is het promoveren tot paard.

8 november 1979 P. Hofstra




