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ABSTRACT

TR

The novel methnd proposed by one of the authors to calculate exactly the
response functions of the one-disensional Tomonaga-model is described in more
datail. The method is generalized for the case of a system of coupled chains
where both the intrachain and interchain interactions have forward scattering
components only. The model does not show resal phase transition at any finite
temperature indicating that the interchain backward scattering or hopping is
needed to have an ordering of the chains at finite temperature.

ARHOTALUA ‘ '

Hanaraercn Oosiee NONPOGHO HOBMR MOTOMN, IPEVIONSHENA PAHMNS ONHNM M3 A~
TOPOB, V1N TOYHOTO BHMMCHAeHNR $YHRUMN ANHEAHOTO OTIUINKA B ORHOMEDHOR MOonenmn
Tomonarn. MeTonm o6OGMASTCR Ha CHNCTEME CBASANMHX LeNeR, XOrza ¥ PHYTPRUSNHOe
¥ MemienHoe BBBMMONGACTBEN MMENT TONLKO KOMIIOHEHTH PAaCCennMAn anepexn. loxa- -
3aHO, YTO B NAHHOR MONENN NIPH XOHGNHOR TEMIGPATYPS HE NOAMAASTCA Ha3oBHA
nepexon. 3TO YXASHBAST HA TO, VUTO VI YNOPAUOYEHRA lLieneRl NDH KOHOUHHX TeM~
NepaTypax Cnenyer YURTHBATH, MEXLGNHOe paccesnne nasan unn “hopping®.

KIVONATY

Az egyik szerzd Altal az egydimezids Tomonaga-modell vhlaszfliggvényének
pontos kiszémithséra javasolt médszert irjuk le részletesebben. A mbdszert
Sltalénositjuk csatolt léncok rendszerére olyan esetben, amikor a léncon be-
1411 &s a léncok k8zdtti kSlcsbnhatésoknak egyaréint csak elOresz6rési kompo-
nensei vannak. A modell egyetlen véges himérsékleten sem mutat valés fhziskt-
alakulést, jelezve, hogy a léncok k&zbtti visszaszbérés, vagy "hopping” szik~-
séges ahhoz, hogy a l&ncok véges hOmérsékleten rendezSdjenek.
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1. _Introduction

Recently quasi-one-~dimensional /quasi-1-d/ conductors
attracted a great deal of interest because of their unusual
properties. For a review of works done in the past few years
see |1| - |3|. These systems are built usually of large, flat i
molecules which are relatively closely Qtacked in one diréctim
to form chains, the adjacent chains being at a relatively larger
distance. Thus the motion of electrons is cmf:lneci predominantly

to motion along the chains with rare hoppings between thenm.

Various theoretical models have heen worked out to study
the properties of these systems. One of these models is the
Fermi gas model wh:lch has been investigated in the strictly
1-4 case in great detail. A review of the properties of this -
model can be found in [4|. Since 1-d system may have specific
propert.es of behaviour /such as absence of phase transition
at finite temperature/ which are characteristic for 1-d systems
but are not necessarily true in higher dimensions, any xfealistic
model of quasi-1-d conductors should contain some kind of inter-
action between the chains. Generalizations of the 1-d Fermi gas
model in this direction have indeed been attempted [5| - |9].
The Fermi gas model is a model with infrared singularities and
it is difficult to treat it in a uﬁistactorj manner at low
tcuperaturuv and low energies even in its strictly 1-4 version

already. The treatment becomes increasingly more complicated
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when interchain interactions are taken into account. Therefore
any simplified model which can be solved exactly is of great

value in finding out what the effect of the interaction terms is.

The 1-d Tomonaga model |10| is a well known exactly soluble
model of a 1-d interacting electron system. The two important
features which make it soluble are t'e linear dispersion rela-
tion and the neglect of backward scattering In the present
paper we will consider a generalization of t’he model to a set
of coupled chains but keeping these two features intact, 1i.e.

a one-dimensional linear dispersion relation is taken for every
chain which means that no hopping between the chains is allowed
and only forward scattering processes are taken into account

for both the intrachain and interchain scatterings.

There are various ways to solve the 1-d Tomonaga model.
The excitations of the model have been shown %o be che boson-
~like charge- and spin-density excitations |11| and therefore
the calculation of the one-particle Green'’s functiion. and the
response functions or two-particle correlation functions in
which the fermion operators cannot be easily expressed in terms
of the charge- or spin-density operators was a fo.midable' task
|12|. It was shown, however, by Luther and Peschel |13| and by
Mattis |14| that an exact operator identity can be found which
allows to represent the fermion operators in terms of the boson-

~like density operators. Since the Tomonaga Hamiltonian can be
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transformed to a diagonal form of the boson operators, the
Green’s function and response functions can be calculated by
calculating harmonic averages. The operator identity involves,
however, a delicate limiting procedure, which is not always

easy to perform and therefore other methods are also of interest.
Fogedby |15| used functional integrals to solve the 1-d Tomonaga
model. Another very elegant method was used by Dzyaloshinsky
and Larkin |16 | to calculate the Green'’s function. They could
derive a Ward identity between the Green'svfunction and the
vertex appearing in the Dyson equation. Making use of this rela-
tion, the Dyson equation could be solved exactly. This method
has been generalized by one of the authors |}7| to calculate

the response functions. In this paper we will make a further
generalization to study the behaviour of the quasi-1-d system

of Tomonaga chains.

First in Sec. 2 the method of Dzyaloshinsky and Larkin | 16|
is briéfly presénted since it is the basis of all further consi-
derations. Then the generalization of the method to calculate
response functions is described in Sec. 3. Sec. 4 contains the
results obtained for the qu;si-l-d system of Tomonaga qpain..

Pinally the results are discussed in Sec. 5.
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2. The Dzyaloshinsky-Larkin method of susming diagrams in the
Tomonaga model.

The Tomonaga model was dslined originally as a 1-d rodel

of interacting electrons

— + ’
H = 22m Ko “xet ZLKEuAp(K) Cmp« K-ps xp Cn

o,p
where L 1s the length of the system and the intozraction potential
is supposed to be of long range and therefore thé Pourier compo-
nents A(K) are non-zero for small momenta only. If the cutoff
on the momentum transfer A is much smaller than the Fermi momen-
tﬁm kF » one can distinguish between particles near the Fermi
point +X_ and particles near the other Fermi poinr -Kg, since
in the absence of large momentum transfer interaction /backward
scattering/ the electrons stay élways in the neighbourhood of
the same Fermi po:l.nt. after any interaction process. In order to
make this distinction more explicit, we will denote the creation
[annihilation/ operau.)rs of electrons near the right and left
Fermi points by a)“( (q.k,) and b: (bk)' respectively.

The kinetic energy term can be approximated by a linear
relationship near the Fermi points and the free part of the

Hamiltonian can be written as

H =S ve(k- kp)a“a“ + § Vﬂ( K- k;)b+’qu j2/

o K,
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The interaction part of the Hamiltonian can be generalized

R
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3

by allowing for different coupling strengths for the cases when
the scattered electrons are from the same or different branches
of the spectrum and for parallel or antiparallel orientation og

the scattered electrons. In the most genéral case the Hamiltonian

RSO s
- S e TR

_ 1 + + a
Hoy = Et.? ;Ssﬂsﬂﬂﬂus“rﬁ)(a“l"“ “xps U Cka
Y + + , g
e + bx-&p« b ‘ps l’np by )+ "
: : /131 |
1 + +I s, -
+ TE(,AMS’«{)"'}‘uaa,-p) a’K+P“LK-Pﬁ L"F Ao '
KK |
o, f ,
' .' To make contact with other works on the Permi gas model |4/ ’
H where backward scattering is also included, tae present choice

of couplings correiponds in the language of ’‘g’-ology to )\4.-. g,"

and 7\z= fh . The scattering processes can be represented diagramma-

tical ly as

where the solid and dashed lines correspond to electrons on the

right or left branch of the spectrum. ‘




Dzyaloshinsky and Larkin |16| recognized that the two par-
ticular featuies,of the Tomonaga model, nmiy the linearized
dispersion relation and the neglect of backward scattering terms
lead to an enormous simplification in the contribution of diagrams.
They have found that all diagrams which contain electron bubbles
with more than two interaction legs are mutually cancelled and
only sinple.bubbles with two interaction legs and series of simple
bubbles remain.

Effective interactions can be introduced by summing these
series of bubbles, in the same way as the lcrémd interaction is
introduced in a RPA calculaﬁion. but heré working with these inter-
actions will lead to an exact procedure. The diagrammatic equations
for the effective interactions denoted by D , D and D

w ' B’ Dy 24
ace as follows:

O
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The diagrammatic equations are the same for parallel and anti-

parallel spin ori.entations. It is worth mentioning that though

the bare 7\4 coupling is the same for electrons on the right or
left branches, the effective couplings wi;l be different.

The analytic form of these equations is

[? )\+)]TD+u]T+D +7\'ﬂ +ATTD

/] F4 W
Q1 = )u+ Aw]‘["% + AuTL[) + A ]TJ?‘ + A ]'[
_ : . 14/
Bl B )z' * )‘RJU"Q' M 7\&”"‘[):1 * lﬁ”‘Du ¥ _"un-%
Dn = Au + thT‘QL + huTT&, + 7\”11'[_2l + 7\‘1]']’.[2”

vhere |1, and n. are the polarizaticn bubbles for electrons on
the right and left branches, for one spin orientation. These

equations can be solved using the expressions

- i
TT ki) = 2M(0-vgK) ’ TTke) = - 2M(®+VK) 15/

giving e.g. for I?” which couples two electrons on the right branch

B A-B
D, (k@) =(0- "")[‘aTT,'KA;W + w+u.;t ~t&ognx T

w-ugn-nsygnx , w+ugn-4bdqnn '

16/




wvhere

= %+ Oy W -l (A - AP
w = [ + 7+ Al - [0 + AP
A= i_(hu.hu)’ B = 7"5‘ ue = Y[ + %(Aﬁ-ku“
C =+QAN), D -z-‘.{-,!“i - e[y + O+l

171

]

and for 2'

D(K.N) ww‘uka ‘s(&, &L) ll)';gv X S(M'O' u) 18/

Once these effective interactions are used, the Dyson equa-

tion can be written diagrammatically as

G"-P'E) ®  eeedene = m——p—— + ——y—&—.—

in which the three-leg wvertex has two solid line legs coupled by
effective interactions in all possible ways.

' kw '
r+(P,¢,k,w) l= A =A + /A\ + A +
P.k Re
oo '

i
|
|
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A further consequence of the particular features of the
Tomonaga model is that, as shown by Dzyaloshiasky and Larkin |16},
a Ward identity can be fbund for general energy and momentum
variables by use of which the vertex l: can be expressed in

terms of the Green'’s function

MH(pee sk, 0) = Gog [6'(P€) - G(P-K e-w] 4y

and an analogous relation

[Pt ks @) = GorE(Pr€) = GI(P-K €0

holds for the wvertex in which the electrons on- the external legs

belong to the left branch of the spectrum.

By making use of the Ward identity the Dyson equation for
the Green’s function can be written in a closed integral equation

form

: . (K@) |
[E-VF(P’K)]G+(PI £) =1+ Z‘?de do %L—-V,:K__ G_'_(P-K,S-w)f/nl

whexe the term leading to Fermi energy renormalization has been

neglected. In real space and time representation we get

(2 +v,:x)6+(x,t) = Kw(x,v') Gy (% t)

ot 112/
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with
p Dy (K -o(mt kx)
K, (< ¥) ""TSJ'K‘I‘”%DLW | 113/

This equation can be solved in the form

s
() { ’ ’
Gu(=1t) = G (r)exp{-vzin(r,s ) ds JE(m 14/

where the new variables r:x-th and § :1:+v,t were introduced.

(o) 1

J15/
with S¢t) -&signt and'.F 4(p) has to be chosen in a way
to ensure the correct analytic properties. Performing the integ-
rations in egs. /13/ and /14/ with the cutoff factor exp(—'xl/A)

for the momentum transfer, the final result is

_ 1 x -Vet ‘//\{t)
Cy(x¥) =73 x-vgtn.sa:) Pe-utb + ‘/x;t)]’?[" “gt" ‘//\“’]"‘

y [Az(x -ub 4 ‘/A(t) (x+ u'ct B o /18]
AN ce-ugd + i@ +ugd - sA] "

el i B
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with

%
i

4
Olc =44.~_|T‘['VF + Z_‘IT-(A“ -hﬂ.) - u‘]

! 1 R
%p = 4‘u_g[v" + 5y +2) — U]

and A(‘e):/\signt . The velocities u.', and u3 are given in i
eq. /7/.

The Green’s function of the electrons on the left branch

can be calculated similarly leading to the result:

G (=) =Gy (*,-V) 118/

3. Generalized Ward identities and response functions of the

1-4 model

One of the best way to get information about the possibility
of phase transition to an ordered state is ‘to calculate the res-
ponse of the system to various external perturbations. A singu-
larity in the response function is an indication that a sponta-

neous ordering can take place. We will consider the de;xsity and

pairing responses since they contain logarithmically singular
terms in every order 6f perturbation theory and therefore there
is a high chance for them to be singular when an exact summation

of all contributions is performed.
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These functions can be defined as

R(k/w) = ;isc{i z‘w* CT{OWE) OCK,0)} > 119/

where

. 4 +
IEY] O(K n'&) = —L!" 2 LPf«:) CLP+ Kt ('t) 120/

for the charge-density response function N(K,") with large
momentum (K~2KF)

-+
T, Okst) = %b ($) @, (4) 2

for the spin-density response function X (K,w) with large momen-

1111/ Ok,t) = m§b L) ag ()

for the singlet-superconductor response As(",") with small momen-
tum K , and /\

v/ Ok, ) = LL.,,zb (tra,. . .(t) 12

P+x+

for the triplet-superconductor response A,e(":“’)




The diagrams representing these response functions have
one solid and one dashed lines running from one external vertex
to the other one and these lines are dressed and connected by

effective interactions in all possible ways. The charge-density

response function can be represenf.ed as

Pw,t
N(k.w)=

AL

~
‘-*—‘
-k, w,.-w,?

vhere the tvio lines are renormalized lines and the vertex

- (P,ll‘”k,m) = \

\
R, &

is analogous to the vertices r.;.. and l: « but have the two legs
belong to different branches.

Unfortunately there is no Ward identity which could relate
this vertex to the Green’s functions. There is, however, an al-
ternative way to write the response functions. All the diagrm'
can be classified into three classes. Either there is no inter-~
action line coupling to the solid line, or if there is one, the
first of them caﬁ couple back to the solid line in which case

this is an effective Dill interaction or it couples to the
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dashed line in which case it is an effective D, interaction.

Accordinqu

e s -/W LN

\..-‘.o \-.-"n .--‘.O

where two new vertices have been introduced:

K,ur .
'\ “,
n(P-‘I,UJ, 69,8k, w), \ .'.. \ e \‘ 4+ \ +
‘ \\ ‘\ ‘\
\ \ )

in which the small momentum transfer interaction couples to the

solid line, and

e MM

..'.';!‘w

in which the small momentum transfer interaction couples to the
dashed line. The two legs and the intermsdiate line are conmec-
ted by effective couplings in all possible ways and self energy
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corrections on the intermediate line should also be considered.

2
3
3
H
£
L
e
%
e

The Jdiagrammatic representation of the spin-density response 1sl
similar, but instead of DZJ the effective interaction DZ'
should appear. In the pairipg responses the vertices have two

incoming lines. otherwise the representations are nimilar.

e o

As was pointed out by Sélyom 17 , the particular features

of the Tomonaga model allow to derive generalized Ward identities
r(4) r“)

relating the four-leg vertices 1|4 and |_ to three-leg ver-
tices ':_ with large momentum transfer. These relations are the
consequence of the conservation law for particles in each branch
and for each spin orientation and are stra;lghtfofward generaliza- [
tions of the Ward identities given in egs. /9/ and /)O/. They [

can be written analytically as

TR NATIE v [T, (P91 €/x-qs0-€) -

124]
- GAP-9w-£)G,(P1w) [L (P o, Kk, 0) ]
and
$p- q,0,. _ =
'—_ (P- 90, €/9/€,k,w) SFvg [;_(P—q.w.-e,x-q,w-e)- 125

-~ G:'(P-K,w.-s)G_(P-n-q,w.-e-n)[:_(P-q:w.-é,m)]

or diagrammatically as




g-a r\-q -9 r-.

r-1 r-k wtw W& w-e

W

where the external renormalized Green’s function legs should

also be taken into account.

The analytic expressions for the charge-density response

function N(k;w) , when the two representations are used, are

Nekrw) = i o8 22 G, pywI_(Pouk, #) G_(p-K,@1-0),
126/
and
Nekiw = =i |2 580 G(PonG_(R-ks wrw) +
+ S%IE zi Gh () S%%P%-('g;?%)' 127/

‘G, (P-q @ é)r.:, (P-9wy-£,9/6) K, W) (SLP-9@,-®) +
ét o G.‘:’(Pr wl)]‘ﬁ ﬁ_i_ (9/€) Y

2N 2W 227 €-V%9
.G+(P.q’ Wy~ e)ri’,(P'q'w;-é,K,‘l’f‘lfé)G_(P-K,w,-w).

ST iy A e ot iy
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Introducing the guantity

N ek w) = 6+(P'“")I—+-(P/w“"'w) G_(P- K wy-w) 128/

from which N(K:‘“) is obtained by simple integration, making
use of the generalized Ward identities is eq. /27/ and comparing

egs. /26/ and /27/ gives

N(waquw) G“).‘(P w) = G_(P“Klwl‘w) +

d: (9/,¢ )
+ ‘j'zT}’?rf E eq [NCP- 91 @y-€ k- qr0-¢) - NGk @)] 129/

+"Szn 20 € - Vig [NCP-9s wi-8, k) 0) = NCp- q) ay-6,K-q, 0-)]

This equation can be solved by writing it in Fourier trans-

formed form with
N(P,U)" K, w) gdx, dt dx At N(letllx['b) 4‘“’Qt' Px)ei(wt'KI)I3OI

gsince then
'(bt + VF )N(:'lltg ’ x’l'b) = 8(x+ xi)é('[' 4‘*4)6_(-x/-‘)+
+4 K1ll(x*xo/'t*t.)N(°°|:t4r X, 4) - ' /31/

-4 [Kz’(z-r Xy t+4,) 'Kz”("'u ) INC=, 41, %/ 4)
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where the term leading to a Fermi energy renormalization has

again been neglected and

&,(q, €) -.(o-t K:c)

The solution can be looked for in the form -

N("u'th"t) = N‘('-“‘*‘xi"l:‘fh)[\L(qu‘h)N.('-“'/‘l:)

133/

Eq. /31/ can be separated into two equations for - N1 and Nz,
and furthermore N3('Ia,t) = G.(x,-t) N;(-x,-t). These equations
are solved in the same way as eq. /12/. Putting everything to-
gether, taking into account that N(Kw) is obtained from

N(p,w,,x,w) by a simple integration, which means :hat the

. Pourier transform N(xt) of N(Kw) 1s obtained by putting

3c1 =¢ =0 in N(x4 t,, ,-I;) , we finally get

NGert) = -i 6,6 ¢x,- D) INGe- b +iA@Nx+ ”u‘l:"';//\('t))]g”
[N Gx-vgt+iAt ))(xf“j'l:-i//l(-l:))]ﬁ‘

with

Q®
|

= Z%W,()zll' N,
T#ﬁ', (gp + Pgy)

135/

w®
1
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Since the spin-density response function contains l%l ins-
tead of D, , a similar expression is obtained for X, t) with-ﬂn_

instead of (3. 1in the exponent.

The calculation of the pairing responses can be done in a
similar way. The generalized Ward identities are also similar,
with one overall sign difference in the case when the small
momentum transfer interaction leg couples to the dashed line
due to the opposite orientation of this line. The result for the

singlet-superconductor responsc is’

As(wc) = i 6, (x14) G_(x)) [Nix-u + AD)Eerut- i//\(+))]ﬁ'
(- g+ NN+ tp AT T

/136]

The triplet-superconductor response has -ﬂ‘ in the exponent

instead of (:‘:o, .

Writing in the expressions for the Green’s functions from

egs. /16/ and /18] we finally get

L%Vt +i//\(t),x+vc+-‘ﬁ\(*) v
R(xit) = =i X -Ved +18(4) x+V;t-i8H:)A

[c-ut sipeNmrage-inan) e 137

[(x-ugte ‘//\(i))(xf Up t-if\ )] e




— - - -
20- g
| |
i = — = — 138/
o 2 ?o' / "S 2 ?f
with

y "ﬁ + ‘z|—l'()‘d = M) - ‘317(7‘31“ 7““)‘
T A )+ g Q- N

_ ‘ 139/ ‘
Ver s+ M) = 3k (4 2y |2
) = F7 oZzg\w™ T z7 (Pt Pu
- l ]
$ th + ﬁ(hw"‘ M) + ﬁ("u"’ mu)J '
for the charge-~density response function,
11 - = /40 I
e be =g+ f =7} ’
[
for the spin-density response function,
o o .
114 = - = 141}
for the singlet-superconductor response, and
/iv/ = . =.__ /42/
He -23: / l‘g )? |

for the triplet-superconductor response.

In the case of spin-independent interaction these results

agree will those obtained by Fogedby |15].




4. System of coupled Tomonaga chains

It was shown in ...e previous sections how the strictly 1-4
Tomonaga model can be solved exactly by summing all diagrams by

the use of Ward identities. Now this method will be extended

to study the properties of a quasi-l-d system, in which 3-d

couplings are taken into account.

The model is defined as follows: a set of 1-d Tomonaga chains

with linear dispersion relation and intrachain forward scattering

A

is coupled together by interchain coupling which has forward
scattering components only. Assigning a ch&in index 1 to the
electrons on the chain at position Ri' the Hamiltonian of the

system can be written as

T T T

H = Ho + Hint 1431

with

+
H =2 "F(K-"r)a‘zxu Qikg + 2 Vp(-"'KF)bim bixe
° K LKoo /44/

and

int = E( iy "‘{3 h‘us“/ /")( LK+ p ot J" pp “ixp @

K, P

f + bm.pw iK-po bjn’/J bi“”}ﬁ/
? i Sap* sijé,-p) “mr« |°J~ Sl LJ"B“

n,n',p

«,
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2y
trons on 1-th and jth chains. For simplicity equivalent chains

wviere 7\19 and A,.. are the coupling constants between elec-

are considered, i.e. vp and kF are taken to be the same fo_r

all chains.

The method of solution is a straightforward generalization
of the method used in the strictly 1-4 case. Since the quasi-1-4
model has the two main characteristic features of the 1-d Tomonaga
model, namely the linearity oi the dispersion ’re].ation and the

absence of large momentum transfer /backward scattering/ terms,

'diagrams with simple bubbles and series of bubbles with only

contribute, the effect of more complicated diagranis being can-

celled by each other. As a consequence, effective intoractions

can again be introduced, satisfying the same digrammatic equations
as in the 1-4d case, but the electrons-hole pair in the intermediate
state can be on any chain. The analytic equations for the effective

in_te ractions are

A TTD

% = )uij t mc” Be, ) ' uq fu Qn it 2Ly

by =2 u.; ?U T”acj IRSWIR) * nQnJ

(T uu g Twie T ag ol
146/

Ql )z,i) ?[ n), "lj zut "uq‘.)lmﬂ D uurTQuj]
2" Azx'gj"-?nukn Pu) zu + uq mtn mlnl?m]

- e —————y e “————
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These effective interactions are of course functions of the
momentum component k, which is parallel to the chain direction,
and the energy variable ® through the dependence of ” on
these variables. Performing a Fourier transformation in the per-

pendicular direction with

A ‘1(R R )
K,, w = - K”:K r®)e -
D'j( p @) N KED( s ) '( 4“ 1,2, 11“7’

we have

W

CUEDIARICUIDIVER VT RCNID TLVIVCARITCA TR LY

/48]
and three similar equations with
A (K ) = -tK‘(R.-l{) _
? pij © by Jo =,01,20,20 1491

The kl-dependent effective interactions obey exactly the
same equations as the effective interactions in the )-d case,
except that everywhere A should be replaced by MKy .
Keeping this in mind, the solution of these equations is obtained

from egs. /6/ - /8/ if the dependence on k, is taken into

|
account.
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[T [ : T ..1&;‘3!

The velocities U, and U, will also depend on Kk, e.g.

k) = {[% 27 0= AP 5 Qa0 Nl®

A very important consequence of the neglect of hopping and
backward scattering is that ‘perturbatiot.u created on any chain
can prﬁpagatﬁ along that chain only. 'ﬁle neighbouring chains
can influeiicethis propagation, but there is no response on
other chains. The Green’s function

Gyy(P/E) = -ant &'t (T {a; ) aFp(0)1) .

will be diagonal in the chain index, G, = G,y - &4, and
similarly all the response functions

RU (k,®) = -5§¢ﬂ7 -G?”*(T{OE(KI{:)@(KP)D /52/

with e.qg.

ipm;(t) 153/ |

= LSk
Okt = T %F'm‘*’ a
for the chcrgo-donlity response function. will be diagona; in the

chain index.
{
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This is easily seen since in the density responses a large
|~ 2 kPI momentum is given to the electrons on one chain and
this momentum cannot be transferred to other chains if only
small momentum transfer processes are allowed. In the super-
conducting responses the Cooper pair added to a chain cannot

propagate to other chains if hc-ping is not allowed.

Due to this property, the vertices appearing in the Dyson
equation for the éreen's function and in the two alternative
representations of the response functions have identical chain
index on the two electron legs. The Ward identitieé used in the
1-d case will be valid here as well, because the problem is

reduced to a one chain problem with effective interactions

‘
D}bii("”'w) - WEDV(K""(“&) S el LYY
L

Using these expressions for the effective intrachain inter-
actions, the 'Dyson equation /11/ eq. /29/ for the charge-density
response and the analogous equations for the other response
functions can be solved by taking over the results of the 1-d

case to get'

| 'i_
( = S. €4, K )
Gy 1) JJ [G,( o IN s
and :
‘ 4
R. (x,4) = &TT[R¢= ¢/ k)N
y Yy, 156/

i‘
|
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where N 1is the number of chains, G,(%,t,k,) ana R(xyt,’&)
have the same form as the corresponding expressions for a single

chain with A (K) instead of ) . E.q.

5 k

x-vE+i\t) x+ vt - Y\+) A"'

R(I'{"KJ.) = = x-\étfi&(t} x+vpt-ib(£)

, (Y
v [(x- w0t iA@Y+ u.(ka‘if‘//\‘*’)] e /571

« [(x- uo(XDt +HA ) Kx+ ug O -\ )] Helk

where for the charge-density response ’Lékl)zé-‘l,(y and 'l’('&)f 'é-,,(ll)
with

)
|
‘.

y (K.l.) =

¢

{"v#{w- Mt - 2P - 3, e

VF¢-2'7[I\“(K,,)- Au(m)] + 2'—,,[/\2,(&!-7\,,(&)“

/58
o 2D + A] - TN + A 0|

v;f ‘ZL"[A"(K.I) + )u(“-l) + E'Tf [A” (k‘) + hll.( “').I [

yg("x’ = {

and the exponents of the other response functions are obtained

by the rules given in egs. /40/ - /42/.

In the limit of weak nearest neighbour interchain inter-
action this result agrees with that obtained by Klemm and
Gutfreund |7]. '
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5. Discussion

We have given an exact solution of a quasi-1-d model of
interacting electréns. Althpugh the model contains explicitely
a 3-d 15tercha:ln coupling, due to the particular choice of this
coupling /only forward scattering terms were considered/, this
model turns out to0 Fe equivalent to a set of effectively de-
coupled chains. The perturbations can propagate along the chains
only, no response is obtained on other chains. Barlier approximate
treatments of the backward scattering model |6]| - |8]| have indi-
cated already that backward scattering terms or interchain
hopping are important to have a phase transition in quasi-1-4
system. Our exact calculation proves that without these terms
no ordering is possible at any finite temperature, since the

ordered phase would have a non-decaying response function.




References

1. "Chemistry and Physics of One-Dimensional Metals", Proceedings

of NATO Advanced Study Institute, Bolzano, Italy, 1976,
edited by H.J. Keller /New York, Plenum Press/ 1977.

2. "Organic Conductors and Semiconductors”, Lecture Notes in

Physics, Vol. 65, edited by L. P&l, G. Grilner, A. Jénossy and
J. S6lyom /Berlin, Springer Verlag/ 1977.

3. "Quasi-One-Dimensional Conductors®, Lecture Notes in Physics,
to be published.

4. J. 86lyom, Advances in Physics, to be published.

5. L.P, Gorkov and I.E. Dzyaloshinsky, 3h. Eksp. i Teor. Fiz. 67,
397 /1974/

6. L. Mih&ly and J. S6lyom, J. Low Temp. Phys. 24, 579 /1976/

7. R.A. Klemm and H. Gutfreund, Phys. Rev. B 14, 1086 /1976/
8. P.A. Lee, T. M. Rice and R.A. Klemm, Phys. Rev. B 15, 2984 /1977/

9. N. Menyh&rd, in Lecture Notes in Physics, Vol. 65, edited by
L. P&;, G. Gritner, A. J&nossy and J. 86lyom /Berlin, Springer
Verllql 990“5',19771

10. 8. Tomonaga, Prog. Theor. Phys. 5, 349 /1950/

11. D.C. Mattis and E.H. Lieb, J. Math. Phys. 6, 304 /1965/

12. A. Theumann, J. Math. Phys. 8, 2460 /1967/




13,

14.

15.

16.

17.

- 29 -

&
i
“
s
E

A. Luther and I. Peschel, Phys. Rev. B 9, 2911 /1974/
D.C. Mattis, J. Math. Phys. 15, 609 /1974/
H.C. Fogedby, J. Phys. C, 9, 3757 /1976/

I1.E. Dzyaloshinsky and A.I. Larkin, Zh. Eksp. i Teor. Piz. 65,
411 71973/ '

J. S6lyom, in Lecture Notes in Physics, to be published.




#
:

R RS

Kiadja a Kbzponti Pizikai Kutaté Intézet
YelelSs kiadds Krén Emil

Ssakmai lektor: Zawadowski Alfréd
Nyelvi lektor: Zawadowski Alfréd
példhnyszéms 355 7TOrseszéms 80-161
Készllt a XFKI sokssorosits (Gzemében
Dudapest, 1980, mhrcius hé

:
u.lmaff*mu:ﬂﬁwi‘m'**“w**j




