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1 .  ABSTRACT 

Equilibrium, kinet ic  and X-ray d i f f rac t ion  data show the existance of two 

s t a b i l i t y  r e g i b  in the Pu-H system. 

CaF2 -type P u H l .  

haves as an ideal so l id  solution. 

t h a t  the enthalpy of formation varies l i n e a r l y  from -38 t o  -50 k c a l / m l  

between the lower phase boundary a n d  the t r ihydride.  

established a t  h i g h  temperature a re  s imilar  t o  those of the lanthanide d i f luor ide-  

lanthanide t r i f l u o r i d e  systems. 

forms between PuHl - 9  and PuH2. 5; a nonstoichiometric hexagonal (LaF3-type) 

hydride ex is t s  i n  the range PuH2.9-PuH3.0. A procedure f o r  Preparing Pure 

hexagonal PuH3-oo i s  described and the hysteresis behavior of the Pu-H system 

i s  discussed. 

A metastable so l id  solut ion between 

and  anti-Fe3Al-type PuH3,  0 forms a t  low temperature and be- 

Equilibrium and calorimetric r e s u l t s  show 

The phase relat ionships  

A s e r i e s  of CaF2-re1 ated phases apparently 

2 .  INTRODIJCTION 

The formation of plutonium hydride i s  a f a c i l e  reaction which f inds appl i -  

cation i n  plutonium recovery procedures and i n  powder metallurgy. As noted 

in a recent report on the decomposition kinet ics  o f  plutonium hydride, many 

Cundamental properties of importance t o  these applications a r e  poorly defined. [J] 

Various physicochemical properties which have been described f o r  the Pu-H 

system include phase equi l ibr ia  [Z-41, s t ructural  properties [5,6], reaction 

kinetics [1,7-91 and thermodynamic properties*[l-3,10-12] 

shown t h a t  Pu and 4 form a CaF,-type dihydride, a cubic hydride, PuHx, o f  

variable composition w i t h  ZXL3,  and a hexagonal t r ihydride.  

data show tha t  the sol id  solution obeys Vegard's law f o r  2.WX<2.5.[3,6] 

X2.5,  the cubic parameter i s  invariant ,  b u t  a second phase i s  not observed. [6] 

Although the formation of a hexagonal phase i s  documented [4],  neither the 

These s tudies  have 
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conditi 

hydride i s  defined. 

have recently been reviewed. [12] 

a t  h igh  hydride compositions [4J ,  and  marked differences i n  the r e a c t i v j t i e s  

o f  hydrides prepared a t  different  temperatures a r e  reported. [7] The present 

report i s  a resu l t  o f  a continuing e f f o r t  t o  c l a r i f y  the equi l ibr ia  and thermo- 

chemistry of the Pu-H system using a var ie ty  of experimental techniques. 

s for  i t s  preparation nor i t s  phase relat ionship w i t h  the cubic 

Discrepencies i n  the enthalpy of formation of the hydride 

In addi t ion,  hysteresis  loops a re  observed 

3. EXPERIMENTAL PROCEDURES 

Plutonium metal (0.13 w t  % impurity) s t a b i l i z e d  in  the de l ta  phase by 1 .0  

w t  % Ga and ultra-high purity hydrogen (Matheson) were used in a l l  t e s t s .  

Since e a r l i e r  work has shown t h a t  the  hydrides o f  alpha and  de l ta  metal behave 

ident ical ly ,  Ga was t reated as an  i n e r t  component. In a l l  experiments a t  P<500 

t o r r ,  pure H, was generated by thermal decomposition of  U H , .  

Low pressure TX isobars (1.0,  3.2, 10.0, 31.6, 100, 316 t o r r )  were obtained 

over the composition range 2.0SX12.9 by microbalance methods. [1] H2 pressures 

were fixed by thermal control o f  the U - U H 3  p u r i f i e r ;  the temperature range 

(25-500OC) was scanned a t  a l inear  r a t e  o f  2'/min. 

br ium data of higher pressure H-rich ( i n i t i a l  H:Pu r a t i o  >3) systems were 

measured by PVT methods. During the r a t e  studies, heat loss by the reac tan ts  

was retarded by containment of the 25 g Pu sample i n  a s i l i c a  cup; temperature 

and pressure data were recorded w i t h  an acquis i t ion system. 

obtained w i t h  a powder diffractometer. 

(6MHC1)  calorimetric determinations of the enthalpy of formation were prepared 

Hydriding r a t e s  and e q u i l i -  

X-Ray data were 

PuH, samples (0.05-0.08 g )  f o r  solut ion 

using a h i g h  temperature vacuum procedure and were analyzed by microbalance 

methods. [ l]  
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4 .  RESULTS AND DISCUSSION 

4.1 The Cubic Solid Solution. 

4.11 Equi l ibr ia .  Microbalance data f o r  the low pressure regime 

(1.0-316 t o r r )  show the existence o f  l i n e a r  TX isobarsover the compos tfon 

range 2.O-<XL2.9. 

described by Mulford and Sturdy [4] was observed a t  l ow temperatures and h i g h  

pressures w i t h  the i n i t i a l  hydride prepared from the bulk metal. 

was not observed w i t h  subsequent hydrides prepared from powdered metal formed 

by thermal decomposition of hydride. X-Ray d i f f rac t ion  data f o r  PuH, samples 

i n  the range Z.OSX(2.8 showed only the cubic phase. 

bars obtained by scanning TX space a t  2"/min was ver i f ied a t  several constant 

temperatures; in a l l  cases the differences in X from the two techniques were 

less  t h a n  0.01. T h i s  observation and the r e s u l t s  of s imi la r  t es t s  t o  determine 

the response of X t o  pressure changes a t  constant T demonstrate t h a t  the  reaction 

ra te  and hydrogen t ransport  ra tes  of PuHx a r e  rapid.  

Non-linearity .from hysteresis  behavior s imi la r  t o  t h a t  

Hysteresis 

T h e  accuracy of the iso- 

As demonstrated by the graphs o f  log P (Hi!) a t  spec i f ic  X values vs 1/T 

i n  F i g .  1 ,  the vapor pressure of the cubic hydride changes continuously over 

the range 1.9<X<3.0. Hystereis e f f e c t s  a r e  exc luded  from t h e  data. T h e  

dashed l ine  describes the equilibrium vapor pressure in the two-phase region 

O<X<1.90t0.05. [ l ]  T h e  constants obtained by 1 inear  (log P = A-B/T) l e a s t -  

squares refinement o f  the data a re  l i s t e d  w i t h  the respective graphs i n  F ig .  

1 .  The average intercept  f o r  X=1.9 and f o r  a l l  compositions i n  the range 

2.25X52.8 is  9.8150.16. 

culated from the average in te rcept  and s ingle  pressure values. 

average slope change per 0.1 change i n  X i s  550+1.40, the estimated pressure 

equation for  cubic PuH3.,  i s  defined by A=9.81 and B=1650. 

Slope values f o r  Xz2.0, 2.2 and 2.9 have been ca l -  

Since the 
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The r e s u l t s  i n  F i g .  1 suppor t  t h e  conc lus ions  o f  e a r l i e r  workers [2,4] 

t h a t  t h e  cub ic  hyd r ide  behaves as a s o l i d  s o l u t i o n  formed by occupancy o f  

oc tahedra l  s i t e s  i n  t h e  CaF2-type d i h y d r i d e .  

t h e  s o l u t i o n  i s  n e a r l y  i d e a l .  The f a m i l y  o f  curves i n  F ig .  1 have t h e  cha rac t -  

The r e s u l t s  a l s o  suggest t h a t  

e r i s t i c  f ea tu res  o f  a Cox c h a r t ,  a l o g  P vs 1/T graph used t o  c o r r e l a t e  vapor 

p ressure  data f o r  o rgan ic  l i q u i d s  fo rm ing  i d e a l  s o l u t i o n s .  [13] I n  o r g a n i c  

systems, a common i n t e r c e p t  and "wagon wheel" behav io r  o f  t h e  p ressu re  curves 

i s  observed as the  s o l u t i o n  compos i t ion  changes. S ince s i m i l a r  behav io r  i s  

e v i d e n t  i n  F i g .  1,  c u b i c  PuHx apparen t l y  behaves as an i d e a l  s o l i d  s o l u t i o n  

o v e r  t h e  range 1 .95X53.0 ;  i .e., t h e  h y d r i d e  s t r u c t u r e  g r a d u a l l y  changes f rom 

a d e f e c t  CaF2-type phase t o  an a n t i - F e 3 A l - t y p e  phase as X inc reases .  

4.12 Hys teres is .  The p resen t  obse rva t i ons  p r o v i d e  new i n s i g h t  i n t o  t h e  h y s t e r -  

e s i s  phenomenon. Loops i n  TX i sobars  f o r  t h e  i n i t i a l  hyd r ides  r e s u l t e d  f rom 

t h e  f a c t  t h a t  h i g h e r  X values were observed on ascending T than on descending 

T f o r  X 7 2 . 6 .  

t i o n s  and generated a l i n e a r  i s o b a r  t h a t  was r e p r o d u c i b l e  a t  a l l  X va lues  ( 1 )  

on decending T, ( 2 )  on a l l  subsequent thermal  c y c l e s  w i t h  a g i ven  sample, and 

( 3 )  for a l l  hydrides prepared f r o m  thermally dehydrided metal. As noted by 

M u l f o r d  and Sturdy [4],  t h e  s i z e  o f  t h e  l oop  inc reased w i t h  i n c r e a s i n g  H, 

pressure;  AT values across the  l oops  a t  1, 10  and 100 t o r r  were ll", 20" and 

38" , r e s p e c t i v e l y .  The presence o f  hexagonal h y d r i d e  was de tec ted  i n  e a r l i e r  

work w i t h  hys te res i s  samples [4], b u t  o n l y  t h e  c u b i c  phase was observed i n  

t h e  p resen t  study. 

A t  l ower  X ,  e q u i l i b r i u m  p o i n t s  were r e p r o d u c i b l e  i n  b o t h  d i r e c -  

A d d i t i o n a l  exper iments t o  c h a r a c t e r i z e  t h e  h y s t e r e s i s  phenomenon i n c l u d e d  

c o n t r o l l e d  r e h y d r i d i n g  t e s t s  and a thermal  scan o f  t h e  loop.  

r a t e  o f  dehydr ided meta l  powder was f a s t e r  than t h a t  o f  b u l k  meta l  and produced 

Since t h e  h y d r i d i n g  

. 
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ly  self-heat  the sample beyond the hysteresis 

range, several samples were rehydrided slowly a t  low pressures. Hysteresis 

could not be induced. 

was repeatedly increased t o  120°C (50' below the closure point of the loop) 

and  decreased to  25°C. 

measured points decayed rapidly and were coincident w i t h  the l inear  isobar 

d u r i n g  descent of the second cycle. 

In an attempt t o  scan the 10 t o r r  loop ,  the temperature 

The i n i t i a l  TX behavior was not reproducible on cycling; 

, 

Our observations suggest tha t  the hysteresis  r e s u l t s  from the presence of 

a thermally unstable contaminant i n  the bulk metal. A reasonable candidate is  

hydroxide, which would readily subs t i tu te  f o r  hydride in the l a t t i c e ,  would be 

destroyed by high temperature and would be absent during rehydriding. 

and Pu02 are  the ant ic ipated products of thermal decomposition, an  increase i n  

H2 pressure should s t a b i l i z e  hydroxide and increase the loop s ize .  

Since H2 

4.13 Thermodynamic Properties.  

the hydride across the composition range o f  cubic PuH, has been determined both 

from equilibrium and calor imetr ic  data. 

Duhem integration of the pressure data i n  F i g .  1 .  

PuHx a t  X=1.9, 2.5 and 3.0 are 637.3+0.5), ( -45.9~0.8) and (-49.6kO.8) kcal/mol. 

Calorimetric resu l t s  based on multiple measurements o f  the enthalpies of sol-  

ution o f  del ta-s tabi l ized metal and cubic PuH, samples i n  6 MHCl g ive  A R ; ~ ~ ~  

(d-Pu,s) = (-140.81t0.55) kcal/mol, aHioln ( P U H , , ~ ~ , ~ )  = (-98.2720.39) kcal/mol 

The variation o f  the  enthalpy of formation of 

Enthalpy values were obtained by Gibbs- 

The respective AH; values f o r  

and y ie ld  the following enthalpies 

kcal/mol and  AH;^^^ ( P u H 2 . 6 2 )  = 

and  AH;^,^ (PuH, .62 ,s) = (-93.5220.62) kcal/mo 

of formation:  AH;^^^ ( P ~ H 2 . 2 1 )  = (-42.5420.34) 

(-47.2920.50) kcal/mol . 
The thermodynamic r e s u l t s  obtained by the two techniques are i n  excellent 

agreement and indicate t h a t  the enthalpy of formation of the hydride varies 
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l inear ly  w i t h  X from (-3811) kcal/mol a t  PuH, . ,  t o  (-50+1) kcal/mol a t  PUH,.~. 

The phase boundary value i s  in excellent agreement with the second-law r e s u l t  

o f  Mulford and Sturdy [3], and those i n  the m i s c i b i l l i t y  range a r e  i n  good 

agreement w i t h  previous measurements [12) i f  probable uncertainties in X are  

considered. 

behavior of the cubic sol id  solution i s  ideal .  

The l i n e a r  change in AH; w i t h  X confirms the conclusion t h a t  

4 .2  The Ordered Hydrides 

4.21 Preparation o f  Hexagonal Trihydride. Samples of stoichiometric plutonium 

tr ihydride,  P u H ~ . ~ ~ ~ ~ . ~ ~ ,  have been reproducibly obtained by rapid reaction o f  

25 g samples o f  delta-phase plutonium i n  the presence of an excess H, concen- 

t r a t i o n  of 0.06 molls. 

in d i r e c t  contact with the s t a i n l e s s  s teel  reactor were found t o  contain hex- 

agonal hydride, b u t  PVT data showed t h a t  the bulk composition was approximately 

P u H ~ , ~ .  The reaction was successful when the metal was insulated by containment 

i n  a s i l i c a  cup so t h a t  the sample temperature exceeded 400°C f o r  several 

minutes. 

(1 .4  atm a t  25°C). 

Products from preliminary t e s t s  i n  w h i c h  the metal was 

PuH3.00was produced by cooling the sample in the residual H2 

4.22 Equilibria. Results of k ine t ic ,  X-ray d i f f rac t ion  and PVT measurements 

show t h a t  a n  ideal so l id  solut ion i s  not formed i n  the Pu-H system a t  the conditions 

used f o r  preparing hexagonal t r ihydride.  Rates of hydrogen consumption, R ,  

for  a typical hydriding reaction are  graphed on a logarithmic scale  as  a 

function o f  bulk composition in Fig. 2 .  

evident. 

from negative values t o  a maximum of 7.0 near X=1.0 and then decreases to  a 

Interest ing variations i n  the r a t e  are 

I n  the metal-hydride two-phase region not shown, anR incr5ases l inear ly  

m i n i m u m  a t  X=1.90. As shown in Fig. 2 ,  R increases f o r  1.90.<X<2.00, decreases 

i n  the range 2.00<X<2.20, and i s  essent ia l ly  constant for 2.20<X<2.45. 
- 

A 

. 
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composed of large (cm-sized) hydride 

the cubic products. Temperatures of 

i g n i t i o n  i n  a i r .  Thermal decomposit 

s i  t ion 

of the 

compos 

small increase i n  R near X=2.45 i s  followed by a steady decline t o  X=2.85 

and a second decline f o r  2.85<X<3.00. 

abscissa) ,  the i n i t i a l  reaction i s  r a p i d  and the X=2.85 composition i s  reached 

a f t e r  approximately 7 m i n ;  an additional hour i s  required f o r  X t o  reach 3.00. 

The va l id i ty  o f  the ra te  measurements i s  reflected by the gas phase 

As shown by the elapsed time (upper 

temperature i n  F i g .  2 .  

sol id  sample closely track the kinetic r e s u l t s .  

the exotherms accompanying the ra te  increases near X=2.00 and 2.45 are par t ic -  

ularly interest ing.  

the area of the second peak i s  5-6 times larger  t h a n  t h a t  of the f i r s t .  

appearance of t h i s  large exotherm i s  charac te r i s t ic  of reactions in which 

hexagonal hydride i s  formed. 

This temperature prof i le  and  t h a t  (not shown) of the 

The r e l a t i v e  magnitudes of 

A l t h o u g h  the changes i n  X a r e  s imilar  (1.90-2.20 vs 2.45-2 

The 

Several properties of thel  hexagonal product a re  also d i f f e r e n t  from 

those of the cubic hydride. 

erature)  reaction are  f inely divided powders which 

a t  25°C. 

Cubic products formed by slow (low sample temp- 

readily i g n i t e  in a i r  

The products of r a p i d  ( h i g h  temperature) reaction a re  primarily 

and are less pyrophoric than 

a re  frequently required f o r  

ngle 0.5 g hydride p a r t i c l e  on 

a microbalance showed a bulk composition of X=(2.80t0.05) f o r  the sample 

in vacuum a t  25OC. On heating a t  2" /min ,H2 loss  was detected a t  150°C and 

occurred i n  four d i s t i n c t  s teps  i n  the composition ranges 2.80>X>2.45, 

2.45>X>2.25, 2.25 >X>1.90 and 1.90>X>O. The behavior i n  the  lower compo- 

regions i s  s imilar  t o  t h a t  of cubic PuH,, b u t  the decomposition r a t e  

sample a t  2.80 i s  much slower than t h a t  of the cubic phase a t  the same 

t i o n .  [ I ]  

/ 

par t ic les  

200- 300°C 

on of a s 

.85)  
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The f o m t i o n  of hexagonal hydride h a s  been ver i f ied by X-ray d i f f r a c t i o n  

analysis of two samples from a P u H 3 . 0 0  product which had been stored i n  a i r  

mately (low y pressure) f o r  several days. Analysis of f ine  powder showed approx  

10% hexagonal and 30% cubic phase. The surface of a large par t ic le  showed 

only the cubic phase. After the same p a r t i c l e  had been crushed, re-analys S 

showed greater  t h a n  90% hexagonal phase. 

hydride, (5.341'0.003) A ,  i s  in excellent agreement with the value reported 

f o r  Put$ 5. [4-61 The l a t t i c e  parameters of the coexisting substoichiometric 

(see below) hydride, P u H ~ - ~ ,  a r e  a = (3.779t0.005) a n d  c = (6.771+0.008) A .  

The d a t a  indicate t h a t  the phase has the disordered LaF,-type (P63/mnc) s t ruc-  

ture .  [14]  Superstructure ref lect ions c h a r a c t e r i s t i c  of a n  ordered LaF3-type 

(P3cl) s t ruc ture  o r  o f  a phase with ordered anion vacancies are not observed. 

The l a t t i c e  parameter of  the CaF2-type 
0 

0 

PVT equilibrium measurements with a sample of P u H , . ~ ~  demonstrate t h a t  

the hexagonal hydride i s  nonstoichiometric. A PX isotherm a t  125°C shows t h a t  

the equilibrium pressure decreases exponentially from 9 .6  atm a t  P U H , . ~ ~  t o  

0.014 atm a t  

existence of a two-phase region below X=2.89 i s  establ i shed, the composi t i o n  

of the second phase has not been determined by equilibrium measurements. 

par t ia l  isotherm a t  25°C shows t h a t  the equilibrium pressure o f  

0.030 a tm,  b u t  the d a t a  a r e  insuf f ic ien t  for  evaluation of thermodynamic 

values. 

and remains constant a t  lower compositions. Although the 

A 

i s  

K 

enters 

The ex 

n e t i c ,  s t ructural  and  equilibrium data indicate  t h a t  the Pu-H system 

an  ordered regime a t  moderate pressures and  temperatures above 350-4OO0C. 

stence o f  a substoichiometric hexagonal hydride, P u H ~ - ~ ,  and a two- 

phase region i s  cer ta in ,  b u t  the behavior o f  the system a t  lower compositions 

remains somewhat unc,lear. The kinet ic  r e s u l t s  indicate  t h a t  the hydride 

. 
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system i s  c l o s e l y  modeled by l a n t h a n i d e  f l u o r i d e  systems. 

s t u d i e s  o f  t h e  MF2-MF, systems o f  Sm, Eu, and Yb show t h a t  a s e r i e s  o f  o rde red  

CaF,-related phases e x i s t  between t h e  CaF2-type d i f l u o r i d e s  and t h e  LaF,- 

r e l a t e d  t r i f l u o r i d e s .  [15-171 A CaF2-type s o l i d  s o l u t i o n  i s  observed between 

MF2 . o o  and MF2 .20;  s t o i c h i o m e t r i c  phases i n c l u d e  t e t r a g o n a l  M3F7(X=2.333), 

Recent s t r u c t u r a l  

rhombohedral M14F3,(X=2.357), and c u b i c  M27F6,(X=2.370). A rhombohedral 

s o l i d  s o l u t i o n  forms between M,,F3,(X=2.385). and M,,F,,(X=2.462), and a two- 

phase r e g i o n  e x i s t s  between MF2.46 andMF3. 

p r o f i l e  and t h e  f l u o r i d e  phase diagram i n  F i g .  2 i s  remarkable. 

The correspondence o f  t h e  r a t e  

I f  one accepts t h e  c o n c l u s i o n  t h a t  d i f f e r e n t  p lu ton ium h y d r i d e  phases 

r e a c t  w i t h  hydrogen a t  s l i g h t l y  d i f f e r e n t  r a t e s ,  t h e r e  i s  l i t t l e  doubt t h a t  

h y d r i d e  and f l u o r i d e  systems a r e  s i m i l a r .  

boundary a t  X=l.9 [1,3,12], t h e  ex i s tence  o f  t h e  Put$ . 4 S - P ~ H 2 , 8 9  two-phase 

reg ion ,  and t h e  f o r m a t i o n  o f  a s u b s t o i c h i o m e t r i c  t r i h y d r i d e  a r e  a c c u r a t e l y  

p r e d i c t e d  by t h e  r a t e  r e s u l t s ,  i t  i s  reasonable t o  assume t h a t  t h e  r a t e  pro-  

f i l e  i s  a p p l i c a b l e  a t  i n t e r m e d i a t e  composi t ions.  The r a t e  i nc rease  between 

Since t h e  known lower  h y d r i d e  phase 

t o  t h e  f i l l i n g  o f  vacant t e t r a h e d r a l  s i t e s  i n  

g. 2, a cons tan t  r a t e  i s  observed ove r  t h e  range 

X=1.9 and 2.0 i s  a t t r i b u t e d  

PuH 2tz. For the t e s t  i n  F 

o f  t h e  CaF2 - r e l a t e d  phases; 

sp ikes occu r  between X=2.20 

however, i n  some t e s t s  smal l  r a t e  and thermal 

and 2.35, an a n t i c i p a t e d  two-phase reg ion .  It 

should be noted t h a t  t h e  X=(2.85+0.05) boundary f o r  P~H,-,~has been e s t a b l  

by examining gas phase c o o l i n g  curves (anAT vs t i m e )  t o  determine t h e  t i m e  

corresponding X value a t  which t h e  r a p i d  exothermic process stopped. 

shed 

and 

I n s i g h t  i n t o  t h e  o r i g i n  o f  t h e  h y s t e r e s i s  phenomenon i s  gained by compar- 

i s o n  o f  t h e  e q u i l i b r i u m  da ta  f o r  t h e  cub ic  and hexagonal hydr ides.  

and 0.014 atm ( l o g  P = 1 i n  F i g .  l ) ,  t h e  composi t ion o f  t h e  c u b i c  phase i s  

A t  1 2 5 O C  
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f i x e d  a t  6 6  . A t  t h i s  PT c o n d i t i o n  the  prese,nce o f  t he  hexagonal phase 

c o n f i n e s  the  compos i t ion  t o  t h e  two-phase r e g i o n  2.45cXc2.89.  

va lue  o f  X depends on the  molar r a t i o  o f  cub ic  and hexagonal p roduc ts .  The 

r e p r o d u c i b l e  h y s t e r e s i s  composi t ion a t  25°C and 0.014 a t m  I s  X=2.69. A l though 

e a r l i e r  workers have a t t r i b u t e d  the  h y s t e r e s i s  t o  t h e  presence of t h e  hexagonal 

phase [4], t he  i d e n t i c a l  mole f r a c t i o n  o f  hexagonal phase must form i n  eve ry  

h y d r i d e  p roduc t  i n  o r d e r  f o r  t h e  l oop  t o  be rep roduc ib le .  

seems r a t h e r  remote. 

The exac t  

T h i s  p o s s i b i l i t y  

Care fu l  s t r u c t u r a l  and equi  1 i br ium s t u d i e s  a r e  needed f o r  compl e t e  

d e f i n i t i o n  o f  t he  phase r e l a t i o n s h i p s  i n  t h e  range 2.00<X<2.45. 

f o r  success o f  such work has been s t rengthened by r e c e n t  r e s u l t s  f o r  t h e  hyd r ides  

of La, Ce, P r  and Nd. 

s o l i d  s o l u t i o n s  f o r  1.9cXC3.0 [18], re -examinat ion  of these systems has shown 

obedience t o  Vegard's law i n  t h e  range 2.0cXc2.5. [19] 

d i f f r a c t i o n  s tud ies  on t h e  P r  and Nd systems has v e r i f i e d  t h e  e x i s t e n c e  o f  t h e  

M3H7 phase. [20] 

The p o t e n t i a l  

A l though e a r l i e r  work had shown the  e x i s t e n c e  o f  MH, 

Recent h i g h  r e s o l u t i o n  

5. CONCLUSIONS 

The pr imary  conc lus ion  o f  t h i s  s tudy  i s  t h a t  two s t a b i l i t y  regimes e x i s t  

i n  t h e  Pu-H system. 

by r e a c t i o n  of Pu and H2 o r  PuH2 and H2 a t  low temperatures. 

hydrogen i n  t h e  phase i s  n e a r l y  i d e a l ;  c u b i c  PuH,,o can be prepared a t  25°C and 

25 atm pressure.  

hexagonal LaF3-type P U H ~ , ~  phase i s  a t t a i n e d  a t  moderate pressures and temp- 

A metas tab le  CaF2-ant i -Fe3Al- type sol i d  s o l u t i o n  formed 

S o l u t i o n  o f  

A regime of ordered ( s t a b l e )  CaF2-re la ted hyd r ides  and a 

e r a t u r e s  24OOOC. The e f f e c t  of temperature i s  d ramat ic  because o r d e r i n g  can 

occur  only if s u f f i c i e n t  k i n e t i c  energy i s  a v a i l a b l e .  

hexagonal PuH3,, i s  especi  a1 l y  temperature s e n s i t i v e  because t h e  meta l  atoms 

The p r e p a r a t i o n  o f  



1 2  

must undergo a ccp t o  hcp t rans i t ion .  

A n  understanding o f  the s t a b i l i t y  differences of products formed in the 

two regimes i s  essent ia l  f o r  interpret ing the reac t iv i ty  differences described 

by Bowersox. [7] The re la t ive  s t a b i l i t i e s  of hexagonal and cubic hydrides 

are demonstrated by t h e i r  respective equilibrium pressures (0.03 vs 25 atm) 

a t  25OC. The re la t ive ly  low pyrophoricity o f  the hexagonal phase i s  a t t r i -  

buted to i t s  lower equilibrium pressure. 

Although substantial  insight  has been gained in to  the equilibrium behavior 

of the Pu-H system, the resu l t s  have revealed several avenues which need in- 

vestigation. Efforts t o  define the e q u i l i b r i a ,  thermodynamics, s t ruc tura l  

chemistry and kinet ics  o f  the ordered hydride phases a re  in progress. 
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Figure 1 .  Log P (H2,Torr) vs 1 / T  d a t a  for  cubic PuHX along constant 
composition section:. (The numerical constants A a n d  B f o r  
l o g  P=A-B/T  a re  l i s t e d  for  various values of X in the range 

,1 .9<Xc2 .9 ;  values f o r  the dasited l i n e  a t  x = 1 . 9  a r e  from 
Ref.  1 . )  
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Figure 2 .  Correlation of the hydriding r a t e s ,  R ,  and the gas phase 
temperature with composition, X ,  and w i t h  the phase diagram 
of the lanthanide fluorides ( c f .  Refs. 15-17).  
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