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dynamics as applied to problems in plasma physics. The 
derivation of consistent renormalized kinetic equations 
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trated with models of various degrees of idealization, 
including the exactly soluble stochastic oscillator, a 
prototype for several important applications. The direct-
interaction approximation is described in detail. Appli­
cations discussed include test particle diffusion and the 
justification of quasi.Vinear theory, convective cells, 
EXB turbulence, the renormalized dielectric function, 
phase space granulation, and stochastic magnetic fields. 
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- PREFACE -

In preparing the following review of renormalization as applied 
to plasma physics, I was particularly struck by two rather embar­
rassing facts. First, although the general theory of renormaliza­
tion appears to be in reasonable shape (in spite of several important 
and difficult outstanding problems), successful (i.e., believable) practi 
cal plasma physics applications of the formalism are remarkably few, 
if ntit non-existent, of course, calculations involving some aspects 
of renormalization and aimed at practical problems have proliferated 
since the early days of quasilinear theory, and tach of these cal­
culations has added to our understanding of stochasticity and tur­
bulence in plasmas. Unfortunately, since the systematology of most 
of these early calculations has been obscure or questionable, there 
has arisen in the community at large a considerable aura of doubt 
around any statistical calculation which attempts to go beyond reg­
ular perturbation theory. In some cases, skepticism has been ele­
vated to dogma: "Renormalized theories of plasma turbulence have 
nothing to offer the practical person concerned with scaling laws 
and transport in real devices." 

Before attempting to ameliorate this impression, let me mention 
the second embarrassment (not unrelated to the first). Careful 
study of the fundamental plasma physics references on renormalization 
and turbulence reveals a quite pronounced historical lack of contact 
with the ideas and techniques of other fields, particularly fluid 
dynamics. (I do not wish to imply that the plasma physicists alone 
are to be blamed for this shortcoming.) There is, of course, some 
justification: insofar as the plasma is perceived as a system of 
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weakly interacting waves and particles whereas the ordinary Navier-
Stokes fluid can be thought of as a system of strongly interacting, 
critically damped eddies, the mathematical and physical analyses 
of the two systems would appear to be quite distinct. However, 
explicit renormalization in plasma physics is required mostly to 
describe non-wave-like phenomena: low frequency hydrodynamic 
excitations (convective cells), phase space granulation (clumps), 
etc.; for these effects, the physical distinction between, and 
mathematical analysis of, plasma and fluid blur considerably. 
Nevertheless, cross-fertilization between fields has been less than 
adequate. Perhaps the single most important, approximation in non­
linear classical physics, the direct-interaction approximation (DIA), 
was first written for fluids in 1958, for general quadratically 
nonlinear systems in 1961, and specifically for Vlasov plasmas in 
1967. Nevertheless, it was apparently almost completely ignored by 
most plasma theorists until as recently as 1976, when this author as 
well as others appreciated the compelling unification and generali za-
tion of many diverse theories which the DIA made possible. Pres­
ently, it would seem that the DIA may finally be receiving the 
long-overdue attention it deserves. Other standard techniques of 
fluid dynamics, critical phenomena, and other specialties of modern 
physics are also being examined for possible applications in plasma 
physics. It is to be hoped that this trend toward unification 
continues." Any other course would be scientifically deplorable and, 
in the long run, likely detrimental to the healthy development of 
research on controlled fusion, astrophysics, and other disciplines 
in which the fundamentals of plasma physics are important. 

Let me return to the problem of credibility. In my opinion, 
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although much of the early skepticism was justified, our ability 
to make sensible approximations has increased dramatically in recent 
years along with our understanding of the general structure and 
meaning of renormalized theories. The direct-interaction approxi­
mation, or several of its relatives, for example, furnishes a 
reasonable starting point for many practical applications. True, 
the DIA and similar closures are quite complicated and further 
approximations may be required. However, we have available at least 
the proper foundations. Whether or not simple, heuristic, and/or 
dimensional arguments ultimately turn out to give the proper scaling 
in a particular application, it will be (I assert) our new-found 
understanding of the systematology which will lead us to believe 
those scalings. In any case, only systematically derived equations 
enable one to compute precise numbers. Considering the very consid­
erable amount of effort which has gone toward precise determination 
of linear stability thresholds, this point cannot be ignored. 

Let me include here a few words about the article itself. 
Because the length constraint is severe, I have not attempted to 
develop any of the topics completely. History is given short shrift, 
both as manifested in technique and in attempts at practical com­
putation. Nevertheless, historical developments have been essential 
to our present understanding; I ask the understanding and forgiveness 
of the many authors I have slighted. 

The article contains little new material? a slightly larger 
portion may still be controversial. The article is aimed at the 
non-specialist. By design, the level of difficulty fluctuates 
substantially (though not, I believe, excessively). 

The emphasis of the material is distinctly on fundamentals 
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and philosophy rather than on applications. Thus, I specifically 
do not attempt to develop the relevance of the techniques for problems 
of controlled thermonuclear research—an area which, from the point 
of view of turbulence, remains poorly and inadequately explored. 
Furthermore, in spite of their importance, I have essentially or entire­
ly omitted several broad specialties, including approximation tech­
niques for strongly coupled plasma, Langmuir turbulence, saturation 
of parametric instabilities, most aspects of equilibrium hydrodynamics, 
and particle discreteness. However, references to the literature 
on these topics are included, and these should be accessible once the 
techniques discussed in the present article are mastered. 

Finally, I wish to thank all those who have contributed either 
to my understanding of the physics or to the preparation of the 
manuscript. For the latter, I am particularly grateful to Rick 
Jensen, Bob Kleva, Mike Kotschenreuther, Harry Mynick, Philippe 
Similon, and Gary Smith, who diligently read an early draft of the 
manuscript and offered many valuable suggestions. One person deserves 
special note. Carl Oberman—former advisor, now coworker and friend— 
has been instrumental in awakening my interests in the field and in 
underscoring the need for, and importance of, firm foundations. He 
has been a constant source of inspiration, patience, and encourage­
ment, for which I will always be grateful. 

John A. Krommes 
Princeton, New Jersey 

August, 1979 
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1: RENORMALIZATION and PLASMA PHYSICS—An INTRODUCTION 

Consider the problem of measuring the properties of a classical 
plasma. In the ideal experiment, one might insert point probes 
which do not disturb the plasma at all. This would allow a point-
to-point mapping of some quantity Q—e.g., the local electromagnetic 
fields, particle densities, or temperature—as a function of time. 
Of course, because of the intrinsic fluctuations present in all 
systems, the probe trace will likely appear quite irregular, with 
little or no discernible coherent structure. Let now the experiment 
be repeated many times. If the experiment is determined by a small 
number of macroscopic parameters (e.g., filling pressure, wall 
temperature, Ohmic heating current, etc.), as is typical, and if the 
probe is measuring microscopic information, then the probe traces 
of each realization will be quite different in detail. Nevertheless, 
averages of the traces over the ensemble of realizations will yield 
smooth information, reproducible if a second ensemble of macro-
scopically identical experiments is performed. The mean quantity <Q> 
may vanish, and the two-time correlation C(t,t') = <<5Q (t) 6Q(t') > 
(where 6Q = Q-<Q>) may become a function of just the time difference 
T= t-t* (statistical stationarity). Very often, C(T) will decay to 
zero. The structure and decay rate of C(T) will be linked to linear 
and, in particular, intrinsically nonlinear properties of the plasma 
and thus will often be useful as > diagnostic. More generally, let 
us call ensemble averages like C "observables". The nomenclature 
has quantum-mechanical origins; here, it is intended to suggest the 
averaging whereby the generally unwanted microstructure of the system 
is eliminate*? and a few reproducible ("observable") numbers like 
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decay rates or transport coefficients emerge. We can then say that 
renormalization is the science of correctly computing observables. 
As we will see, naive perturbation theory usually fails in this 
regard by predicting unphysical secularities. Renormalization as a 
technique thus transcands perturbation theory. 

In the succeeding chapters, we shall encounter renormalization 
in a number of complicated but important applications: weakly 
turbulent Vlasov plasma, strongly turbulent Navier-Stokes-like 
fluids, stochastic magnetic fields, etc. Here, it is useful to 
consider a few simple examples in which the physical and mathematical 
problems facing a renormalized theory can be made explicit with a 
minimum of complexity. Consider first a weakly damped oscillator 

x + 2v sgn t x + 10 zx = 0 , x(0) = 1, x(0) = 0 , \1) 

where v/w «1 . [A related, though more complicated, example is 
discussed by Martin (1973, footnote 22)]. Physically, the dis­
placement x might represent the electric field amplitude of some 
plasma wave. To solve Eq. (1), it is convenient to introduce the 
one-sided quantities 

x.(t) = H(t) x(t) , 
+ (2) 
x_(t) « H(-t) x(t) 

(where H(t) is the Heaviside function), so that 
x(t) = x+(t) + x_(t) . (3) 

The equation for x + is 

x, + 2 v i + ui* x x = S'(t) + 2\>5(t) , (4) 
+ + o + 

and the solution, which may be obtained conveniently by Fourier 
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t ransformation, i s 

(t) = H( t )e~ v t [ cos ( f i t ) + (~_) s i n ( Q t ) ] , 

a = ( W

 2 - v 2 ) ' 
o o 

Trom Eqs. (2) and (1 ) , 

x_(t) = x + ( - t ) , 

so we find 
x ( t ) = e

_ v l t l [cos( f i Q t> + {-£-) s i n ( f i Q | t | ) ) , 

( 5 ) 

( 6 ) 

(7) 

(8) 

4\>a) 

<" r . . . *_. . , * i ( u 2 - u o

2 ) + 4 v 2 u 2 

- CTJH 
(2n n - (» ) (2R n+hj) 

(w-R 0 ) 2 +v 2 ( o i + f i o > 2 + v 2 

•n [6(u-S i o ) -l- 6(o)+Si ) ] (9) 

Thus, the "spectrum" consists of two lines of equal weight IT and 
width v, displaced from the undamped oscillator frequency by an 
amount 

£u) /id = (Jl -u> )/w % -v 2/w 2 . o o o o o o (10) 

(In normal usage, the spectrum is defined in terms of a statistical 
average of the oscillator intensity. This technical distinction 
is irrelevant in this introductory example.) The width and line 
shift are not readily computable from regular perturbation theory based 
on small \J. Indeed, the first-order perturbation theory 

c. + u 2 x n = 2\> s o n t x = 2\>tu s i n (to I t l ) 
1 0 1 O 0 0 

(11) 

exhibits a resonance at the unperturbed frequency to so that x. 
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is secular; through first order, 

X = (l-v|t|) coslfĉ t) . (12) 

In general, the result through n orders in perturbation theory will 

be just the first n+1 terms in the Taylor expansion of the solution 
(8) around v= 0; this does not exhibit the line shift at all and 
hints at the true width only through the scale on which secularities 
develop. We say that the nonsecular result (8) is renormalized 
iby the damping v). If we persisted in attempting to generate the 
answer through regular perturbation theory, we would have to sum 
an infinite series of individually secular terms to arrive at the 
renormalized, nonsecular result. In physical problems, the friction 
coefficient v> often arises from the statistical effects of nonlinc, r 
interactions of the oscillator with a bath of many other oscillatois 
(normal modes of a plasma, tor example). A major aim of this aiticie 
is to show how to deal with these nonlinear and, especially, random 
interactions and to arrive at a physically meaningful, renormalized 
result analogous to (8) without the need for such cumbersome series 
summations. 

Consider now a more realistic experiment in which the probes; 
do disturb the plasma. For example, sheaths may form and, we may 
say, physically renormalize the size, shape, and characteristics 

« 
of the probe. To interpret the probe traces in this case, one would 
have to understand the linear and nonlinear processes leading to t 

the renormalization, then "invert" the result. As a simple example 
of such a process, consider static Debye shielding. In linear 
theory, the potential distribution around a static test charge is 

«r) = Qex P(-r/A D)/r , (13) 
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which can be written in terms of a "renorraalized charge" Q(r) : 

$(r) = Q(r)/r , Q(r) = Qexp(-r/XQ) . (14,15) 

Experimentally, one would have available <(>(r>. One could determine 
the strength Q of the bare test charge only if hs knew both its 
position and the proper law of Debye shielding. Furthermore, though 
the form of Debye shielding is well-known linearly, it is modified 
when nonlinear effects are included. In this case, it is more 
convenient to work in Fourier space. The total plasma potential to 
first order in the strength of the test charge is 

*k = 4 l , Q k / k 2 - Q k
H QACic.O) , (16) 

where E(k,w) is the plasma dielectric. The renormalization law for 
test charges then emerges from a (renormalized) theory of the low-
frequency dielectric. We will learn how to define z in the presence 
of turbulence, and how to deal usefully with it. We may also note 
that, at finite frequency, e. provides a major part of the nonlinear 
description of the normal modes of the plasma, and is thus related 
to our previous example. 

Another use of renormalization occurs in the theory of low 
frequency, long wavelength "hydrodynamic" fluctuations of plasma, 
for which the fluid equations afford an adequate description. In 
the presence of instabilities, fluctuations can readily grow to a 
level at which the energetics are controlled by nonlinear processes. 
The description of the observable, mean rate of energy transfer 
between various scales of the turbulence then requires an understand­
ing of how a particular fluid element is strained and distorted by 
all of the other fluid elements. Because the distortion is nonlinear, 
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statistical, and on a time scale generally short compared to the 
scale for linear viscous or resistive dissipation, renormalization 
will be essential. 

The turbulent distortion of fluid,elements has an analog in 
the chaotic motion of phase s^ace elements described by the full 
Vlasov equation. Here, the fundamental process is the stochastic 
instability, responsible for random wandering of single orbits and 
th/s exponentially rapid separation of pairs of orbits. Renormaliza-
tlon is essential to describe these intrinsically nonlinear and 
statistical phenomena. 

The remainder of the article is organized as follows. In 
Sec. 2 we describe an exactly soluble model problem, the stochas­
tic oscillator, for which many of the problems and techniques of 
renormalization in a statistical theory can be illustrated in con­
siderable detail. In Sees. 3 and 4 we discuss in simple terms the 
use of renormalization in several applications of physical inter­
est: test particle diffusion in Sec. 3, several hydrodynamics 
examples in Sec. 4. In Sec. 5 we derive the direct-interaction 
approximation (DIA)—in some ways, the most fundamental of all 
renormalizations—by appealing to the original historical arguments. 
The DIA provides a central focus throughout the remainder of the 
article. In Sec. 6—-by far the most difficult technically—we 
discuss aspects of the systematic techniques which have been advanced 
to construct and justify various renormalizations, including the 
DIA. In Sec. 7, we discuss some problems of plasma hydrodynamics 
in more detail, including the physical and quantitative description 
of inertial-range cascades. In Sec. 8 we show how to construct 
the renormalized dielectric function, then sketch the salient features of 
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several applications. Sec. 9 is devoted to the details of the 
equations which describe self-consistent fluctuations in, and sat­
urated states of, Vlasov turbulence. There, we also discuss the 
concept of phase space granulation. In Sec. 10 we briefly mention 
various miscellaneous applications and techniques, including the 
problem of stochastic magnetic fields. We offer some concluding 
comments in Sec. 11. In App. A we review the theory of cumulants, 
which i'3 used repeatedly throughout the article. In App. B we 
collect our Fourier transform conventions and some associated 
formulas. 

2: The STOCHASTIC OSCILLATOR 

2.1: Introduction 
Our goal in this chapter is to discuss in reasonably complete 

detail a prototype equation which exhibits many of the features 
and difficulties of any statistical problem requiring renormali-
zation, but which is exactly soluble. The exact solution serves as 
a reference to which approximate theories can be compared. The 
model is a variant of one first discussed by Kraichnan (1961) and 
Kubo (1963, and refs. therein): 

Qj££- + ioi(t) iMt) = 0 . (17) 
Here to is a stationary, centered, Gaussian stochastic process function­
ally independent of <t> . Me also prescribe a distribution of initial 
conditions, independent of the distribution of to, such that I|J is station­
ary with zero mean and with Gaussian equal-time moments—in particular, 
<|*(t) | !> = u p

2. (Here, as in the remainder of the article, the angular 
brackets denute the average over whatever statistical distribution has 
been specified. When no distribution is prescribed explicitly, the aver­
age can be assumed to be over an appropriate ensemble of initial conditions.) 
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The goal is to find a statistical solution of Eq. (17). in general, 
this implies determining all the many-time moments of ty. However, 
we shall be concerned in particular with the two-point correlation 
function C(t,t') = <6i|i<t) 5^ (tf> > = C (t-t') and with a certain Green's 
function R(t;t'), to be defined. It is important to note that, 
because the random coefficient m enters Eq. (17) multiplicatively, 
the statistics of i|) are notiin general,Gaussian, bi"1. rather depend 
nonlinearly on the statistics of w. We say that Eq. (17) is 
stochastically nonlinear, thus distinguishing it from problems of 
dynamic nonlinearity in which the random coefficient depends func­
tionally on t itself. Practical examples of dynamically nonlinear 
equations are those of Navier-Stokes (cf. Sees. 4 and 7) and Vlasov 
(cf. Sees. 8 and 9), while a practical problem involving stochastic 
nonlinearity is the description of particle transport in stochastic 
magnetic fields caused by fixed external perturbations (cf. Sec. 10.1). 

In Sec. 2.2 we solve Eq. (17) exactly. However, in practical 
problems, the function oi is replaced,in general, by a complicated 
integro-differential operator and a general solution is usually not 
available in tractable form. In lieu of an exact solution, the 
obvious first approach to finding <iji> would be to average Eq. (17) 
[over the independent distributions of u and of ij>(0)l: 

~"—<<|i> + i«in)j> = 0 . (18) 

That «ji> happens to be identically zero here does not vitiate the 
following arguments; similar procedures apply to the correlation 
function.) We may decompose both w and ty into mean fluctuating 
components, 
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(19) 

so that 

-rr-<i|)> + i<u)> <i|)> + i<6u5ijj> = 0 . (20) 

By assumption, <u; =0. However, Eq. (20) is not a closed equation 
for <ty>; rather, the unknown two-point mixed correlation <6UJ6I|I> has 
appeared. In fact, Eq. (20) is the lowest member of a hierarchy 
of equations, analogous to the familiar BBGKY hierarchy in many-
body physics (Oberman, Chap. 2.3) in which n-point correlations are 
determined by (n+1)-point correlations. This is the well-known 
closure problem. To proceed, one seeks to approximately express some 
n-point function in terms of lower-order functions, thus finding a 
closed, coupled system for those functions. Most of renormalization 
theory is concerned with effecting this procedure efficiently and 
accurately. 

In the following discussion, we shall have much use for the 
so-called cumulant functions (perhaps better known to workers in 
many-body kinetic theory as "cluster functions" or "irreducible parts"). 
These are defined and discussed in App. A. The reader unfamiliar 
with cumulants is encouraged to read App. A at this time. 

2.2: Exact Solution of the Stochastic Oscillator 
It will be sufficient to compute C(T) for T>0; time reversibility 

implies that C(-T) = C ( T ) . To this end, define the one-sided function 

C +(x) = H(T) C(T) . (21) 

Upon applying 3/9x to (21) and using Eq. (17), we find 
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d . * 
-g-rC+(T) + i<5oj(T) i'Mx) 6>\i (0)> = 6{T)C!0) . (22) 

The precise initial condition is inessential to the structure of 
Eq. (21). Let us remove it by defining the stochastic "infinitesimal 

response function" R according to 

R(t;f) 5 6iMt)/6n(f) (23) 

[where n(t) is a non-random source term inserted on the right-hand 
side of Eq. (17) and i5/>$rj denotes functional differentiation], and the 
mean response function R by 

R(t;t') = <R(t;t')> . (24) 

The quantity R obeys 

3R 
3T + iiiiCx) R(T) = fid) , (25) 

and is thus a Green's function for Eq. (21), so that i|j(t) is prop­
agated from its value at t = 0 according to 

ifi(t) = R(t;0)iM0) . (26) 

Because of the assumed independence of w from I|J(0) we then find 

C(T) = <R(T;0)>«M0)I|I*(0)> 

= R(T)C(0) (X > 0). (27) 

This also follows immediately from Eq. (22)upon noting that R is 
the Green's function for that equation. 

The exact solution of Eq. (25) is (Kubo 19S3) 

R(T) = H(t)exp -J dT'iui(T') . (28) 

Let us define the covariance matrix 
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F(t,t') i <6u)(t)<Sw(t')> = F(t-t') (29) 

Then cumulant expansion (App. A) or direct averaging over the Gaus­
sian distribution assumed for ID leads to 

R(T) = H(T)exp dT"F(T'-T") 

= HUJexpl-l d7(T-f)F(7) | . 

For definiteness, let us take 

(30) 

F(T) = 6 zexp(-T/T a c) , (31) 
2 h where B = <5u(0) > and T (the "autocorrelation" time) are fixed 

numbers. The dynamical behavior of R is then parametrized by a single 
dimensionless parameter, the so-called Kubo number K= gx . If we 
normalize the time to T , 

ac ' 
T = T / T (32) 

we have 

R(x) = H(T)exp[-K2(T-l+e""T)] . (33) 

The short and long time l imi ts of t h i s expression are given in Table I . Al ter­

nat ively, we may wri te 

where 

R(T) = Hf-rjexp 

v(r) = K 2 ( l - e ~ T ) 

[-JW,], (34) 

(35) 

Let us consider the behavior of R, hence C, for times longer than an auto­

c o r r e l a t i o n t ime (T> 1 ) . In t h i s l i m i t v(7) -+ K 2 = c o n s t a n t , and R 

d e c a y s e x p o n e n t i a l l y : 

R % e x p ( - K 2 r ) (36) 
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Doob's theorem (cf. Wang and Uhlenbeck 1945) then allows us 
to argue that ip is approximately Gaussian in this limit. The 
mechanism is that the rapid fluctuations of the bath cause decorrela-
tion on the scale T a c. Thus, if we coarse-grain the system by dividing 
the time axis into units AT satisfying T « A T « g - 1, the system at 
time T will depend on the detailed physics only in the preceding 
interval AT and is Gaussian-Markov (cf. Wang and Uhlenbeck 1945) in 
the coarse-grained time. This implies that the nonlinear term can 
be modeled by a smooth friction v {<") ; v (\J = \7/T ) and a white noise 

ac 
source f(t): 

|| + vH> = f (t) (t> 0). (37) 

The intensity of f is fixed by requiring that the driven fluctuations 
<]i))(t)|2> agree with the assumed intensity C(0); 

<f(7) f (0)> = 2U Q
2V6(T) . (38) 

In Sees. 5 and 10, we shall discuss approximate ways of finding 
Langevin-type representations of the form (38) without having explicit 
knowledge of the exact solution 

Observe from Eq. (34) that one can write for all times 

-^- R(t) + v(x) R(x) = S(T) . (39) 

Equations of the form (39), in which k(t) depends only on R at the 
same time T, are often called Markovian. Given any nonlinear equation 
of the general form (17), formal techniques exist which allow one to 
find such Markovian representations (Misguich and Balescu 1975a). However, these 
forms are, in general, illusory. Eq. (39) is not coarse-grained and 
describes exact dynamics, including the effects of events in the past 
on the present; Eq. (37) is coarse-grained and contains no nonlocal effects. 
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For infinite autocorrelation time or Kubo number, R^expC-%3 2t 2); 
in this limit, the statistics of V are strongly non-Gaussian. This 
limit (Kraichnan 1961) affords a particularly difficult test of 
approximate theories, as we will see later in some detail. The point 
is that as K * » the nonlinear term of Eq. (17) dominates and standard 
perturbation theories fail badly. This limit is the prototype for 
high-Reynolds-number Navier-Stokes turbulence. In plasmas, we have 
occasion to study the limits of both long and short autocorrelation 
times. Systems with short T include those with wave-like fluctua-J ac 
tions with broad spectrum (Sec. 3), whereas long T often occurs 
in the theory of hydrodynamic excitations (Sees. 4 and 7). 

2.3; Approximate Closure Theories for the Stochastic 'bscillat-nir 
In the limit of small K, one might attempt to solve Eg. (17) by 

regular perturbation theory. It is easily seen that one generates 
thereby the Taylor expansion of the true solution (Kraichnan 1961) . 
Because any finite-order truncation of this expansion is secular, the 
procedure fails for physically interesting times unless one is able 
to sum the perturbation series tn all orders—in general, a difficult 
task. The nature of the- problem is illustrated by the solution in 
the Markovian limit t> x . In perturbation theory, it is often conven­
ient to proceed in Fourier space, so consider the Fourier transform of 
Eq. (36): 

\ -*• [-Ku+iv)]-1 . (40) 

If one blindly treats v as small and expands, he arrives at 

\ ~ * » M - R . ( 0 ) v R u > ( 0 ) + • • • ' < 4 1 > 

where 
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RJO) = [ - K u + i O J ] " 1 . (42) 

Upon inverse Fourier t ransformat ion, Eq. (41) leads to 

R ( T ) = j | ^ e - ^ H a ) = 1 - V T + . . . , (43) 

the Taylor expansion of expression (36). Of course, the problem with 
this approach is that expression (40) is a resonance function, 

R = -iSL+JL . (44) 
^ 2 . 2 

Frequencies in the heart of the resonance, us < v, are not large com­
pared to v. Since an uncertainty principle tells us that low fre­
quencies determine the characteristic long time behavior, we would 
expect that long time behavior is badly represented by a finite-
order truncation of the high frequency expansion (41)—in agreement 
with our explicit results. 

A more useful approach is to make a statistical ansatz. Con­
struct the integral form of the exact equation (17) and insert the 
result into Eq. (22) : 

ft 
^ R ( T ) + dT'<u(T) UJ(T') R(T')> = 5(T) . (45) 

0 

The t r i p l e c o r r e l a t i o n has the sumulant e x p a n s i o n (App. A; Kraichnan 

1961) 

<W{T) W ( T ' ) R ( T ' ) > - < W ( T ) > < W ( T , ) > < R ( T , ) > + < 6 U > ( T ) 5 W ( T ' ) > < R ( T ' ) > 

+ < 6 I O ( T ) 6 R ( T ' ) > « » ( T , ) > + < I » ( T ) > < S U ] ( T , ) < $ R ( T ' ) > 

+ « W ( T ) U ( T , ) R ( T , ) » 

= P ( T - T ' ) R ( T ' ) + «uwR» . (46) 

If it is assumed that the joint statistics of u and \|> are approximately 
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Gaussian so that the triple cumulant can be ignored, we arrive at the 
so-called Bourret approximation (Bourret 1962, Van Kampen 1976) 

-5-R(T) + d-r P(T) R(T-T) = <S(x) . (47) 

Employing the convolution theorem, we can solve Eq. (47) by Fourier 
transformation: 

Rlx) = f— exp(-iwT) [-iu+ (F+J^]" 1, (48) 

where, as usual, F + ( T ) = H(T) F(T) . For the special case (31), 
we f i n d 

c o s h ( | u i Q | T ) + 5 s ( | u Q | T a c ) 1 s i n h ( | o o o l T ) 

R(i) = H d l e x p l - W T , ) t ( K < h ) ' ( 4 9 a ) 

ac 
C O S ( W „ T ) + h{ur )~ s intui T) o o ac o 

(K>!i), (49b) 

where 
w„ E (e2 - kt " 2 ) ! s . (50) o ac 

For K«s s > |u \-HT ~ (1-2K2) and one readily verifies that the long 
time limit of Eq. (49a) agrees with the correct result [Eq. (36) and 
Table I]. However, Eq. (49b) fails badly for K »\, where P _ 1 is the 
shortest scale. Here, for BT < 1 the correct behavior is R^ exp(-!sB2T:!) 
which is incorrectly replaced in the prediction (49b) of the Gaussian 
hypothesis by an of dilation at frequency u •*. 0. In the limit K + » , 
the approximate solution R'VCOS(BT) does not decay at all. observe, 
however, that the cumulant expansion gives correctly the first two 
terms of the exact result, R^l-Ssg 2! 2 . 

To heuristically derive an improved equation for R in the limit 
of large K, let us introduce the zero-th order Green's function 
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R ( 0 ) ( T ) = H ( T ) (51) 

[c f . Eq . (42)] and r e w r i t e ^ q . (45) i n t h e form 

-g | -R<T) + d i ' M o ( T ) R ( o ) ( T - T ' > tt)(T') R ( T ' ) > = 6 ( T ) . (52 ) 

The cumulan t e x p a n s i o n (46) becomes 

<U\T) R ( 0 ) ( T - T ' ) W(T ' ) R ( T ' ) > = E ( 0 ) ( T - T 1 ) F ( T - T ' ) R ( T ' ) 

+ «u)o)R» . (53) 

At large K we know that we cannot neglect the triple cumulant because 
the statistics are not Gaussian. On the other hand, the explicit 
appearance in (53) of an unperturbed propagator R t o' in a regime of 
strong nonlinearity is somewhat unsettl ing We can argue heuristically 
that one effect of the nonlinearities contained in «UJIDR» will be to 
"renormalize" the response function according to R +R , so that 
(53) can alternatively be written 

<U(T) R ( O ) ( T - T ' ) W(T') P ( T ' ) > = R(T-T') F(T-T') R!T') + C 3 ' , (54) 

thus defining some "residual" cumulant C,' . If we ignore C-,' 
without further justification, we are led to the nonlinear equation 

-^-R(T) + | dfR(7) P(T) R(T-T) = 6(T) . (55) 
o 

This important closure is called the direct-interaction approximation 
(DIA) [derived in the context of the stochastic oscillator by Kraichnan 
(1961)]. Considerably more profound and systematic derivations of the 
DIA can be given {cf. Sees. 5 and 6). We must stress here that for 
problems involving dynamic nonlinearity the DIA is more complicated, 
as we discuss in great detail in later sections. 
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Clearly, the DIA reduces to the Bourret approximation when the 
decay of R(T) is slow compared to that of F(T)—i.e., for K «1 . 
In the opposite limit, however, they differ significantly. Kraichnan 
(li'61) has considered the extreme case of K=°°, in which case F(T) = g 2 

and Eq. (55) can be solved exactly by Fourier transformation: 

R<t) = H(T) J 1(2ST)/BT . (56) 

Formula (56) is graphed in Fig. 3 of Kraichnan (1961) along with the 
exact solution. Unlike that of Bourret, the DIA decays on the proper 
scale S~ , although with a spurious oscillation and with only alge­
braic rather than exponential envelope. However, the area under the 
curve, 

dt exp(-%BzT2) = (TT/2)'26"J- , (57) 

is approximated remarkably well, to about 20%, by the DIA: 

100 
dx J^B-O/eT = B" 1 . (58) 

This agreement is of considerable significance. In many of the 
applications, transport coefficients will be determined by time 
integrals over the response or correlation function and will be more 
sensitive to gross properties, like the area under the curve, than 
to detailed structure. 

Kraichnan (1961) has shown how to derive the DIA for the sto-
chi»jtic oscillator by summing a certain subseries of perturbation 
theory. He also used the same technique to derive various higher 
order renormalizations. One of these was very successful and gave 
excellent agreement with the exact solution; the others were badly 
misbehaved, though they seemed superficially to be as well-motivated. 
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We shall return to these matters in Sec. 6, where we develop the 
systematology of renormalization. There, we will discuss Kraichnan's 
successful higher-order renormalization of the oscillator and will 
also attempt to provide some intuition as to why other approximations 
fail. First, however, we discuss in the next two sections various 
physical applications of heuristic renormalizations. 

Additional references related to the material of this section 
include the papers by Leslie (1973) , Frisch and Bourret (1970), and 
Cook (197 8b). 

3: TEST PARTICLE DIFFUSION in a DISCRETE SPECTRUM 

3.1: Introduction 
The elementary notions of test particle diffusion in a weakly 

turbulent plasma have been known, in the form of quasilinear theory 
(QLT) (Vedenov, Velikhov, and Sagdeev 1961, Drummond and Pines 1962), 
since almost the beginnings of theoretical plasma physics research. 
However, only in recent years have several of the fundamental assump­
tions, both physical and mathematical, been fully understood; in fact, 
there still remain certain outstanding questions. In this section we 
give an introduction to these matters (see also Galeev and Sagdeev, 
Chap. 4.1). The fundamental physical process underlying QLT is the 
stochastic instability? the fundamental mathematical justification 
for it involves renormalization. 

For purposes of illustration we assume a stationary, homogeneous, 
one-dimensional spectrum of electrostatic waves, quantized in an 
unmagnetized plasma of length L, and described by the discrete fluc­
tuation spectrum 
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<6E(5E>. = 2TT<6E 2>. S[w-u)(k)l . (59) 
k,u k 

It is then the fundamental hypothesis of QLT that resonant particles 
diffuse in velocity space according to the diffusion coefficient 

D(v) = Tv(q/m)2£<6E2> 6[u(k) -k v ] (60) 
k 

or, in the continuum limit L •+ °°(see App. B for conventions and 
notation), 

D(v) =Tr(q/m)2|-|^-<6E2>(k) 6(iu(k) -k v] . (61) 

Now the forms (60) and (61) are far from equivalent even in the limit 
of large box size. Formula (60) describes a very singular function 
of velocity, infinite at a wave-particle resonance and zero other­
wise. Formula (61), however, is a smooth function of velocity. In 
fact, it is this formula which is correct even in the discrete 
spectrum, as we will explain. We will learn that a diffusive 
description is appropriate only when islands overlap in velocity 
space. In this case, the nonlinear mixing of stochastically un­
stable orbits gives rise to a broadening which renormalizes the 
propagators of linear theory and smooths the singularities manifest 
in (60) such that the integral expression (61) is the proper approxi­
mate description even in a discrete spectrum. 

3. ; Stochastic Instability and Test Particle Diffusion 
The physics of stochastic instability is developed in detail 

elsewhere (White Chap. 3.5, Zaslavskii and Chirikov 1971, Chirikov 
1969, Chirikov 1979 and refs. therein). Here, we gather the 
fundamental results we shall need. A test particle in a discrete 
spectrum is described by the Hamiltonian 
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H(x,p;t) = p2/2m + q£<(> exp i lkx-u(k)t] . (62) 
k k 

To examine the structure in phase space, we isolate the terms cor­
responding to a single wave-particle resonance: 

H^ = p2/2m + 2qiJ>kcos[kx - us(k)t] . (63) 

Because H. is not conserved, it is convenient to transform to the 
wave frame via the generating function (Goldstein 19 50) 

S(x,P) = (P + mv ) (x- v.t) , (64) 
where v, = ui/k . If we redefine the zero of energy to include the 
kinetic energy 'siav,2 of Galilean translation, then the transformed 
Hamiltonian K becomes 

K(Q,P) = Hfc + 3S/3t + ismv.2 

= P2/2m + 2q<(ikcos (kQ) , (65) 

where 
Q = x-v t , P = mv , V = v - v. . (66) 

Because K is conserved, 

V = iU/m^tK- 2q^kcos(kQ)]!l . (67) 

We see that the single resonance divides the phase space into trap­
ping and passing regions, with the separatrix described by K=2q<j>k or 

V = 2(2qi|>k/m)5ssin(ytQ) . (68) 

The separatrix or island width AV is then 

h AV = 4(2q<t.k/mP : 4 v t r , (69) 
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where v t r i s t h e trapping velocity, related to the trapping fre­

quency u at the center of the island by v = w /k . 
We now return to the original Hamiltonian with many resonances. 

As is well-known (Zaslavskii and Filonenko 1968, Chirikov 1969, 
Chirikov 1979, Greene 1979), stochasticity ensues when, in order of 
magnitude, adjacent islands overlap—that is, when the stochasticity 
parameter 

s = S J 1 - < 7 0 ) 

Here 6V i s the v e l o c i t y spacing between adjacent resonances and i s 

given by 

<5V = 6(u/k) 

= « k ( v g - v t ) A . 

v = 3eo(k)/3k; v , = cu(k)/k . (71) 
g <f 

In the stochastic limit, numerical evidence (Chirikov 1979 and 
refs. therein) verifies well that velocity space diffusion occurs. 
We define the velocity space diffusion coefficient by 

D = lim<[v(t) - v ls>/2t , (72) 
t +<» 

where the average is to be taken over the wave phases and an ensemble 
of particles, ea 
in space. Then 
of particles, each of initial velocity v but distributed uniformly 

D = [ dxC(t) , (73) 

where C(T) is the Lagrangian (taken along the orbits) acceleration 
correlation 
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C(x) = (q/m)2<4E(x(T),x)6E(x(0),0)> 

= (q/m)2 I <6E. (T)6E. , (O)expi [kx(T) +k'x(0)]> . (74) 
k.k1 K k 

In conventional QLT it is assumed that particles follow free-
streaming orbits: X(T) = X(0) + V T . The averages over initial con­
ditions and wave phases can then be performed separately, leading to 

C(T) = (q/m) !1<6E2> exp i [kv - m(k)]T . (75) 
k K 

Time integration of (75) gives rise to the singular result (60). 
The singularities have physical significance; they arise from quasi-
recurrences in formula (75). In understanding this, it is convenient 
to view (75) as describing the interaction of a wave packet, moving 
with the group velocity v , with a particle of velocity v resonant 
with some typical phase velocity v If the width of the packet in 
k space is Ak, then the particle will lose correlation w?th the 
packet in an autocorrelation time 

T = 22 . (76) 
|v -vjfik 

However, because of the periodic boundary conditions in the discrete 
spectrum, in a frame in which the group velocity vanishes the packet 
will reconstruct itself in a distance L=2ir/5k = 2uN/Ak , where N is 
the number of modes in the packet. Thus, if we ignore the possibility 
that the particle may hit the side of the box, the particle will 
suffer recurrent kicks each recurrence time 

T = NT (77) 
r ac 

and the time integral of C(x) will not exist for resonant particles. 
To make this argument somewhat more quantitative, consider a 
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dispersion law such as would be encountered in Langmuir turbulence, 

ai = w + ak2 , (78) 
o 

where u> and a a r e c o n s t a n t s . L e t t h e p a r t i c l e b e r e s o n a n t w i t h 

some t y p i c a l wave of wavenumber k : v = ID / k + c*kQ . Then i f 

<5k = k - k , t h e e x p o n e n t of (75) becomes 

6 k ( v - v (k ) - a 6 k ) T . (79) 
v 8 o •• 

If v - v = ai /k - ak is sufficiently large, we can ignore the term 
g O 0 Q J 

a<5k i n Eq. (79) . I f we assume t h a t t h e spec t rum i s r e a s o n a b l y f l a t 

o v e r some range Ak, we have t h e n t o sum 

V exp(inSkAvT) = s i " ( " A m - > , (80) 
n=-An/2 sin(irT/NT ) 

ac 

where N = An + 1 . For T « N T and N » 1 , Eq. (80) c a n be a p p r o x i m a t e d by 

N s i n _ U l Z l ^ i + N 6 ( T A a c ) - (81) 

This describes the initial decorrelation of particle f- ->m packet in 
an autocorrelation time. However, the function (80) recurs on the 
recurrence time (77) , in agreement with our heuristic argument. 

The recurrence phenomenon is related both to the discrete spec­
trum and the assumption of free orbits. As we approach the continuum 
limit L +«, the recurrence time also approaches » and we are led 
immediately to the form (61). However, in a discrete spectrum, the 
experimentally interesting case, recurrence can be prevented only by 
invoking nonlinear effects. In fact, we know from the theory of 
stochastic instability (Chirikov 1969) that the exponentially rapid 
divergence of adjacent orbits and consequent nonlinear mixing of 
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orbits in phase space gives rise to irreversible, nonlinear decay 
of correlations on a time scale T K, the inverse of the Kolmogorov 
entropy. In Sec. 9 we estimate the rate of orbit divergence, finding 
thereby 

T R % (k*D)~ 1 / 3, (82) 

where D i s the quasi l inear diffusion coefficient (61) . More r e a l i s t i c ­

a l l y , then, formula (75) must be modified to read 

C(T) = (q/m)2£<6E2> expUtkv- u(k)]t} r d / t ) , (83) 
k k K 

where r(7) is a function, describing the nonlinear e f fec t s , which 

decays in exponential fashion and s a t i s f i e s r(0) = 1. For purposes 

of est imation, we may take 

r ( i j = e~ T . (84) 

Let us compare the nonlinear decay time to the recurrence time. 
If we use the estimate 

D -\. (g/m)*<SE2>T , (85) 
ac 

which follows from Eq. (61), and note Eqs. (76), (59), (70), and (71), 
it then follows simply that 

T A „ * S* / 3 . (86) 

Since by assumption we are in the s tochas t ic l imit S » l , the non­

l i n e a r mixing always prevents the recurrence and the diffusion coef­

f i c i e n t i s well-defined. For S « l , the K-entropy vanishes and 

recurrence i s not prevented. The s ingu la r i t i e s of (60) then signal 

the existence of t rapping, not properly included in the quasilinear 

desc r ip t ion . 
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Since the discrete nature of the spectrum manifests itself 
only on the recurrence scale, the existence of nonlinear mixing 
implies that the wavenumber summation can be changed to integration 
with impunity. Formally, such a procedure is justified if one 
increment in the sum over k produces a small fractional change in 
the summand. The increment in the linear theory exponent is 
6 (kv - CIJ)T = 6kAvr , which is to be compared with the nonlinear damping 
T/T R : 

6kAv/(k 2D) 1 / 3 = T„/T « 1 , (87) 

so integration is justified. Since C(x) will decay by phase mixing 
on the T scale, we can ignore the nonlinear term as long as T « T„. ac ' ac K 
This gives an upper bound for the turbulence level or stochasticity 
parameter under which the quasilinear theory is valid: 

T K > > T a c - V N * T r / T K < N • ( 8 8 > 

Thus, QLT is valid in the regime 

1 < S < N 3 / 4 . 

Then, 
C ( T ) B (q/m)M||<iSE:l>(k) exp i[kv-u)(k)]x . (89) 

Time integration according to (83) then gives rise to (61). 

3.3; Quasilinear Theory and Renormalization 
By introducing the K-entropy as a description of mixing and 

decay of correlations, we have performed a renormalization. Indeed, 
if we perform the time integration of (83), we can write 
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where we have introduced a renormalized particle propagator g: 

g ^ s [-i((1i-kv+ ix K
_ 1 )] _ 1 . (91) 

One could equally well proceed from this form to justify the continuum 
representation (61). Now a first-principles derivation of the form (90) with 
(91) is exceedingly difficult. We arf of the opinion that it has 
never been done satisfactorily; we describe a possible approach in 
Sec. 9 after we develop some more machinery. Here, we give for com­
pleteness two current arguments which, although non-rigorous, are 
physically suggestive. 

Chirikov (1969) has estimated the K-entropy using his concept 
of renormalized resonances. He argues that when bare resonances 
overlap strongly, they superimpose in such a way that new, "macro-" 
or "renormalized" resonances form with width (.&&) such that the 
renormalized resonances just touch. He then takes the trapping frequency 
Qr. in a typical renormaliaed resonance as an estimate of the K-entropy. 

The detailed law of superposition of bare resonances depends on 
the phase relations of the amplitudes of the bare resonances. We 
write 

n | A W )J: n 
nz - -IT-** • ( 9 2 ) 

where HA is the trapping frequency in a typical bare resonance, A 
is the frequency spacing between bare resonances, and n is to be deter­
mined. The factor (Au)_ /A is the number of bare resonances in a renormal-
ized resonance. Because fi. is proportional to the square root of the 
perturbation, n would equal 4 for randomly phased amplitudes. The 
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island width (Aw)- obeys a law similar to Eq. (92): 

(Aus)^ = — ^ ( A u ) ^ " . (93) 

Here (AwK is the island width of a bare resonance. Combining 
Eqs. (92) and (93) , we find 

aZ = 
UoOj-Wfo-" 

fi. . (94) 

For the problem of a t e s t p a r t i c l e in a s t o c h a s t i c wave f i e l d , 

we can take to wi th in numerical f ac to r s n, ^ (Aw) , *• ai . Also, 
<j> 9 t r 

h= 6k(v -v.) = (NT ) . Noting that the diffusion coefficient scales g <P ac 
as D^ (q/m)2NE,zT , that w *v> [(q/m)kE.] , and taking n=4, we can 
substitute into Eq. (94) to find 

n E % (k'D) 1 7 3 (95) 

as Chirikov's estimate of the K-entropy for a randomly-phased spectrum. 
Other techniques which we shall develop later, including a direct 
estimate of the rate of divergence of adjacent orbits, agree with 
Eq. (95). 

The approach to renormalization of the wave-particle resonance 
which is currently most popular in the literature is based on Dupree's 
work on orbit diffusion (Dupree 1966, Tetreault 1976). If one re­
turns to Eq. (74) and makes the independence hypothesis that the particle 
motion is only weakly correlated with the Fourier amplitudes, one 
finds 

C(T) = (q/m)![<SE2>,exp{i[kv-w(k)]T} exp[ik<5x (t) ] , (96) 
k K 

where <5x(t)is the deviation of the particle's position from its 



- 36 -
free-streaming value. Since for x > x the particle diffuses in 

ac 
velocity space, cumulant expansion assuming Gaussian statistics gives 

<exp[ikSx(x)]> = exp (-V3 k2Dx 3 f 1 / 3 (x > x }. (97) 
ac 

This argument introduces the diffusion time 

xd E ( i/ 3k 2Df 1 / 3, (98) 

which is manifestly of order x . If we deal only with the time scale 
and ignore the strong cubic dependence of the decay on time, the re­
mainder of the justification of the continuum representation proceeds 
as before. 

The problem with these arguments lies with the independence 
hypothesis,- Eq. (96) is not correct for all times. On physical grounds, 
the K-entropy T ~ , definable in terms of the separation rate of 
pairs of orbits (Benettin et al. 1976)( cannot correctly arise from a 
statistical theory of single particle orbits, which is what approxi­
mation (96) has introduced. The actual evaluation of the form (74) 
is quite nontrivial. Aspects of the formalism will be indicated in 
Sees. 6 and 9, although the solution will not be given. At present, 
it is believed that the approximate forms (96) and (97) are correct 
for times longer than T., whereas the detailed time dependence of (74) 
for times shorter than T. is unknown. Inasmuch as only the nonlinear 
time scale is important, these details are of little practical sig­
nificance for the present problem, especially when the autocorrelation 
time is short. However, any result which depends sensitively on the 
T 3 behavior should be viewed with considerable skepticism. Also, we 
argue in Sec. 10.1 that an approximation analogous to Eq. (96) may be 
grossly inadequate for certain collisionality regimes in the problem 
of particle transport in stochastic magnetic fields. 

A number of authors have argued that the Dupree-like renormalized 
theories of diffusion coefficients give negligible corrections to the 
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simple quasilinear result (cf. Cook and Sanderson 1974). It must be 
noted that those authors use the integral representation in k space 
(in .-.'aich case their comments are well-taken for T < T R ) ; they are 
not addressing the important role which renormalization plays in the 
theory of the discrete spectrum. 

Many references related to Dupree's approach can be found in 
Sec. 8. 

4: HYDRODYNAMICS I 

4.1: Introduction 
In quasilinear theory, the effective Kubo number is T A K < 1 . 

Though non-vanishing K-entropy was essential for irreversibility, 
t,, never entered into the final expression for the diffusion coef-
ficient and the renormalization was more or less benign. In this 
chapter, by contrast, we introduce problems for which the nonlinearity 
is large, so that renormalization becomes essential. The examples 
are drawn from the hydrodynamics of plasma and are severe idealiza­
tions. They are, however, very useful because they demonstrate 
certain physical points and mathematical techniques with a minimum 
of labor. 

Consider by way of introduction a strongly magnetized, shear-
free plasma in which particles move cross-field with the SxS drift 
(Taylor and McNamara 1971). Let us estimate the perpendicular diffu­
sion coefficient, assuming naively that it exists. We can use the 
random walk estimate 

D ^ AxVAt (99) 

if we can identify the fundamental steps Ax and At. To this end, 
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suppose there arises some fluctuation in charge 6p, uniform along the 
field, with characteristic perpendicular space scale Ax. Associated 
with 6p are two kinds of perpendicular velocities—a possible trans-
lational velocity of the fluctuation as a whole, not presently of 
interest, and an internal velocity Av of deformation. The fluctuation 
will thus tend to tear itself apart—that is, send its energy to 
different space scales—in a time 

At -\i Ax/Av . (100) 

Now in this model particles move with the fluid, so the particle 
diffusion due to fluctuations of scale Ax is, from (99) and (100), 
of order 

D f AxAv . (101) 

Since Av is the velocity across the structure, it can he determined 
from the local field gradient 

Av ^ (c/B) Ax3SE/3x i' (c/B)6<(>/Ax , (102) 

where £$ is the characteristic (rms) potential fluctuation across the 
structure. Amazingly, the unknown scale Ax cancels out in (101), leaving 

D ^ (c/B)<6((i2>'s 

= (f)<( 5
T
1) 2> 1 S. (103) 

This result obeys the Bohm scaling with B, as it must from considera­
tions of dimensional analysis (Taylor and McNamara 1971). It is 
assumed that the fluctuation level <<SC{J2> is known, either from experi­
ment or from additional theoretical considerations. 

There is a wealth of physics hidden in this simple estimate. 
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First of all, it is important to stress the two-dimensional assump­
tion about the fluctuations. If fluctuations were set up with 
structure along the field, as would be the case if finite k.. 
instabilities were operative, then parallel streaming would serve as 
an additional rapid decorrelation mechanism and the estimate (100) of 
At would likely be incorrect. The simple estimates also afforrl no 
understanding of the mechanics of deformation, so we have no quanti­
tative values for At or D itself. Furthermore, notice that the 
correlation time can be written At^ Axz/D; that is,At is the time for 
a fluid element to "diffuse" across the scale Ax. Although standard, 
such a description is poor and misleading in the present context. 
In the usual Langevin picture, diffusion sets in only on a time much 
longer than the correlation time. Here, however, no such separation 
of scales exists. The rate and details of deformation of the fluid 
elements, which give rise to transport, are self-consistently deter­
mined by that same transport. The process is highly nonlinear. We 
can expect that the details of deformation and decorrelation will 
be described by nonlocal operators in space an:! time. Furthermore, 
we must allow for the possibility that the "L" which enters into At 
may differ from the actual fluid element diffusion coefficient. 

4.2; Guiding Center Plasma 

In later chapters we develop machinery capable of dealing 
systematically with the problems outlined above. Here, however, we 
proceed more simply and follow heuristic procedures developed by 
Taylor and McNamara (1971) and others (cf. Montgomery et al. 1972). 
We may write as usual 
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D = dx C(x) , ( 1 0 4 ) 

C(x) = (c/B)2<[6E(T)xn]•[6E(0)xn]> 

= (c/B)2<6E"x(T) -6^(0) > 

= (c/B)2 I <6E\ (t)-fiE", (O)expi [it-x(T) +it'«x(0)]> . 
k , k (105) 

A common approximation is the independence hypothesis [Weinstock 1976) 

C(T) = (c/B)2j;<52i(T) •SEJL(0)>+<exp[ik"-fix(T)]> . (106) 
k k 

This approximation is much harder to justify here than in the quasi-
linear case, because of the tight coupling which exists between particle 
and fluid in the guiding center model (Dupree 1974). In fact, 
the most important deficiency of the present procedure is that it 
provides few clues to the nature or size of omitted terms. We will 
gain further insight into the nature of the approximation when we 
discuss systematic renormalization procedures in Sec. 6j however, the 
problem is extremely complicated and even now not satisfactorily 
resolved. Possibly the best a priori statement which can be made 
about the independence hypothesis is that it is not patently ridiculous. 

We shall assume that we are given the static fluctuation 
spectrum <SE i> + .It is reasonable to assume that the turbulent fluid 

k 
motion causes decay of field correlations, so we try the ansatz 

<fiEA(T).6gx(0)>+ « <6E a
2^exp(-kMT|) , 

fc k Hi)') 
where the "turbulent viscosity" u is to be determined. The cusped 
i'orm (107) is ihcorrect near T = 0, but this should not be too 
significant. We also make the Gaussian hypothesis for the test 
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particle: 

<expi k-<5x(x)> = exp(-k2D|t|) (108) 

Then 
,00 

D = dTfc/Bj'^fiEj^^expt-k2 (U+D)T] 
Jo ? ' V. 

(109) 

In lieu of better information, we shall take y = D. 
Taylor and McNamara considered explicitly the case of thermal 

equilibrium, for which 

<5E2>(k) 
8n 

IjT 
l+(kX D) 2 

(110) 

If we perform the time integral in (109) and rearrange, we then arrive 
at an explicit result for D; 

1 D = 4ir(c/B) 2 TU* 
J (2it (2it)~ 2k2[l+(kXD)2l (111) 

If we introduce the two-dimensional plasma parameter 

e = (nA 2 ) _ 1 = 47re2/T 
P D 

(112) 

(where n is the area density of particles in the plane perpendicular 
to B) and integrate (111) over azimuth, we find 

e-1* D = ® (rf) dk/k (113) 
lJol+(kX D) 2J 

The integral in (113) is logarithmically divergent at long wave­
lengths . This indicates the breakdown of the Langevin assumption 
about scale separations? the transport is too nonlocal and decay of 
correlations too slow for a waveuumber-independent diffusion coefficient 
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to exist. If we insert an artificial long wavelength cutoff k <c k . 
< D 

then 
re l1* D=(S)(^)V f[l+(k<AD)2]'* 

M D 

(114) 

Most authors (Taylor and McNamara 1971, Montgomery et al. 1972, 
Okuda and Dawson 1973) have rectified the divergence by quantizing in 
a box of side L (though somewhat inconsistently maintaining the 
integral representation) and taking k < to be the lowest allowed 
wavenumber: k< = 2TT/L. This, however, gives the illusory impression 
that there exists a constant diffusion coefficient with associated 
Markovian description of transport. This is not correct, as will be 
made clear in Sec. 7. A better procedure is to abandon the Markovian 
description entirely. We may argue that a given scale k~ should be 
diffused only by shorter scales, and take k < = k. The resulting 
wavenumber-dependent transport coefficient D(k) then determines a 
nonlocal transport law: 

DV24-(x) - V 2 M dx f - ^ Jo(k|x-x|)D(k)| iJiCx) . (115) 

We shall not attempt to make the form of D(k) more precise here 
(see, however, Sec. 7). In general, the transport law is nonlocal 
in time as well as in space and detailed closure approximations such 
as the DIA are required to satisfactorily determine the form of D(k,u). 

4.3; Convective Cells 
The terminology "convective cell" has been employed in multiple 

usages by the plasma physics community to the point where its denota­
tive value has essentially vanished. There are at least three conno­
tations: (1) bulk, coherent fluid motions of plasma caused by ambipolar 
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potentials or stray dc fields associated, for example, with internal 
multipole supports; (2) a specific low-frequency eigenmode of the 
two-dimensional fluid equations (see the following discussion); 
(3) any low-frequency, predominantly cross-field motion of magnetized 
plasma. Meaning (3) presently predominates in the literature, par­
ticularly in the interpretations of computer simulations; broad 
spectral activity around u = 0 would typically be cited as evidence 
for "convective cells" (Cheng and Okuda 1977, 1978). Unfortunately, 
the literature connected with this generalized definition is too 
vast to be properly discussed here. Instead, we shall briefly re­
view some of the research on the specific convective cells of conno­
tation (2). 

The need for a renormalized theory of plasma transport was 
vividly emphasized by persuasive computer simulations of Dawson and 
Okuda (Dawson et al. 1971, Okuda and Dawson 1973) . Those authors 
considered the diffusion of test particles in two-dimensional, shear-
free magnetized plasma for various values of the magnetic field B. 
They clearly observed three regimes: (1) a classical regime for 
very small B, in which D scaled as 1/B2; (2) a plateau regime for 
larger B, in which D was independent of B; (3) a Bohm-like regime 
for very large B, in which D scaled as 1/B as in the guiding center 
models. Dawson and Okuda offered simple random walk arguments, 
similar to those given in Sees. 4.1 and 4.2, which satisfactorily 
explained the most important aspects of their observations, including 
the magnetic field scaling. However, those authors did not attempt 
to discuss the precise way in which classical kinetic theory broke 
down. Krommes and Oberman (1976b)discussed this question from the 
point of view of fluctuation theory (Oberman Chap 2.3) and succeeded 
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in providing a kinetic equation whose solution would, at least in 
principle, provide a smooth transition between the classical regime (1) 
and the anomalous regimes (2) and (3). Although the techniques 
used by those authors were, in retrospect, rather primitive, at 
the time they represented a substantial advance in the theoretical 
technology available to plasma physicists. 

In brief, the salient points of the argument were as follows. 
As is well-known, classical transport follows from a Chapman-Enskog 
solution of the Balescu-Lenard kinetic equation. (A review and many 
references can be found in Kromraes 1975.) Generally, the wavenumber 
integral which appears is truncated to k>k ; in the opposite limit, 
the linearized Vlasov dielectric e which provides the shielding of 
the bare Coulomb force becomes large if the possibility of normal 
mode contributions in that regime is ignored. However, as the 
magnetic field is increased to w > u , simple estimates (Okuda and 
Dawson 1973) based on the fluctuation-dissipation theorem show that 
fluctuation energy shifts into low frequency, long wavelength modes. 
In particular the dielectric function which follows from analysis 
of the classical, linearized 2-D fluid equations predicts a shear 
mode, absent from linearized Vlasov theory, the dispersion relation 
of which is {Okuda and Dawson 1973, Krommes and Oberman 1976a,b) 

u = - i U c k A
2 / U + u c

2 / u 2) • < 1 1 6> 

Here u is the classical collisional shear viscosity specialized c 
to two dimensions (Krommes 1975). 

Krommes and Oberman noted that the appearance of the Vlasov 
dielectric resulted from the use of a perturbation theory which, in 
fact, breaks down in the hydrodynamic regime. That is, in the usual 
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hierarchy approach (Oberman Chap. 2.3) the triple cumulant is neglected. 
The resulting solution for the pair correlation introduces the 
dielectric and, when inserted into the equation for the one-body 
distribution, gives rise to the Balescu-Lenard operator. However, 
for sufficiently small k and w the triple cumulant must compete with 
the action of the streaming and Vlasov operators on the pair cumulant. 
Furthermore, a similar argument holds at every order in the hierarchy. 
By classifying the various terms which appeared in the hierarchal 
structure, Krommes and Oberman werj able to argue that, for hydro-
dynamic fluctuations, the dominant effect of the higher cumulants was 
to renormalize the single particle propagator by a linearized, but 
also renormalized, Balescu-Lenard operator. The resulting self-
consistent equation for the propagator—called the self-consistent 
field approximation by Krommes and Oberman—was, in fact, the DIA 
for the special case of thermal equilibrium which was being studied. 

The renormalized kinetic equation correctly predicted classical 
transport in the regime of weak magnetic fields. In the strong-
field regime, Krommes and Oberman used projection operator tech­
niques (cf. Sec. 10.2) and eigenfunction expansions to derive a 
nonlinear equation for the viscosity, of the form 

|Kk,U) = i-r^fdp-dq- M(k,,q) 6 (g-p-q) _ { 1 1 ? a ) 
P ' -iui+r[u(p,w)p2+M{q,u)qaJ 

where 

r = |l + u V u ' ) " 1 , (117b) 

D p s (vt
2/2Trn)4 , (117c) 

and M(k,q) is a certain dimensionless function of its arguments. 
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Equations of the form (117) also follow from detailed closures like 
the DIA applied directly to the nonlinear fluid equations. The 
solution of Eq. (117) for v exhibits a smooth transition between 
the plateau and guiding center regimes, is weakly nonlocal in both 
k and io, and seems to agree well in magnitude with the experimental 
Measurements. 

Further problems in hydrodynamics are discussed in Sec. 7 
after we develop more technical machinery in Sees. 5 and 6. 

5: The DIRECT-INTERACTION APPROXIMATION 

5.1: Introduction 
In Sec. 2 we introduced the direct-interaction approximation 

by means of rather heuristic arguments. However, the foundations of 
the approximation are much more compelling than that introductory 
discussion may have suggested. Our deepest understanding of the 
systematology is described in the next chapter. Here, we briefly 
review some of the original arguments put forth by the fluid dynami-
cists. Each reveals a subtly different aspect oi the DIA. 

In the discussions which follow, we shall consider for explicit-
ness and simplicity a model dynamical system which is a prototype for 
both the Navier-Stokes and the Vlasov equations, but which dispenses 
with a number of irrelevant details of those systems. The model 
(of. Leith 1971) is a quadratically nonlinear coupled system of N real 
variables u (t) which evolve according to 

(ar+ V K ^ = 4 f l >WV t ) uY ( t } + f « [ t ) - ( 1 1 8 ) 

+Y = 0 
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The indices can be thought of as generalized wavenumbers; they 
may also stand for vector indices, velocities, etc. The real 
constants v represent viscous damping, modal instabilities, or, 
in general, linear dynamics. The functions f Q( f c) allow for the 
possibility of external forcing, as in pipe flow; for conservative 
systems (v=0), all f's would vanish. We may assume that each mode-
coupling coefficient M „ is symmetric in its last two indices, and 
vanishes unless the sum of its indices vanishes. Additional assump­
tions which we impose to gain correspondence to real flows are that M. 
vanishes if any two of its arguments are equal or if any one vanishes, ant? 

M „ + NL o + M D = °- (119) 
otBf YaB Bya 

Finally, we assume that the "energy", 

e = hiua

2 , (120) 
a. 

is finite. Because of Eg. (119), it can readily be verified that 
e is conserved by the nonlinear interaction. 
5.2: Kraichnan's Original Arguments 

As usual, we desire a statistical solution to Eq. (118), where 
statistics may enter eithei through initial conditions u (0) or 
through the external driving force f. Inasmuch as the statistics 
of u(0) or f(t) may be arbitrarily complicated, the statistical 
solution of Eq. (118) will be extremely complex and little can 
be said in general. However, in his pioneering work on the DIA, 
Kraichnan (1958a,1959) introduced two fundamental assumptions, 
"maximal randomness" and "weak dependence", which sufficiently 
limit the class of solutions so that useful analysis can be done. 
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Maximal randomness assumes that "the statistical dependence among 
the [u^'s] is induced wholly by the non-linear terms in [Eq. (118)] 
and not at all by the initial conditions or by the external forces 
which may be acting. ... The essential qualitative content of 
[the weak dependence] principle is that the effective dynamical 
coupling and statistical interdependence among any few individual 
... amplitudes corresponding to different [a's] is very weak when 
[N] is very large." We do not attempt here to capture the full 
breadth of Kraichnan's original very expressive and complete 
discussion; we urge the serious student to read the original ref­
erence (Kraichnan 1959). 

Two illustrations of weak dependence, which we adapt from 
Kraichnan (1959) , are instructive. If a, B, and y are distinct, 
then weak dependence states that 

<u u.u > 
, " B / j- •+ 0 (N •>-»), (121a) 

<u 2 u D
2 > + <u 2><u *> (N-•*>). (121b) a S a 13 

The limits are those of a Gaussian distribution for the u's. 
However, the limits must be carefully distinguished from equalities. 
It can readily be shown that true equality in Eqs. (121) for all 
a's is incompatible with Eq. (118). (Physically, if Eq. (118) 
were the Navier-Stokes equation, it would be said that identically 
vanishing triple correlations give rise to no mean nonlinear energy 
transfer, which is ridiculous.) However, the right-hand sides of 
Eqs. (121) are compatible with the left-hand sides vanishing as 
some inverse power of N. For example, let us consider the 
"physical" (summed over all modes) quantity 
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+Y = 0 
which is related, via a normalization of order unity in N, to the 
so-called skewness factor of u. If we note that, since e is finite, 
<u 2 > ^ N Isee Eq. (119)], we can easily determine that s remains 
finite if the left-hand side of Eq. (121a) vanishes as N . 

Let us write u (t]=u , u (f) Su ', etc., and consider the 
evolution equation for the covariance U (t,f) = <u u ' >: 

^ a oi a 
(;yr + ̂  ]u (t,f) = )J M 0 <u u Qu •> + <f u '> . (122) ldt aJ a ' ?<• aBY a B Y a a 

According to maximal randomness and weak dependence, in the limit 
N->•=>, the contribution of any finite number of modes to the sum 
in Eq. (122) must become infinitesimal (though not negligible). 
Kraichnan argues that the residual very weak phase correlation 
between modes a, B, and y arises through the direct interaction 
of u , u Q, and u —that is, through the term M 0 ,u.u and its cyclic 

a B Y aBY B Y 
permutations. To quantify the effects of the direct interaction, 
let us follow Kraichnan and define Au as the difference between the 

a 
exact solution u of Eq. (118) and the vrilue u which that solution 
would take if the direct-interaction term M „ u Qu were deleted 

aBY 3 y 
from the right-hand side of Eq. (122)—that is, 

t a r + \K - V A S M -M«BYVV ( 1 2 3 ) 

r i t e 

the explicit triad under consideration will be clear from the context.) 
According to the principle of weak dependence, Au is infinitesimal. 
Upon writing " a = u

a ~ ^ u
a a n d using Eq. (118), we find to lowest order 

(More precisely, we should write something like Au |„ . However, 
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B,Y 
Equation (124) can be solved in terms of the exact infinitesimal 
response f nction Ra(t;t") which describes the change in u (t) 
which results from an impulsive perturbation in mode a at time t 1 

and thus obeys 

(ar + v J V t : t , ) - E M

a b Y V t ) V t : t ' ) = ^ t - t ' ) -<125> 
P»Y 

From Eq. (124), then, 
Au = ct dt- K o(t lt-)M a B Yu B»u Y- . (126) 

We may insert this result into Eq. (122), noting that, to lowest 
order, the contribution of the direct interaction to the triple 
correlation is 

When performing the ensemble average, we can use the principle of 
weak dependence to write, for example, 

<R_(t;t")u "u„"u u •> = R„(t;t")U (t,t")U (t",C) , (127) 

where R=<R> is the mean response function. The term of Eq. (122) 
involving f can be similarly evaluated, and the final equation 
for the covariance becomes 

rt 
') ( & + v 0)D BCt.f) - B I Y » a 6 A Y a L d t " R 3 ( t ? t , ' ) U Y ( t ' t " ) U « < t ' , ' t ' 

+ h I M ^ B Y ] dt"Ra(f:t")uB(t,t")UY(t,t" 

+ dt"Ro((t,;t")Fa(t;t") , (128) 
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where we used the symmetry of M to combine two terms and where 

F <t;t") = <f (t)f (t")> . (129) 
a a a 

Because of Eq. (119), the nonlinear terms of Eq. (128) conserve the 
total energy U (t,t)—an obvious consistency condition which any 
sensible closure should respect. 

To find an independent equation for the as-yet unknown mean 
response function, we turn to the exact equation for the response 
6u to an infinitesimal perturbation 6n<5(t-t'): 

(& + v J < f i V = E M B B Y < V V = ^ f i f t - t ' ' • t l 3 0 ) 

Since the perturbation was introduced into mode a, weak dependence 
implies that 5u„ and fiu must be infinitesimal compared to 6u 

c p y r a 
Correct to first order in 6f\, the equation for 6u becomes 

(are; + V S = JXaisVua + V P ' V U « + W • ( 1 3 1 1 

a, p 

where the prime indicates that we have separated out the last two 
explicit terms in Eq. (131); of these, the term in <5u„ can be 
neglected by weak dependence. The solution to Eq. (131) is, in 
obvious notation, 

6uY = [VR^t.-t-jM^u^u^ . (132) 

We again USG weak independence to factor the ensemble average 
required in Eq. (130). In doing so, we may replace <R'> by R 
because the explicit terms deleted from the sum in Eq. (131) 
contribute negligibly in the limit N+«. The final equation for 
Ra(t;t') = <5ua(t)/6n> becomes 
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( d T + Va) Ra ( t ; t'> - I M a e Y M 7 3 a | , d t " R
Y

C t ; t " ) U 6 ( t ; t " ) R a ( t " ; t , ) 

= <5(t- f ) . (133) 

Equations (128) and (133) form a coupled and complete, albeit 
complicated, system which determines R and U. 

At this point, it useful to ask why the DIA is not essentially 
exact, since it was derived by neglecting terms of high order in 
infinitesimal amplitudes. The point, of course, is that there 
are very many of such terms, so that their sum can give a finite 
contribution as N-*™even though each term is individually small. 
The size of these contributions (from the indirect interactions) 
can be quantified in terms of the sk°wness parameter introduced 
in Sec. 6. However, in the present context the reasonableness of 
the DIA must be judged on other grounds. In fact, even the quali­
tative behavior of the solutions for R and U is not obvious from 
inspection of Eqs. (128) and (133). It is not clear, for example, 
that U (t,t) remains positive, as it must. Such a requirement is 
called a realizability constraint. It turns out that such constraints 
are notoriously hard to prove directly from the statistical equa­
tions. However, Kraichnan (1958b, 1961) noted that if an explicit 
model dynamical system could be found which the DIA described 
exactly, many of the constraints would of necessity be satisfied 
simply because the model system must have a statistical solution. 
Several such "stochastic model" systems have been discovered; we 
describe these in the next two sub-sections. 
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5.3: Generalized Langf-vin Representation 
To motivate our discussion, let us write Eqs. (133) and (128) 

in the form 

(dT + N , a ^ R a ( t ; t ' ) + | dt"£a(t,t")Ra(t";f) = 6<t-f) , (134) 

(dT+ vJ Ua ( t' t' ) + f^f'E^t^t-jU^t-^') 
'—CO 

1 t' 
dt"Ra(t';t")[Fa(t,t") + Fa(t,t")] , (135) 

where 
1 ™ , t ' t " ) " " 6

I
T

M « S Y M Y B a R Y ( t ; t " ) U
B

( t ' t " ) ' ( 1 3 6 ) a 

Fa(t,t") E hi M^ YU B(t rt")U y(t,t") . (137) 

Clearly the term I in Eq. (134) describes the nonlinear relaxation 
of the response in mode a due to coupling to all other modes. The 
same term appears in Eq. (135) and describes a nonlinear energy 
drain on mode a. This effect is balanced by the stirring (energy 
input) due to f and described by F , as well as by the source 
term F , which represents nonlinear stirring due to mode-mode 
interactions. 

We shall seek a generalized Langevin equation which contains 
the physics described by Eqs. (134)-(137). A generalized Langevin 
equation (cf. Sec. 10.2) is an apparently linear, forced dynamical 
equation of the form (Mori 1965a, Krommes 1975) 

(& + V « ) U « + f - t , a f « ( t ' t , ) u
0

( t , ) = f a + ( t ) ' (138) 

t where to and f are chosen to properly represent the nonlinear 
effects of all the other modes on mode a, and such that its 
statistical solution agrees with the exact or approximate statistics 
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of the original system. To obtain agreement with the left-hand 
side of Eq. (135), we must clearly choose (Kraichnan 1970a, Leith 
1971) 

tya(t,f) = £a(t,t') . (139) 

The Langevin representation is completed by writing 

fa':t) = fQ(t) + La(t) , (140) 

where 

V f c ) = 72 £ M a R Y V t K

Y

t ( t ) • U 4 U 

The random fields f, and F, ' are chosen to be statistically indepen­
dent of each other, the initial velocity field u (0) , and f . and to 

J a ' a' 
have the same covariance as the true velocity (Kraichnan 1970a): 

< e a ( t ) e a ( f >> = < s a

t ( t ) c c l

t ( t ' ) > = u n ( t , t ' i . d42) 

It can be readily verified that 

<f (t)f (t')> = F (t,t') (143) 
a a a 

and that the solution of Eq. (138) agrees with Eqs. (134) and (135). 
5.4: Random Coupling Models 

Historically, the first stochastic model representation of the 
DIA was the so-called random coupling model. In his original 
formulation, Kraichnan (1958b) modified Eq. (118) to read 

(£t + v J v t l • •» L w w 3 ( t ) V f c ) + f « ( t ) - ( 1 4 4 ) 

0t*rp 
+y = 0 

Here the new factor <l>agY is fully symmetric in a, (3. and y and is 

invariant to a-»--o, etc., but otherwise assumes the value ±1 at 
random for each triad (OIFB,Y)- Thus, in the model the fundamental 
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triadic nonlinear couplings are randomly phased, as opposed to those 
of the original system, which are coherently phased. When the 
perturbation series for the covariance and response functions of 
the model are formed, it can be shown that the additional randomness 
causes all terms except those of the DIA to vanish as N-»-M. In 
later work, Kraichnan (1961) showed that the effect of <t> g v can be 
understood in terms of fictitious, randomly phased couplings 
between an infinite number of copies of the true system (118). 

Because the triad couplings of the model are randomly phased, 
it follows that the DIA cannot take into account individual flow 
or phase-space structures like solitons (which, by definition, 
can be described only by coherent mode-mode interactions). For 
the same reason, the DIA does not correctly describe phase space 
trapping or the convection of small-scale fluctuations by large-
scale ones (Kraichnan 195Ba,b; Sec. 7.3). The random-coupling 
representation also lends support to the description of the DIA as 
"the most Gaussian approximation consistent with nonlinearity." 

For the application to Vlasov plasma, see Orszag and Kraichnan (1967). 

5.5: Series Reversion 
Very recently, Kraichnan (1978) has discussed yet another way 

of deriving the DIA equations as well as various more sophisticated 
approximations. The idea is based on the well-known technique of 
series reversion, applied here to functions rather than numbers. 
We illustrate with the description of response, for which the 
method involves expanding the unperturbed (linear) response function 
R Q (t;f) in powers of the renormalized function R (t;f). 

One begins with the exact equation for the stochastic response 
function R [see Eq. (130)]: 
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,(o)l -1. 
a ( t ; t , ) " I M

a B Y U B ( t ) V t ; t , ) = fi(t-f) e.Y 
(145) 

If we treat the .near term as formally small (in general, it 
is large) and assume for the moment that 
expanded as a functional of R^0' and u • 

a a 

u^ xs given, R can be 

R (t;f ) = R ( o )(t;f) + 

JR< 0 )(t.-f 
dtR(0)(t;t) J M a B YU B(t) 

> + ~dtR(o)(t;t) 

vyvv-v^r^ (146) 

Upon averaging Eq. (146) and assuming <u>=0, we find a functional 
series representation for R in terms of R^°) and the covariance U: 

R (t;f) = R<°>(t;t') + [ dtR ( o )(t;t) T H D M a « « 4' BY Y Y'~B,a B,Y 
dtR<o:)(t,-t)UR(t,t)R(o)(t;f) + ••• . 

We may now revert this series to express R^0' in terms of R : 

R ( 0 )(t;f) = R (t,-f) 
a a 

RHHROR + 

(147) 

(148) 

Finally, we insert Eq. (148) into each term of Eq, (146), collect 
terms with like powers of M, substitute the result into Eq. (145), 
and average. To lowest order, the procedure is trivial and gives 
rise to precisely the DIA equation (134). The reversion for the 
covariance is also straightforward, though more complicated, and 
to lowest order leads to Eq. (135). 

As presented here, the reversion is little more than an efficient 
algorithm for generating the DIA and, perhaps, higher order approxi­
mations. (The latter may be badly behaved unless a further (vertex) 
renormalization is performed.) The physical basis for a given 
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truncation of the reverted series must be sought elsewhere. (See 
the next section for more information in this respect.) Perhaps its 
greatest success has been to provide a systematic algorithm for 
generating the so-called Lagrangian-history schemes, originally 
proposed by Kraichnan (1965) on the basis of more or less heuris­
tic modifications of the DIA. We shall describe the basic technique 
only briefly, as little has been done in applying the Lagrangian 
schemes to plasmas. 

A problem with the DIA as applied to the Navier-Stokes fluid 
is its lack of so-called random Galilean invariance, which 
results in an incorrect inertial-range energy spectrum (see 
Sec. 7.3). Kraichnan traced the problem to the use of Eulerian 
functions in the statistical description and suggested that an 
improved treatment would result by considering the extended function 
u(x,t|s), which is the velocity at (the measuring) time s of a 
fluid element which passed through point x at (the labeling) time t. 
The quantity u(xrt|t) is the usual Eulerian velocity, while u(x,0|s) 
is the conventional Lagrangian velocity. Associated with u is a 
generalized response function R(x,t|s;x',t'|s'). Now Kraichnan (1978) 
noted that the zeroth order generalized response function R is in 
fact independent of the measuring times: 

R ( 0 )(x,t|s;x' ff|s') = R ( 0 >(x,t|t;x>,f|f) . 

This means that in the expansion of R(x,t| s;x',t'| s') corresponding 
to Eq. (146) the measuring times of each R l ' which appear can be 
changed at will without affecting the value of the series. How­
ever, the procedure of reversion followed by truncation at finite 
order is sensitive to the way the measuring times are altered. That 
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is, the form of the reverted series is not unique. Kraichnan 
used this freedom to show how two reasonable modifications of the 
measuring times gave rise to the so-called Lagrangian-history DIA 
and the so-called abridged Lagrangian-history DIA (Kraichnan 1965) 
as the first terms in certain systematic expansions which are 
random Galilean invariant at each order—a substantial improve­
ment over the Eulerian renormalizations. We refer the reader 
to Kraici.nan (1978) for a considerably more detailed discussion. 

Virtually nothing has been done in applying Lagrangian closures 
to plasmas. We suggest that this may be a fruitful area for fur­
ther research, although we caution (see also Sec. 1) that random 
Galilean invariance seems to be less troublesome for the typical 
classes of laboratory plasma turbulence than for strongly turbu­
lent Navier-Stokes flows. 
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6: SYSTBMATOLOGY of RENORMALIZATIOH 

6.1: Introduction 
In the preceding chapters we learned about the following tech­

niques for renormalization: 
(1) summation of perturbation theory to all orders; 
(2) cumulant expansion and truncation; 
(3) reversion of perturbation series; 
(4) equivalent Langevin representations; 
(5) random coupling models. 

Methods (1) —13) can in principle furnish an exact representation 
of the solution (when it is analytic; see Kraichnan (19 66) for a 
counterexample); however, in practice the expansions are sufficiently 
complex and opaque that it is feasible to extract only a low order 
renormalization like the DIA. Methods (4) and (5) suffer the 
added disadvantage that no systematology is immediately apparent 
whereby one can improve over the lowest order result. (However, 
Kraichnan (1970a)has reported some work in this direction.) Thus, 
the nature of the renormalized approximations remains somewhat 
mystical—in the DIA, for example, what physics has really been 
neglected? in some sense, what is required is a useful representa­
tion of the exact answer—a generalized integral representation, 
for example—from which, by a systematic scheme, perturbative or 
otherwise, useful approximations emerge. We must stress at the 
outset that no completely satisfactory formalism has yet been pro­
posed. Nevertheless, substantial progress has been made. In this 
chapter we describe the important work of Martin, Siggia, and Rose 
(1973), which provided a quantum leap forward in our understanding 
of the systematology. (Since the procedure to be described extends 
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to the classical domain well-known techniques of quantum field theory 
(DeDominicis and Martin 1964), we might also say that MSR provided 
a quantum leap backwards.) In the limited space available to us, 
we will be unable to do complete justice to either the philosophy 
or mathematical techniques underlying the MSR work. We urge the 
sericis reader to study the original references (Martin et al. 
1973, Rose 1974; also Phythian 1975, 1976), which are very 
good and contain a wealth of information. We shall follow these 
references closely (but not exclusively). 

Consider a random function vp parametrized by a set of phase space 
coordinates denoted collectively by the symbol "1". The set "1" 
may include continuous labels like the time t , the position ;:., 
and the velocity v., as well as discrete indices like a species 
label Sj, vector components, etc. The notation "1" will denote the set 
"1" excluding the time t. . We will adopt an integration-suirmation 
convention over repeated arguments. Let I|I obey an equation of the form 

3 i|)(l) = U(l) + U(l,2)<|i(2) + !?U(l,2,3)<M2)t)j(3) , (149) 

where the coupling coefficients or "bare vertices" U =U(l,2,... , n) 
are known, non-random functions local in time [e.g., 0(1,2,3) 
«fi(t1 - t,)6(t. - t g) ] . It is assumed that Gaussian initial conditions 
are imposed at t=t ; the goal is to determine the statistical 
behavior of ip for t>t Q. An important example of Eq. (149) is 
the Vlasov-Poisson system 

9 f + v-vf + S-Sf = 0, (150a) 

£ = - $ * , V2* = 4irjnq/dvf , (150b) 
s 

for which we can iden t i fy 
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iMD = *U> , (151a) 

U(l) = 0 , (151b) 

U(l,2) =-v.? 16(l-2) , U51c) 

U(l,2,3) = [1(1,2) *'S1S (1 - 3) + (2**3)] , (151d) 

£(1,2) s -^ 1|x 1-x 2r 1(nq) 26(t 1- t 2) . (151e) 

The techniques we will develop can be extended to the important 
practical cases of random l)'s (including the case of a random 
driving force U.) (Deker and Haake 1975a, Faythian 1976, Deker 1979), 
polynomial nonlinearities of arbitrary finite order (cf. Deker 
and Haake 1975b), and non-Gaussian initial conditions (Deker 
1979, Rose 1979). 

Let us skatch the problems one encounters in developing a 
statistical theory of Eq. (149), and indicate the philosophy of 
the renormalization technique we shall use to deal with those 
problems. (Here we expand slightly on the discussion in Martin 
et al. (1973).] Let us decompose \J) into mean and fluctuating parts 
and use the cumulant notation of App. A. For purposes of dimensional 
analysis, let us assume that at t= 0 , «t|iz» =1, «I(J3»= o, corres­
ponding to an initially Gaussian state. Then for times t_> o , 
the first several members of the cumulant hierarchy For Eq. (149) 
are schematically 

E9t - (02 + hV3<\\») ]<\\» - %Q 3«0J 2»= <i|)(0)>6(t)+O ,(152a) 

O t - U 2
U ) ) « I J J 2 » - Js»3«i|)3»= <5(t) , (152b) 

O t - U 2
U ) ) « I J J 3 » - U 3 « ^ z » 2 - 1S{J3«4)"»= o , (152c) 
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where we have introduced the linearized mean field operator 

U 2 ( £ ) H U2 + V3<*ti> - (153) 

Now if the system remained Gaussian for all times, the triple 
cumulant would always vanish and the fluctuations «I(JZ» =<6ip2> 
would evolve in an uninteresting (quasi-) linear fashion in the 
mean field. However, because «ijj3» is driven by«ij;2»2 , non-
Gaussian triple correlations must always build up in the course of 
time. Noting this, one might try the "quasinormal" hypothesis, 
in which the fourth cumulant is taken to vanish as in the Gaussian 
state; according to (152c), this determines a nonvanishing triple 
cumulant according to 

«v[i3» - u«i|)2»2 / O c - u 2
( { , )) 

H«ijj3» . (154) 
qn 

If «t|j3» were small, tfrei to lowest order in «I(J3» T qn 

«tfj2» = (3 - u ?
( S , ) ) _ 1 E «I|J2» , (155) 

the quasilinear approximation. Iterating Eq. (152b) with Eqs. (154) 
and (155), we get 

O t - U 2
( ! l ) ) «i|>2» « 1 + l 5 U 3

2 / O t - U 2
( i l ) ) 3 6(t) , (156) 

which determines «ijt2» in terms of the dimensionless parameter 
0_z/(3t.-U, ) 3 and is a reasonable approximation if that paramet 
is small. This is the approach followed in the usual "random 
phase" approximation to weak plasma turbulence (Sagdeev and Galeev 
1969). However, the expansion parameter is not small in several 
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important s i t u a t i o n s . In the f i r s t , the nonl inear coupling i s 

i n t r i n s i c a l l y l a rqe , iJ 2/U 3 >>1 , as in the Navier-Stokes equat ion 
i -y 3 2 

for sufficiently large forcing and sufficiently small viscosity. 
In the second, the nonlinear coupling may remain small, but there 
are resonances so that 3 - U ^ •) + 0. This can happen either 
because of linear resonances, 3 -U = 0, or because the full 
mean field, arising from the term U <t|t>, supports a normal mode. 
As an explicit example, we may recall the linear response function 
for plasma (Ichimaru 1973): 

R ( 0 ) * <v;v') = dvg+ (v;v) 5(v-v') + (4irik7k2)-Sf (v) 

x[e ( J l )] (S,ui)I(nq}_|"d5g* ̂  (v;v')| , (157a) 

g* (v;v«) = [-i(w-£-v+ i6)] _ 16 (v-v') , (157b) 
K , IU 

£()l)(£,u>) = 1 - il-B— dvdvg* (v;v)$.-f=— , (157c) 
L ^2 J K,U) 3T' 

where 5 is a positive infinitesimal. Singularities in R^°' arise 
either from the unperturbed propagator q^°' , which describes reson-

(a) ant particles, or from E , the (linear) dielectric function, 
which (for real m) nearly vanishes at the normal mode frequencies. 

These pathologies of linear theory are vitiated, to a large 
extent, nonlinearly because of two effects. First, in a turbulent 
or stochastic state correlation and response functions decay because 
of nonlinear mixing; this decay is manifested as a (generalized) 
resonance broadening which resolves t*e singularities of (3 - U, ) _ 1 

mentioned above. Second, the proper dlmensionless measure of the 

but rather the skewness parameter 
degree of non-Gaussianity is not U,2/(3 -UJ ')* H « I [ J 3 » 2 / « * 2 » 

t z qn v ql 
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•=• _ « i ( / 3 » 

r = — - — , (158) 

which is measured with respect to the "true" (fully nonlinear, 
interacting) fluctuations. In certain situations, the skewness and 
other statistical observables can be small even though naive 
perturbation theory fails. The renormalized theory we shall 
develop treats the skewness or certain higher-order statistical 
functions as self-consistently determined small expansion parameters. 

In developing any renormalized theory, one should keep in mind 
the following very important technical point: 

If any function can exhibit resonant behavior, then 
approximations should be made on the inverse of that (159) 
function. 

Thus, in the renormalized theory resonance broadening effects are 
handled by dealing not with «I|J2» itself, but with its inverse; 
we write Eq. (152b) in the form 

.Kl^sT1 - (3 - U 2
U ) ) r A«li!2»"1 = I, (160) 

thus defining and shifting attention to the so-Galled "mass operator" 

E = -VjU «i|ia» / «i|i2» , (161) 

the deviation of «i|i2» from its non-interacting value. For 
finite E, «\|ii» itself is now well-defined. The simplest esti­
mates for I are the quasinormal (also called quasilinear) result 

E = - ff,(8 - a _ < 4 ) ) " V v » U, , (162) 
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which follows from Eq. (154), and the renormalized version thereof, 

I = _ jj «,i,2>̂ u , (163) 

which follows by heuristically replacing (9 - u
7 ^ ' ) _ 1 i n E<3 - (154) 

(Hi -1 by its renormalized value (3 -U + EJ s 

«i|j3» = U «ijj2» 3 . (164) 

Equations (163) and (160), which afford a completely self-consistent 
determination of «ij)z» , are the DIA. (Our somewhat schematic nota­
tion does not adequately distinguish between response and correlation 
functions.) The heuristic procedure we used to obtain it can be 
formalized, as we show in great detail in the remainder of this 
chapter. 

In a certain sense, the DIA can be thought of as the most Gaus­
sian approximation consistent with nonlinearity. That is, we see 
by examining Eqs. (152c) and (164) that the fourth cumulant 
gives rise to two kinds of effects: resonance broadening (of the 
operator acting on <Kij>3» ), which according to (152b) ensures 
the complete self-consistency of the fluctuations «i|)2»; and 
"intrinsically non-Gaussian" effects, which represent everything 
else. Let us make this precise by introducing a new function K 
such that 

«ij»3» a !sU3K<:<iJ>J» , (165) 

I 5 -*5Ef3KU3 . (166) 

Comparing Eqs. (165), (164), and (152b), we can write 

K = «i|)2»2 + «i);',» = «\fi2»2 + AK . (167) 
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The renormalization is now reduced to determining the non-Gaussian 
part AK of K. (It might have been expected that A K 5 K - « I | J 2 » 2 

should involve the factor 3 rather than 1 as the multiplier of «i);2x?. 
This does not occur, in part, because when passing from the moment 
to the cumulant hierarchy one factor of «i|j2»2 cancels out, and, 
in part, because of the way K is normalized and, later, symmetrized. 
However, this does not vitiate the interpretation of AK as a non-
Gaussian correction.) 

In accordance with the rule (159), we shall actually approximate 
K . To do this, let us make things dimensionless by defining 

G 5 «iji2 » , 

Y E G 3£u , (168) 

K = G"2K . 

Then, from Eqs. (164) and (165), 

Y ^ r"K _ 1, 
(169) 

l % (F K~lT) G~ l , 

in which the inverse K~ appears naturally. We write 

K " 1 - i = Afir^Cr} , (170-

so the fundamental problem is to reasonably determine the functional 
form of the non-Gaussian correction A (K ). 

Equation (170) is called the Bethe-Salpeter equation (BSE) 
(Krommes 1978a). The BSE can be thought of as a self-consistent 
equation for K, since from Eq. (169) F and K are related according to 
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K = 7/y. Given the exact functional form of A(K ) , then, we can 
hope to generate a self-consistent equation for K by expanding (or 
otherwise approximating) A(K - 1) in terms of "f = K 7 . The BSE then 
determines K{y] , whereupon, reverting to dimensional variables and 
replacing (J by y for later convenience, 

I = -VfK(G,i) y 

= -'-iYGG-y - ^7AK{G,Y}Y • (171) 

This completes the determination of the mass operator, including 
non-Gaussian corrections to the resonance broadening. Needless to 
say, solution of the resulting nonlinear equation for G represents 
a formidable task. 

6.2: The Renormalized Equations of Martin, Siggia, and Rose 
We now develop in some detail the renormalized equations dis­

cussed above. In this section we ask the reader to take certain 
technical results on faith so that we can keep the overall scheme as 
uncluttered as possible. We shall return in the next section to the 
technical justification of the approach. To begin, we must stress 
a vital point, apparently first stated clearly by Kraichnan (1958a,b, 
1959): to effect closure of the statistical equations, it will be 
necessary to consider not only fluctuation functions—e.g., 
C= < Svjj (1> Si|> (2> >—but also response functions—e.g., the average 
response R to an infinitesimal external perturbation. Indeed, both 
kinds of quantities entered into the discussion of Sec. 6.1—for 

(01 _ i example, ( 3
t
- u

2 ' is a linear response function—although there we 
deliberately blurred the distinction. The point is that any instantaneous 
fluctuation in the medium can be considc -id as i source to which the 
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medium responds. The probability of fluctuation (emission) is described, 

in some sense, by C, the response (absorption) by R. Isecause the 

response of the medium must be self-consistent, and because R describes 

infinitesimal response whereas the fluctuations are of finite size, 

the relation between C and R is not straightforward; we shall find 

nonlinearly coupled equations for C and R. 

The unaveraged infinitesimal response R to a source added to 

Eq. (149) is defined by 

R(l; l ' ) = 6i|)(l)/fifi(l') |~ = 0 (172) 

a n d o b e y s 

3 t R ( l ; l , > = U ( 1 , 2 ) R ( 2 ; 1 ' ) + 4 U ( 1 , 2 , 3 ) [ * ( 2 ) R ( 3 ; 1 ' ) + R ( 2 ; 1 ' ) * ( 3 ) ] 

+ 6 ( 1 - 1 ' ) . (173) 

(Though the two bracketed terms of Eq. (173) are identical, we choose 
the present form for later convenience.) Now the definition (172) is 
not convenient because the mean response R = <R> does not appear 
manifestly conjugate to, or symmetric with, C H <6vpS\p>. Consider, 
however, an operator $ which does not commute with I|I (Martin et al. 1973) 
and form the combination 

r(l;l') H H ( t - f ) [<|i(l),$(l')] , 

where [A,B] =AB - BA. The equation of motion for r is 

8 r(lfl') » H(t- t'HUtl,2) [i|»(2) ,$(!•)] + #(1,2,3) t*(2H(3) ,$(1')1} 

+ Sit- t') t^tl,t),$(l',t)] . (174) 

Recalling that the U's are local in time and noting the identity 
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[AB,C] =A[B,C] + [A,ClB, we g e t 

3 r ( l ; l ' ) = U ( l , 2 ) r ( 2 ; l ' ) + %U ( 1 , 2, 3) [i|i (2) r (3 ; 1 • ) + r (2 ; 1 ' ) * (3) ] 

+ fi(t-t') l i f i ( l . t ) , $ ( l ' , t ) ] . (175) 

T h e r e f o r e , i f we choose ty such t h a t t h e e q u a l - t i m e c a n o n i c a l 

commutation r e l a t i o n 

t t H i , t ) , H i ' , t } ] = & ( i - y) t 1 7 6 ^ 

is satisfied, then Eq. (175) is formally identical to Eq. (173). 
This is very suggestive; however, we cannot conclude that r = R. 
The function R is a c-number which commutes with i|i; f, however, is 
an operator which generally does not commute with ty. Nevertheless, 
what we will be able to show (Hose 1974) is that, with an appro­
priate definition of J and an averaging operation <...>, the means 
of r and R agree, 

<r(l;l')> = <R(1;1')> = R(l;l') . (177) 

We will also be able to show that the mean of any product of ip * s 
and ijj's which begins on the left with ij) vanishes, 

<$...> = 0 , (178) 

so 

<r(l;l')> = H(t-t')<t|i(l) $(!')> 
= Htt-f) «ifi(l)$(l')» . (179) 

The last line followed since <$> = (). 

It is convenient to introduce the time-ordering operation T: 
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T[A(t)B(t')] = [A(t]B(t')l 

H(t-t')A(t]B(t') + alt'-t)B(t')A(t) . (180) 

In view of Eq. (178), Eq. (179) can then be compactly written as 

R(l;l') = «IJJ(1)IH1')» (181) 

F u r t h e r m o r e , b e c a u s e [iji ( t ) , IJJ ( t • ) ] ; 0 , t ime o r d e r i n g i s i r r e l e v a n t 

f o r f u n c t i o n s of i|i a l o n e and we can w r i t e 

C ( l , l ' ) ? <6iMU<5<l>d*)> = « i D ( l ) i t ) ( l ' ) » + . (182) 

The con jugacy be tween C and R i s now c l e a r upon comparing (181) and 

( 1 8 2 ) . We can c a r r y t h e s y m m e t r i z a t i o n s t i l l f u r t h e r by c o l l e c t i n g 

tjj and ip i n a two-component v e c t o r o p e r a t o r cy, 

ty(l) 

&?(1): 

I p d ) ' 

.$(11, 

'<*(1 ;> ' 

0 . 
t 

V 1 ' ] 
$_^> 

(183) 

(184) 

and by defining a matrix G of fluctuation and response functions 

GU.l'l H «^(l)lp(l,)» + 

C(l,l') R(l;l')' 

R(l'jl) 0 
(185) 

[G =0 because <$ (1)$(1')> = 0 according to (178).] For functions 
like G(l,l') we shall extend the notation so that "1" includes the 
"spin" index " + " or "-". With this convention, G is totally symmetric, 
G(l,l') =G(1',1) . 
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It will turn out (see Sec. 6.3) that fc? obeys a vector equation 

similar in form to Eq. (149): 

-ia3$(l) = yd) + Y d , 2)3?(2) + I,Y(1.2,3)JJ(2)1P(3) , (186) 

where 

xa 5 
0 1 
-1 0 

(187a) 

Y^] = U(l) , (187b) 

•*(-»+] = U(l,2) , (187c) 

fl 2 31 
Y L ' + 'J =Udr2,3) ( 1 8 7 d ) 

and the matrix Y'S can be taken to be totally symmetric, with non-
vanishing components involving exactly one "-" spin index. Because 
ZJ is noncommuting, the symmetrization is not entirely trivial. 
The goal is now to find a convenient way of manipulating the moments 
of Eq. (186). By obvious extension of the cumulant generating 
functionals for fluctuation functions discussed in App. A, let us 
define 

s H exptt?(l)n(Dl (188a) 

and the extended cumulant genera t ing func t iona l 

W{r\) 5 ln<s> + . (138b) 

The quantity n = (n+,Ti_) is a c-number. The fundamental observables 
then follow as 
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« | i ( i )> = fiw/6n+li) , n = 0 , 

C ( l , l ' ) = < 5 2 W / 6 n + ( l ) 6 n + ( l ' ) | n = 0 , (189) 

R ( l ; l ' ) = < S 2 W / 6 n + ( l U n _ ( l ' ) . Q 

and in genera l 

«ty(l). . .Zp(n)» = G n ( l , . . . , n ) , Q , 

G n ( l , . . . , n ) = 6 n W / 6 n ( l ) . . . 6 n ( n ) 

= 6 G n ( l , . . . r n - l ) / < S n ( n ) . (190) 

The equation of motion for «6j»n is 

3 t«af(i;» n = ian(l) + Ot&?(l)S>+/<S>+ , (191) 

where the explicit term in n arises from the time derivative of 
the Heaviside function implicit in the time ordering. For example, 
through two terms, 

S = 1 + ty(T)n(T) 

and 

3 <ty(l)S>+ = 3tt<a?(l)> + <8?(l)Z?(T)>+n(T)] 

= Ota?(l)> + at[H(t-t)<6{(l)Z?(T)> 

+ H(t-t)<Z?(I)£?(l)>]n(D 

= o t#(l)S> + fi(t-t') [flj(D ,q(T)]n(T) . (192) 

For 3 Vf we use the right-hand side of Eq. (186) . Noting that 
(ia) =-ia and that 
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<Z?(1)Z?(2)S>+ j '<$(1)S> 
<s>, 6n(2) <s>. 

<fi?(l)S:> 1 f <$(2)S> 
<s>, <s>. 

= d?(l, 2) + «^(1}»T1 «8}(2)»n , (193) 

we get the fundamental equation of motion as 

-io3 «#(l)» n = Y(1) + n(D + yd,2) «lH(2)»n 

+ '-SYll, 2,3)[ «t?(2)»n «^(3)» n + Gn(2,3)] . (194) 

S u c c e s s i v e f u n c . t i o n a l d i f f e r e n t i a t i o n s of Eq. (194) w i t h r e s p e c t t o n 

g e n e r a t e t h e cvmwilant h i e r a r c h y i n t h e 2? s p a c e — f o r example , 

-i<?3 G n ( l , l ' ) = 6 ( 1 . 1 ' ) + Y d f 2 ) G r l ( 2 , l ' ) + y ( 1 , 2, 3) «Sf (2) » n G n (3 , 1 • ) 

+ i j Y ( l , 2 r 3 ) G n ( 2 , 3 , l * ) (195) 

Were we to just proceed in this vein, we would gain only a 
symmetric representation of the hierarchy of equations which would 
follow by standard techniques directly from Eqs. (149) and (175) . 
We wish, however, to effect closure by expressing G in terms of G_ 
(where the subscript indicates the number of arguments). To do this, 
we treat the correlation functions for n ^2 as functionals not of n 
but rather of «ft» . This will enable us to eliminate n entirely 
from the theory. The point is that n serves as a system probe. 
(Formally, we will learn in Sec. 6.3 that the generating function w 
can be interpreted as the system's distribution functional in 
interaction representation, with ty(l)nd) being the perturbing 
Hamiltonian.) As n is varied, all moments «95»n , G n , G n , ... 
vary in concert. Thus, an increment 6 «8i»ri [= (6 «!»s>n /6n)6n = G.fin] 
is related to increments fiG^ , implying that functional differential 
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equations exist between the observables. Since n does not appear 
explicitly in these equations, we can set it '.o zero with impunity. 

Formally, the change of variables from n to «5j» is accomplished 
via a Legendre transform (Deker and Haake 1975a). Define 

!{<!*>} = Wfnl - <t*(l)>n(l) . (196) 

We shall define the renormalized vertices V by derivatives of L 

with respect to <Jj>: 

r(l) = -n(l) , (198a) 

r ^ ' 2 « 3 ) - - i%)3)'>2) • ( i 9 8 c ) 

Since GG" 1 =1 implies 8G _ 1 = -G _ 18G G* 1 and since 6/6<^> = G _ 16/6n , 
we also have 

r(l,2,3) = G"1Cl,T)G~1(2,2')G"1(3,I)G(r,2,I) . (199) 

The matrix G 3 ^r 5 = F- generalizes the skewness parameter introduced 

e a r l i e r . 

Inserting Eq. (199) into (195) , we find the Dyson equation 

[ - ioa 5 (1 -2 ) - Y ( 1 , 2 ) - y{l,2,3)<m.3)> + ia,2)]G{2,l') = 5 ( 1 . 1 ' ) , 

(2001 

where 
1(1,1) = - i5Y( l ,2 ,3)G(2 ,2")G(3 ,3)r(3",I ,r ) . (201) 
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According to (159), the Dyson equation should be thought of as an 

equation for r 2 = - G ~ . An independent equat ion for T 3 follows by 

d i f f e r e n t i a t i n g the Dyson equat ion: 

r (1 2 3) - - 6 G " ^ X ' 2 > - v ( i 2 3) - 6Z(1,2) (202) 

In general, this is a functional differential equation which deter­
mines r. Detailed considerations (Rose 1974, Deker 1979) show that 
when the initial conditions are Gaussian E depends on <$> only 
implicitly, via its dependence on G,. In this case, 

_6£_ = (_6GJ f 5<Bj> [S<ty>J [ 

= GG r (S]-«"[ = GG rKG r + GG (203) 

In summary, then, we have derived, for the case of Gaussian 
initial conditions, the set of exact equations 

where 

r = y - (<SJ:/6G)GG r, 

G~ l- (G ( 0> J1 - y<H> + E , 

Y r = (G < 0 ) ) _ 1 «?> - fcY<*>* - %YG , 

(G ( 0 ) y 1 (1,2) 5 -iaat6(l,2) - Yd,2) 

(204a) 

(204b) 

(204c) 

(204d) 

(205) 

If the last term of (202) were small in some sense, we would find 

r(l,2,3) * Yd,2,3) . (206) 
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This i s , i n f a c t , the DIA i n m a t r i x form: 

^DIA^ ~ ^ G G y • ( 2 0 7 ) 

To be more specific, we can take matrix components. The equation for 
R=G +_follows from the (-,-) component of Eq. (I'OO) : 

[3t 6(1,2) - U(l,2) - U(1,2,3)«M3)> + 5i_+(1, 2) ) R (2,1 •) 

= 4(1-1') (208) 

l_+a,T) = -U(1,2,3)P.(2,2)C(3,3")U(2,3,T) , (209) 

where we recalled that G =0 and that the y's are symmetric and 
contain exactly one "-". Similarly, C is obtained from the (-,+) 
component: 

[3t6(l,2) - U(l,2) - U(1,2,3)«J)(3)> + E_+(1,2)]C(2,1') 
+ Z__(l,2)Rt (2,1') = 0 , (210) 

where 
R^l^) = R(2,l) (211) 

and 
£__(1,T) = -J5U(1,2,3)C(2,2")C(3,I)0"(T,2,3) . (212) 

We shall examine the consequences of the DIA for plasmas more 
specifically in Sees. 8 and 9. 

If the nonlinearity is weak, the most obvious way of improving 
Eq. (206) is to expand Eq. (204a) in powers of y. 

r = Y + YGYGG Y + • • • . (213> 

However, for strong nonlinearity it turns out (see Sees. 6.4 and 6.5) 
that this perturbation theory is ill-motivated and ill-behaved. 
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According to Martin e t a l . (1973) a b e t t e r scheme i s to expand Eq. (204a) 

in powers of r—tha t i s , to expand the (unobservable) bare ve r t ex 

in terms of the (observable) renormalized v e r t e x : 

Y = r - r G T G G r + ••• . (214) 

We will discuss this procedure in more detail later. It is well-
behaved through order T 3, but not beyond. In Sec. 6.5 we suggest a 
yet more sophisticated closure which generalizes Eq. (214). 

6.3: The Operator ij) and Some Technical Details of the functional Approach 

Let us now discuss some of the technical details of the above scheme. 
A realization of the operator $ which satisfies the canonical commu­
tation relation (176) at some arbitrary timt? t = 0 is (Ross 1974, Phvchian 1975) 

$(l,t=0) H -<5/<5i|i(l/t=0) . (215) 

Since i)j(t) evolves in a definite way from tp(t=0) , the action of ip(t=0) 
on any (differentiable) function of t|j(t) is well-defined. We shall 
define the time dependence of \ji so that the equal-time commutation 
relations are satisfied for all times. We can then write the equa­
tion of motion in a Hamiltonian form which has close relatives in 
quantum mechanics: 

at*(i,t) = tt(i(l,t),ff(t)] , (216) 
where 

Hit) 5 $(t,t) ft^tl.t) +U2(l,t;2')i//(2) 
+ JsU3(T,t;2,3)i()(2)i(((3) ] (no sum on t).(217) 

The desired equation of motion for 3 J is then 

3t$(l,t) = [$(l,t),H(t)] , (218) 



78 

as can be verified by noting that 

3t[.Ml,t),J(2rt)l = [[<l)(l,t),tf],$(2,t)] + [•(l,t)r[i(2rt),ff]] 

= -f[i|>(l,t),ii)(2ft)] ,Hj 

= 6(3.-2) [l,tf] = 0. (219) 
Thus, 

3^(1) = lH(l,t),H(t)l ; (220) 

in fact, the same law holds with iq replaced by any Taylor-expandable 
function of Of. 

To formally solve Eq. (220) in terms of the initial conditions, 
let us define 

c, U L ( t i r t 2 ) E Texpt - X d t ' Hit')] , (221a) 
2 

U(t ,t ) = T exp[ J-df tf(f)l , (221b) 
2 

where T i s the an t i - t ime-order ing opera tor . These functions 

obey 

u ( t l F t 2 ) u ( t 2 , t 3 ) = o ( t 1 , t 3 ) , ( 2 2 2 ) 

3 U ( t , t ) = U ( t , t )ff(t) , (223a) 
t o o 

3 n _ 1 ( t , t ) = - H ( t ) U _ 1 ( t , t ) , (223b) 
t o o 

and are i n v e r s e s , as follows from 

3 I U ( t , t ) U _ 1 t t r t )] = (UH)U"1 - UtHtT 1) = 0 . (224) 
t o o 

The so lu t ion of Eq. (220) i s then 

&?(t) * U - 1 ( t , 0 ) ^ ( 0 ) U ( t , 0 ) , (225) 
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which can be verified by noting that it satisfies both the initial 
conditions and the equations of motion: 

3 t)(t) = -[H(t)u""1Ct,0)]^(0)U(t,0) + U""1(t,0)aj'(0)U(t,0) ff(t) 

= [3{(t), H(til . (226) 

Useful forms for the system response functions follow by exam­
ining the change in t? due to a change SH in H: H + 6 H. Let us 
denote the solution in the absence of perturbation by Z?„(t), 

3tty0U> = [»0tO,H0{lp0>] , (227) 

with associated U (t,t ). (Note that the "o" functions describe the 
fully nonlinear dynamics of the unperturbed system.) To describe 
the solution 6} in the presence of perturbation, it is convenient 
to go to the interaction representation. That is, we write 

U(t,to) = UQ(t,to)U'(t,tQ) , (228) 

and study U". If we note that for any function A{^} we have 

A(t) = U_1(t,0)A{ap{0)}U(t,0) 

= (0*)"1(t,0) [Uo-1(t,0)A{«?(0)}Uo(t,0)]U' (t,0) 

= ttr,)~1(t,0)A{afo(t)}U,(t,0) . (229) 

we can then determine the equation of motion for 0' as follows: 

3 t u s D , W D ' + V t u ' 
= U H{Q} = U o U ' ( t f o { ^ } + 6HW1) (230) 

so t h a t , u s i n g Eq. ( 2 2 9 ) , 
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s t u ' = _ H o { 3 i o } u ' + u ' t ( " ' ) " 1 (H Q {e? 0 } + H{$ o})u'] 

U ' ( t ) = T e x p t f d t ' 6 H ( t ' ) ] . (231) 

From Eq. ( 2 2 9 ) , t h e n , 

* fl r l 

t(i t t ) = {T e x p [ - d t ' 6 H (t ')]}<|i ( t ) {Texp t d t ' S H ( t ' ) ] > (232) 
h ° ° i0 ° 

id the response functions follow by Taylor-expanding this formula 
to the desired order. Through second order, for example, 

S<J>(t) - ( dt' ti]j(t),_H(t')] 
•ta 
+ f dfdt" [[i|i(t),6H(t')] ,6W(t")] + , (233) 

where we have now dropped the "o" subscript. The case of most in­
terest involves perturbations n_(1) and n (1,2) to H. For such 
perturbations, 

5tf(t) = gi(Trt) tn_(T,t) + x]_+(l,l,t)^(2,t) ] (234) 

and 

r(l;l') = 6i(i(l)/6n_(l') = H(t-t')[*(1),$(l1)]+ , (235) 

r(l;l\l")= 62I)J(1)/6TI_{1')6II_(1") 

= H(t-f )H(t-t") [[i|i(l),iil(l,)],$(l")]+ , (236) 

5i|i(l,t)/Sn..+ (l,,l\t') - H(t-f )H»(U,*(1)*(1"]+ • (237) 

The n-th order response functions are functions of ip(t) and ||)(0, 
thus are Junctionals of i|)(t=0) and $(t=0). For any function 
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Aftfitt) , £ ( t ) } l e t us i n t r o d u c e t h e f o l l o w i n g d e f i n i t i o n o f a v e r a g i n g : 

<A{<D,i>}> E I d i ( j ( t=0)A{iKt) , J ( t ) }p{i | /{ t=0)} , (238) 

where P{ifi} is the distribution of initial conditions and where each 
ij/(t) is to be written in terras of ijj (t=0) =-6/6i|i(t=0) , which then 
acts on everything to its right. This definition has the following 
important properties (Rose 1974) : 

(1) when A is a function of i|> only, the prescription 
reduces to the conventional definition of averaging; 
(2) the time dependence of <A> is consistent with the 
equation of motion; 
(3) for reasonable P's, the mean of any quantity of the 
form <ij) (t)A{t,t|>}> vanishes identically. 

At time t = 0 , this latter property follows directly from 

6 
dijj(O) 6t|»(0), P{<M0)} = 0 . (239) 

At later times, it follows by induction upon noting that i> (t) = U~ ijj<0)U 
and that H(t) begins on the left with $. 

Thus, 

R(t;t') = H(t-t»)<[iMt) ,tMt')]> = <t|>(t)i(!(t,)>+ . (240a) 

R(t;t',t") = <*(t)iji(t ,)$(t")> + , (240b) 

etc. Also, 

<SiMt)/6n_ +(t',t"}> = <i),(t)$(t')\J)(t")>+ . [241) 
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The significance of this response function can be understood by 
noting that in the Vlasov equation an external, infinitesimal 
perturbing electric field E gives rise to an additional coupling 
of the form 

r1+(l,2) = -Ee(l) -3^.(1- 2) . (242) 

Thus, formula (241) describes the infinitesimal response of the 
system to an external force when 'jj is a distribution function. 
This interpretation will be useful in Sec. 8, where we compute 
the renormalized plasma dielectric function. 

Finally, we must justify the symmetrization used in Eq. (lgfj). 
We can, of course, write in general 

fUt) = -YdjZjd) + Uy(lr2)^(l)^(2) 

+ YrY(l,2,3)&?(l)JJ>(2)ZP(3) (no sum on t) (243) 

where the y's have as yet no special symmetry, but merely follow 
from Eq. (217) . The equation for «&?»n is 

3 t « # » n = -ion + <[a?,HlS>+/<S>+ . (244) 

Now [$ ,H] consists of a sum of products of ty's at equal times. Let 
us make the convention that the time argument of any $(t) is to 
be interpreted as t + e, where e + 0 . It is then easy to convince 
oneself that them's in <t$,H]S>+ can be commuted arbitrarily, 
leaving the result unchanged in valvre. For example, 

<d>(l,t)ij)(2,t+e)S>+ = <£(2,t+e)Ki(l,t)S>+ . (245) 

This implies that only the symmetric parts of the y's contribute 
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to the time-ordered expectations in terms of which the theory is 
developed, and the procedure of Sec. 6.2) is justified. 

6.4: The Stochastic Oscillator Revisited 
We wish to use the stochastic oscillator problem described in 

Sec. 2 to illustrate the renormalized equations we have been dis­
cussing. Now the formalism as developed thus far is, in fact, 
inapplicable to the stochastic oscillator since the functional 
equations describe dynamic, rather than stochastic, nonlinearity. 
However, it is possible to extend the functional techniques to 
include the latter, asymmetric case. We shall sketch this extension 
only briefly, since the procedure (Deker and Haake 1975a) follows 
that for dynamic nonlinearity closely. 

For stochastic nonlinearity, the prototype equation is of the 
form 

3t<|>(l) = U' (l,2,3)w(2)*(3) . (246) 

where we assume that u is a Gaussianly distributed random variable. 
The spinor notation is extended to include a "o" index denoting the 
random coefficient w. The extended state vector ly becomes 
8p = {i/;, iji, in) and the covariance matrix G becomes 

C(l,2) R(l?2) <5iMl)<Su)(2)> 

G(l,2) = R(2;l) 0 0 . (247) 

<<Soi(l)6̂ (2)> 0 <6«{l)6iij(2)> 

The functional equations are developed from a generating functional 
of form identical to Eq. (188) . (Now, Sj and n each have three 
components.) The equations have form similar to Eqs. (204) except 
that the matrix Dyson equation is no longer square. (Because the 
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statistics of ui are given, there can be no independent evolution 
equation for 01.) Because certain three-point cumulants vanish 
identically, certain vertices also vanish. Using Eq. (199) , 
it can be shown that 

G3(-,-,-) " 0 - r(+, + ,+) -: 0 , (248a) 
G3(-,-,0) 5 0 - H + , + ,0) - 0 , (248b) 
G3(-,0,0) T 0 • r(+,0,0) T 0 . (248c) 

If we restrict our attention to the stochastic oscillator at 

infinite Kubo number (a difficult regime for most statistical 
theories), tho relations simplify further, particularly for the 
response function R. It can be shown that the Dyson equation for 
R is determined once V , is known, and that the vertex equation 

-o+ ^ 
for r_ . is closed in terms of l'_ ., R, and the known quantity 
<6d)2>s g 2. Furthermore, because w is time-independent, only the 
reduced quantity 

r(t 1,t 3) = r(tj_ - t 3) d t f-o+^i-W 
enters and Fourier transformation with respect to time difference 

variables is convenient. In the DIA, 

r a Y = -i , (249) 

so that 
L = -Y R B 2T (250a) 
W '(11 D) U) 

= R e 2 . (DIA) (250b) 

One can easily verify that with Eq. (250b) the Dyson equation 
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(-î  + X )R = 1 (251) 

agrees with the Fourier transform of Eq. (55). 
To proceed beyond DIA, we must understand how to approximate 

Eq. (204a). This will be discussed in some generality in the next 
section; here, we illustrate the vertex expansions described at 
the end of Sec. 6.2 . Let us normalize the time to 8 . Naive 
expansion in the bare coupling •> [cf. Eq. (213)] gives rise to 

i r = 1 - R 2 + • - • . (252) 
UJ 

Since |y |= 1, one may expect such a procedure to be unfounded. 
More precisely, the dimensionless parameter in the above expansion 
is R T - For large u>, one has R , % 1/w "^1, so that in this limit 
Eq. (252) may be adequate. However, large frequencies correspond 
to short times and are generally uninteresting. For small w, R > 1 
both exactly and in the DIA, so that in this regime (corresponding 
to long times) the expansion (252) will be badly behaved. This is 
illustrated for the special case of u =0, for which the system (252) 
and (250a) predicts complex roots for R—a gross violation of the 
realizability constraint that R . must be real and positive 
(Kraichnan 1961). 

As we discussed in Sec. 6.1, the proper dimensionless parameter 
of Eq. (20 4a) is the generalized skewness, which we define here by 

x = iR r - (253) 

The utility of x is suggested by its behavior at w = 0. Writing 
Eq. (251) in the form 

-ioiR + xR = 1 , (254) 
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we see that x^ = Q = 1/R^=Q. Inasmuch as R is greater than 1 
in the exact solution, x^= will be less than one and thus becomes 
a possible expansion parameter (albeit a rather poor one). Iterating 
Eq. (204a) in powers of x I formally, expanding the known function y 
in powers of the unknown quantity T as in Eq. (214)], one finds 

in 

R
w = « + x 1 + •• • , (255) 

which is much better behaved than Eq. (252) inasmuch as x ' 1. If 
we now eliminate x in favor of R by using Eq. (254), we arrive at 
an equation first given by Kraichnan (1961) : 

R " - iu)(l-ui?)R 1 + (3(d2-l)R ? - 3iwR - 1 = 0 . (256) 
ID UJ (U ID 

From Eq. (256) it is easy to verify that R = [(1+/5)/2]^ ? 1.27, 
ui= 0 

which is to be compared with (TT/?' J J.. 25 for the exact solution and 
with 1 for the DIA. Thus, in the present approximation 
|x = | = ( (/5-D/2]"5 - 0.79 < 1 (o)=0 is the worst case). The solution 
of Eq. (256) is compared with the exact solution and the DIA in 
Fig. 13 of Kraichnan (1961). It seems clear that this second 
renormalization is a substantial improvement over the DIA and should 
be considered as successful. 

However, although expansion of Eq. (204a) in powers of the true 
skewness appears to be successful at Olr J), it turns out that 
truncations at 0(F5) and higher are ill-behaved. The correct 
generalization of the sequence of renormalized approximations is 
more subtle. We discuss this matter in the next subsection. 
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6.5: The Bethe-Salpeter Equation and Higher Order Renormalizations 
The geometry and intuitive content of the renormalized theory 

are emphasized by dealing not with r but with a certain four-point 
function K, sometimes called the two-body scattering matrix 
(Krommes 1978a). To discuss two-body functions conveniently, we 
introduce the extended generating functional 

W{ n i,n 2) s ln<exp[a(l)niU) + 4«?(D«? (2) n 2 (1, 2) ! >+ . (257) 

Let us write F = G and G = G . The "proper" two-body generalization 
of the one-body function G is then 

K ( 1 ' 2 ; 1 , ' 2 , ) s 6n'(l;?2-)lF • ( 2 5 8 ) 

The a n a l o g y c a n b e s e e n most c l e a r l y by i n t r o d u c i n g t h e L e g e n d r e 

t r a n s f o r m (Krommes 1978a) 

L(F,G} E W { n i , n 2 ) - n ( l ) F ( l ) - n 2 d , 2 ) G ( l , 2 ) (259) 

and constructing the renormalized vertices according to 

r i ( 1 n ) 'W^TT^l^TKi ' < 2 6 0 > 

We have i n p a r t i c u l a r 

r i ( 1 > = ~ n i ( 1 ) ' r 2 ( l , 2 ) = - n 2 U , 2 . ; ( 2 6 1 a , b ) 

fin.U) 6 r i , ( l » 2 ) 
r i u ' 2 > = - 6 m r - | a r 2 d . 2 , i ' r 2 . ) = - & G

2

a , i 2 , ) l ¥ 

= - G - 1 ( l , 2 ) , = -lC1{l,2;V ,2'); 

, -1 
F l ( 1 ' 2 ' 3 ) " ~ 6 G f i F ( 3 ? 2 ) l C r 2 ( l , 2 ; l ' , 2 ' ; l " , 2 » ) 

(262a, rb) 

6 K " l ( l , , 2 ; 1 \ 2 > ) 
6 G ( 1 " , , 2 ' ' ) |F 

(263a , b ) 



- 88 -

In p a r t i c u l a r , compare Bqs. (261a,b). 

The equation for K (Martin e t a l . 1973, Kroranes 1978a) f o l l o w s by a d d i n g 

- n 2 t o Eq. (,205) and t h e n d i f f e r e n t i p . t i n g t h e Dyson e q u a t i o n (204c) 

w i t h r e s p e c t t o n , : 

K a , 2 , - 1 ' , 2 ' ) + G ( 1 , T ) G ( 2 , 2 ) I ( I , 2 " ; T , , 2 ' ) K ( T , , 2 ' ; I ' , 2 ' ) 

= [ G ( 1 , 1 ' ) G ( 2 , 2 ' ) ] S 

7 > i [ G ( l f l ' ) G ( 2 F 2 ' ) + ( l ' * * 2 ' ) l . (264) 

H o i •.? 

K l , 2 ; l - , 2 - ) ; / cViV^.^p (265) 

and we used the chain rule 62/6n2
 = (<3£/fiG) (6G/(5n2) . Equation (263) 

or its alternative form 

K _ 1 = ( G _ 1 G _ 1 ) s + 1 (266,) 

is called the Bethe-Salpeter equation (BSE) (Krommes 1978a) . The 
interaction kernel I, which describes "intrinsic" two-body correl­
ations , was already introduced in our study of r. In fact, comparing 
Eqs. (264) and (204a) and using (265), we see that 

R(1,2;T,2~)Y(T,2M) = G(l,T)G(2,I)r(T,2,3~) , (267) 

so we have the symmetric representation 

E(1,T) = -!SY(1,2,3)K(2,3;3",2')Y(3",2",T) . (268) 

The DIA emerges by neglecting I entirely in Eq. (265). The 
solution of the resulting "unrenormalized" BSE, 

K = (GG) s, (269) 



i s , in a cer ta in sense, analogous to the approximation G = G 

obtained from the Dyson equation by neglecting E. A b e t t e r renor-

malization emerges by retaining I but approximating i t s form—that 

i s , we approximate the inverse of K. In pa r t i cu la r , we wri te 

1 = - IG ( ^ > 

= -! 3r 1GGr 2GGr 1 , (27o) 

which should be compared to Eq. (268) . The equation for r, follows 
by differentiating Eq. (266) : 

r, = -!4(G~:LG":LG"1) - 6I/5G . (271) 
l s 

If we ignore two-body vertex renojimaliEation and retain only the 
first term of Eq. (27 1), we arrive at 

I(l,2;l\2') = -r(l,3,2)G(3,3")r(l,,3,2') . (272) 

The complexity of the resulting self-consistent equation (266) 
for K is similar, in the space of two-body functions, to that of 
the DIA, which describes one-body functions. 

We can make contact with our earlier work in Sec. 6.2 by 
multiplying Eq. (264) on the left by G~ G~ and on the right by Yr 
and then using Eqs. (272) and (267). one finds thereby 

r - TG TG G T= Y , (273) 

which is precisely the result obtained by truncating Eq. (214) at 
third order. On the other hand, if we ignored the apparent 
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r e sonance i n Eq. (266) , we would w r i t e • 

K = ( 1 + GG I ) - i { G G ) 
s 

= ( G G ) - G G I G G . (274) 

The appropriate expression for 1 in this approximation follows 
by differentiating Eq. (266) and using Eq. (274): 

i = y G y • (275) 

The resulting expansion, which can be written using Eq. (267) in 
the form 

r - y + Y G Y G G Y , (276) 

is just the truncation of Eq. (213) through third order. Since 
it violates the fundamental rule (159), it is not surprising that 
it is ill-behaved. 

The next consistent approximation would presumably involve the 
introduction of three-body functions and vertices and the neglect 
of three-body vertex renormalization. To our knowledge, this approx­
imation has never been investigated; for obvious reasons of complexity, 
its practical utility is probably nil. It is, however, of some 
academic interest. The important point is that straightforward 
expansion of any of the "collision" operators I, I, ... will 
"expand out" a resonance in some n-body space and give rise to 
ill-behaved equations. The sequence of approximations we advocate 
is a kind of continued fraction representation of the statistics, 
as can be seen by writing the exact Dyson-Bethe-Salpeter system in 
the symbolic form 
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( G ( 0 > ) - 1 + hy r-r^ Y • (277) 
(G~XG l) + I 

Space does not permit a treatment of several other aspects of 
the MSR formalism, including the use of functional integral repre­
sentations, application of the renormalization group, and treatment 
of non-Gaussian initial conditions. Regarding the latter, we refer 
the reader to a beautiful report by Rose (1979), which appeared 
too recently for proper discussion here. Among other things, Rose 
shows how to properly handle particle discreteness, which is 
strongly non-Gaussian because of self-correlation effects. 

Finally, we caution that the MSR formalism is not a panacea. 
An important deficiency for some applications is that it is Eulerian-
based, whereas certain statistical correlations are handled most 
conveniently in a Lagrangian frame (Sec. 5, Sec. 7.3). Presently,, 
it would seem that the formalism is the most systematic one which 
leads to workable closures. It remains to be seen whether these 
will be adequate for the practical applications encountered in 
laboratory and space plasmas. Some results in this direction are 
reviewed in Sees. 7-10. 

7; HYDRODYNAMICS II 

7.1s introduc tion 
In this section we shall explore the application of renormali­

zation techniques to a practical problem involving the fluid 
dynamics of plasmas. In particular, we shall discuss aspects of the 
Hasegawa-Mima equation (Hasegawa and Mima 1978) which, it has been 
proposed, captures certain essential elements of nonlinear drift 
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wave dynamics. It is beyond the scope of this article to comment 
on the physical validity of the equation, except to say that, as 
always, the model omits interesting physics (as the authors admit). 
However, this omission is overshadowed for present purposes by 
the simplicity of the resulting model. 

Our study will not be complete, both because of space constraints 
and because much work has not yet been done. We shall emphasize 
the strong turbulence regimes of the equation and point out 
parallels to traditional analyses of the Navier-Stokes equation for 
ordinary fluids. We shall discuss the possibility of cascades of 
almost-conserved quantities and the possible formation of an iner-
tial-range spectrum. In this context, we will learn that the 
DIA has one potentially serious flaw: it is not invariant to 
random Galilean transformations (which we define in Sec. 7.3) and 
hence fails to properly describe inertial-range spectra. This 
motivates a brief discussion of some of the relatives of the DIA 
which have been proposed. 

In dimensionless form, the Hasegawa-Mima equation is 

L a t J fe ft.M k'p.q ? « 
where 

M | = (1+k 2)" 1 n-(pxq)(q2-p2) , (279) 

M u - " M u ^ . klp,q Klq.p 
Here time and space coordinates are normalized to u c i (IDC1 = eB/nuc) 
and p BtT/B.lVm,. respectively, <j> = e^ /T , where » is the s e i c i k It K K 
electrostatic potential, and u^ (1c) = k y [cTe/eBLniocl (1+k2) ] , L n being 
the density scale length. A possible viscous or Landau dissipation 
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term as well as a possible external forcing are not written explicitly 
in Eq. (278) . We shall assume that M vanishes unless its last 
two arguments sum to the first. We then note that 

(l+k2)M , + (l+p2)M . + U+q 2)M . _, = 0 , (280a) 
K'P.4 -P'<NK -q'K.p 

k 2 ( l + k 2 ) M ^ . u + + p 2 ( l + p 2 ) M . . + q 2 ( l + q 2 ) M , = 0 , (280b) 
k l p . q -p lq .K -q lK .p 

Equation (278) has two quadratic constants of motion, 

W = d x < < $ i 2 + | ^ ( j > | 2 ) 

= L 2 £ ( l + k 2 ) |(j>^| 2 . (2Bla) 
It k 

u s d x [ j v * 1 2 + ( v 2 * ) 2 ] 

= L 2£(l+k 2)k 2 |<!>_,.I2 . (281b) 
t k 

Here the spatial integrals are over a two-dimensional box of side L. 
The factor of 1 in the term 1+k2 arises from the compressible 
parallel electron motion (Hasegawa and Mima 1978) and thus represents 
an important physical difference between Eq. (278) and the two-
dimensional Navier-Stokes equation. Nevertheless, there are also 
many similarities. If compressibility is ignored in Eqs. (281), 
W and U reduce, respectively, to the energy E and enstrophy Q 

constants of the two-dimensional inviscid Navier-Stokes equation. 
7.2: Exact Consequences of the Hasegawa-Mima and Related Equations 

In this subsection we discuss various exact results and physical 
phenomena connected with Eq. (278). Although these points have 
nothing to do with renormaliaation per se, it is essential to teview 
then so that one can appreciate what the renormalized theories are 
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required to compute. We first discuss equilibrium states of 
Eq. (278). 

The significance of the quadratic constants is that they sur­
vive a truncation of Eq. (278) which removes all terms involving 
any wavevector whose magnitude exceeds an arbitrary upper cutoff k. 
or is less than an arbitrary lower cutoff k <. This property can 
be used in conjunction with the theory of equilibrium statistical 
mechanics (Kraichnan 1975a and refs. therein) to predict an equilib­
rium ensemble for Eq. (278). Indeed, if in the truncated system 
one treats as independent the real and imaginary parts of <}>-,. (or, 

k * equivalently, <|>+ and <t>+ }, an equilibrium distribution is (Hase-k k 
gawa and Mima 1978) 

P{*+} = Nexp( -aW- BU) , (282) 
k 

where N is a normalization factor. The inverse "temperatures" 
a and B must be restricted so that N is finite. The equilibrium 
spectrum follows as 

<!<*>-JZ> = d+k 2) - 1(a+ 0k 2)" 1 . (283) 
k 

The relation of os and 6 to the given, conserved quantities W and 
U follows by straightforward algebra, using Eqs. (281). The results 
of Kraichnan (1967, 1975a), who discussed the analogous two-dimen­
sional Navier-Stokes equation, can be taken over directly. In 
particular, if we assume U = k 2W and take k± to be near the lowest 
mode of the system, then the spectrum has a sharp peak at the long-
wavelength end. This has implications for the nonequilibrium dy­
namics, to be discussed next. 

A nonequilibrium state of Eq. (278) may arise because the system 
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is prepared that way or because of forcing and dissipation. 
Hasegawa and Mima postulated the existence of a large amplitude, 
long-wavelength mode which coupled to Eq. (278) via the mode-
coupling M^i + . We shall be more general and not specify the 

k!p,q 
form of the forcing, but merely assume that W and U are continuously 
injected at some forcing wavenumber k ; we maintain the ordering 
U i, k 2M. We also assume that a dissipative term is added which 
becomes important at short wavelengths. A general question is 
then whether an asymptotically steady state can be reached in which 
dissipation balances forcing and, if so, what wavenumber dependence 
°f <|<l'*|2> results. K 

It is useful to begin discussion of this question by reviewing 
the famous Kolmogorov arguments for the inertial range energy 
spectrum (Kolmogorov 1941, Rose and Sulem 1978 and refs. therein). To 
obtain the classical Navier-Stokes problem, let us ignore compress­
ibility so that W-*E, U + fi, and also ignore the collective oscilla-

i at u)# (which may be important at long wavelengths) . We shall 
write 

E/L2 i 2 dkE(k) . (284) 
o 

Let us ignore, for the moment, the co.i, ..ancy of U and assume that 
energy E is injected at a rate e. If k space is partitioned into 
octaves, k = 2 nk <, the energy density E in the n-th band scales 
as E %u *, where u -v k t)>, (the E*B velocity in dimensionless n ti n ri K u 

ti 
units) and is to be thought of as the velocity difference across 
a space scale of characteristic dimension k . Assume that an 

n 
inertial range exists—that is, a wavenumber regime which has neither 
direct external injection nor significant dissipation. Let us 
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further assume that the energy transfer between bands is local— 
that is, that Jirect coupling exists only between nearby bands. 

In this case, once significant energy has coupled into the inertial 
range, the rate of energy transfer between adjacent bands must be 
constant and equal to E, which can be estimated as E ^ E A where 

n n 
the "eddy turnover time" x % (k u ) - 1 is the tim° for the velocity 

n n n J 

shear across the scale k _ 1 to rotate an eddy of that scale once. 
Then u ^ (e/k) and, because locality implies that the energy in 
band n scales as kE(k), 

E(k) % E^k"^ . (285) 

This is the celebrated Kolmogorov spectrum. Note that no refer­
ence to the dimension of space was made. The two essential assumptions 
were the existence of a single constant of motion and the locality 
of cascade. (Inasmuch as the energy in band n arrives there in a 
finite number of steps from the forcing band, locality cannot be 
strictly correct. This leads to the interesting subject of inter-
mittency . S->e Rose and Sulem (1978 and refs. therein) for further details.) 

The direction of cascade is not determined by the Kolmogorov 
arguments. In the classical models, energy was injected into long 
wavelengths and assumed to be absorbed at an equal rate by dissi­
pation at short wavelengths, creating a time-asymptotic steady state. 
This result, a ("direct") cascade toward short wavelengths, is 
supported by the form of the absolute equilibrium ensemble in this 
case, which is an equipartition spectrum E(k)/k= constant. Thus, 
according to Eq. (205) the short-wavelength modes are far below 
equilibrium level, which suggests a cascade of injected energy 
toward those modes. 



- 97 -

These arguments fail when the second quadratic constant U or n 
is admitted (Kraichnan 1967). A simple energy cascade to short 
wavelengths would be accompanied by an enstrophy cascade; however, 
this is incompatible with the constancy of R, which is weighted most 
heavily by the short wavelengths. (It is easier to think about 
this in the context of an initial-value problem, with all energy and 
enstrophy concentrated at the forcing wavenumber, rather than in 
the context of an asymptotic steady state.) If we retain some 
sort of locality assumption, the only possible resolution is that 
energy cascades downward from k 1 with the Kolmogorov spectrum, 
while enstrophy cascades upward with a spectrum 

E(k) "u n ^ k - 3 . (286) 

Here r\ is the rate of enstrophy transfer (or injection) , and the 
result (286) follows by dinensional analysis similar to the above 
Kolmogorov arguments. Again, the existence of cascades can be 
thought of as the unsuccessful striving of the system to reach 
absolute statistical equilibrium. In particular, the downward 
energy cascade in two dimensions is suggested by the sharp 
peaking of the equilibrium spectrum for small forcing wavenumber k . 

The directional properties of the dual cascade just proposed 
should not be. modified qualitatively by the inclusion of compress­
ibility. The "inverse" energy cascade thus has important implications 
for theories of saturated, steady-state drift turbulence. Though 
short-wavelength dissipation will successfully remove enstrophy, 
there is within the present modr:l no mechanism for removing energy 
from the long-wavelength modpq. The implication is that the model 
does not saturate (subject to important questions about the 



- 98 -

existence of an asymptotic cascade which we discuss in the next 
paragraph). A plausible mechanism for damping the long-wavelength 
modes is magnetic shear; however, discussion of this point is 
outside the scope of this article. 

In fact, the simple form (286) of the enstrophy cascade is not 
quite correct. If we argue that the mean-square velocity differ­
ence across scale kfi is proportional to k times the enstrophy fi 
in that scale, which can be estimated, using fcq. (286), to be 

n n -v, dpp 2 E( P) 

^ n^l "dp/p , 

we see that every octave below k contributes equally to Q and, 
thus, the enstrophy cascade is not local. Logical self-consistency 
and some degree of locality can be restored by modifying Eq. (286) 
by a logarithmic factor (Kraichnan 1967). However, the low degree 
of locality of the enstrophy cascade implies that many octaves of 
k space must be available before the asymptotic spectrum will 
manifest itself. This may not be realizable for drift turbulence. 
At short wavelengths, the nonlinear coupling is significantly 
reduced by the effects of finite ion gyrora.dius; at long wavelengths, 
the oscillatory and dispersive properties of the fluctuations become 
important and weak turbulence theory provides the appropriate 
description. Nevertheless, it is important to understand how to 
formulate the description of cascades quantitatively, as this pro­
vides useful insight into the statistical statics and dynamics 
of Eq. (278). Ultimately, one must invoke a closure approximation 
such as the DIA, as we discuss in the next section. It is convenient, 
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however, to begin by drawing certain exact consequences from Eq. (278) 
Let us pass to the limit of a continuous, isotropic k spectrum 

and write Eq. (281a) in the form 

W/L 2 = f dkW(k) , (287a) 
•"o 

where 
W(k) = 7rk (l+k E) < | * (it) | 2> . (287b) 

(Isotropy cannot be correct at sufficiently long wavelengths.) 
The balance equation for W(k) follows from Eq. (278) as 

3 
Tt ipi-dq 

> (2TI} 2 

W(k) = T T k d + k 2 ) ^ ^ — dq6(k+p+q)M + , _ Jle<$ (p) «f> (q) (fr (k) >L 
(2TI} 2 kl-p,-q 

dpdqT(k|p,q) , (288) 

where 
T ( k | p ' q ) H 2TfsTn4?T M -|+ Jle<*(p)*(q)*(ic)>L . (289) 

(Because we omit sources and sinks Eq. (288) is correct only in the 
inertial range.) The domain of integration A is defined in Fig. l 
and restricts p and q so that k, p, and q form a triangle. In 
arriving at the final form (289), we appealed to the geometry defined 
in Fig. 2, assumed that the triple correlation of $ was iso­
tropic, noted that M i can be expressed entirely in terms of 
wavevector magnitudes through the law of cosines, and then used 
the result 

' tro r 2*n* 
dpdq 5(k>4-p+q)F(k,p,q) = pdp q dq F dB dy 6 (k-pcos Y - q c o s B ) 

x 6 (p sin Y - q sin 6 ) 

d p d q F / | s i n c t | , (290) - L 
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valid for any function F of only wavevector magnitudes. By using 
Eqs. (280), one can verify that 

T(k|p,q) + T(p|q,k) + T(q|k,p) = 0 , 

k2T(k|p,c) 4-p2T(p|q,k) +q2T(q|k,p) = 0 , 

(291a) 

(291b) 

which aie statements of detailed—triad by triad—conservation of 
W and U, respectively. They lead immediately to Eqs. (281), and 
can also be deduced from the latter. 

To discuss cascades, it is useful to define the rates of W 
and U transferred across a given surface in k space. Thus, 

3 
3t 

f k ' W ( ) 0 l 
dk E -

4 V (k) 

f n(k) 
ACk) + E (292) 

Manipulations using Eqs. (291) show that 

n(k) 
A(k) - [ dk 

dk 

rk 

I 
1 1 
k 2 

dpdqT(k|p,q) 

dpdq T(k|p,q) (293) 

The compressibility factor 1 complicates the cascade analysis. 
In the following discussion of similarity ranges, we shall ignore 
this factor, both for purposes of illustration and because we 
expect the true results to be qualitatively similar. In this 
case, the analysis reduces to one already given by Kraichnan (1967) 
for the energy and enstrophy cascades of the two-dimensional 
Navier-Stokes equation. For the energy cascade, we postulate a 
similarity solution 
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E(ak)/E(k) = a" (294) 

where 
;(k) = irkz«(i(k)2> 

Dimensional analysis implies that 

T(ak|ap,aq)/T(k|p,q) = a
_ a + 3 n ) / 2 

(295) 

(296) 

It can then be shown that to assure that n(k) equals e independently 
o: k, one must choose n=-5/3 f in which case 

1 r00 

dvj dw W1 (v,w;5/3) T(l| v,w) , 

where 
W 1 (v,w;5/3) | 

W 2(v,w;3) ) 
= -

I o 

= -(w^v 2)" 1 U-v 2) 
f 1 

lnw - (wz-l) 

(297) 

ln(v _ 1) 

(298) 

The corresponding expression for A(k) vanishes. Similarly, for the 
enstrophy cascade, k-independence of A(k) =n leads to n= 3 and to 

k dvl dwW2(v,w?3) T{l|v,w) (299) 

In this case, the associated energy flux II (k) vanishes. The v and w 
integrals in Eqs. (297) and (299) express the contributions to 
transfer in terms of all possible triangle shapes, while the W fac­
tors arise from integrals over triangle sizes. The detailed form 
of T(l|v,w) must be determined by a closure approximation. 

7.3: Closure Approximations and Random Galilean Invariance 
Let us consider first the DIA for Eq. (278) , which can be 

written immediately from the formulas given in Sees. 5 and 6. The 
energy balance equation gives rise to the form 
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T ( k I P ' ^ ~ 2 i r | s i n a | R e L d t [ 2 * k | P . q V ^ S , ^ ' ^ V t j ¥ > 

- b k | p , q

?

q

( t ^ ^ k ( t ' ^ R p ( t ; t ) 

~ ^Iq.pV^S^'^V*^] P 0 0 ) 

a k l c a = M f i - - M f,* H - U + p M ^ t l + q 8 ) " 1 , (301a) 
*IP ,q k | - p , - q - k | p , q 

b k l P q = " 2 f V | - + M + , + . ( l + q ^ ' ^ l + k 2 ) " 1 , ( 3 0 1 b ) 
< V ' H k [ - p , - q - p | q , k 

C k ( t , t ) 5 ( l + k 2 ) < * 2 > k . ( 3 0 2 ) 

N o t e t h e i d e n t i t i e s 

a u i = h(h, I + b , | ) , ( 3 0 3 a ) 
k | p , q k | p , q k | q , p v a> 

( l + k 2 ) b , = ( 1 + p M b , . . ( 3 0 3 b ) 
k | p , q r p | k , q 

In steady state, one can rigorously write 

C p(t rt) = C pc p(t-t) , (304) 

f o r some c (T) and C =C ( 0 ) , so Eq. (300) r e d u c e s t o 

T ( k | p . q ) = o V i ^ J l ReI2a, i 0. C C 
l r ^ 2 i r | s i n a | k | p , q k , p , q p q 

- b , | 8 . C C. - b , , e , C.C ] , (305) 
k | p , q p , q , k q k k ] q , p q , k , p k p 

6. = f d i e (T) c ( T ) P. {T) . (306) 
k . p . q J0 p q k 

In p r i n c i p l e , the t ime dependence i n DIA of C ( T ) and R ( T ) i s 

a v a i l a b l e through d i r e c t s o l u t i o n of t h e coup led t w o - t i m e e q u a t i o n s 

f o r C and R (which we do not w r i t e i n d e t a i l h e r e ) . A l e s s d e t a i l e d 
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procedure is to assume simple functional forms involving a few 
unknown coefficients for c and R and attempt to determine the coef­
ficients. A common choice, exact in absolute equilibrium, is to 
choose c (T) = R, () T |) . For the response function, we can choose 

R (-t) = exp{ [-iiD* (k) - a k]i . (307) 

I n t h e i n e r t i a l r a n g e , we can assume t h a t o, d o m i n a t e s w^(k) , 

i n which c a s e 

6, = (•. + o + o ) _ 1 . (308) 
k , p , q k p q 

If the Kolmogorov arguments are valid, the nonlinear frequency a, 

must scale like the inverse eddy turnover time: 
'e ̂ k h (energy cascade) , 

(309) 

(enstrophy cascade) . 

An equation for o follows by integrating the R equation over time. 
This equation, the form (304), and Eqs. (292) and (305) 
together determine the implicit dimensionless constants 
in (309), (285), and (286) if_ the inertial range spectral laws we 
have assumed are consistent with the DIA dynamics. Indeed, they are 
dimensionally consistent. However, when the form (285) is sub­
stituted into the nonlinear term of the response function equation, 
the wavenumber integral diverges at long wavelengths. The source 
of this divergence is now well-understood (Kadomtsev 1965, Kraichnan 
1964, Leslie 1973 and refs. therein) and represents a significant 
physical deficiency of the DIA. 
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For purposes of illustration, consider as a prototype of the 
nonlinear problem the guiding center equation (see Sec. 8.4) 

where v is the SxS drift. Now consider the effect of adding to 
each member of the statistical ensemble a velocity field v 

A 
constant in both space and time. If v is constant in magnitude and 
direction over the ensemble, it can be eliminated from all members 
of the ensemble simultaneously by a Galilean transformation, which 
implies that the statistical dynamics of the ensemble remain com­
pletely unchanged. However, suppose instead (Kraichnan 1964) 
that v is Gaussianly distributed in magnitude and direction. 
Also, assume for simplicity that the original flow velocity v 
is very weak compared to v so that approximately 

jr = -tf-Vn • ( 3 1 1 > 

Since Eq. (311) is just the stochastic oscillator (cf . Sec. 2), 
it is clear that the two-time statistical functions will be affected 
by the random Galilean transformation tr and be dephased at a rate 
proportional to k<v2> . Similarly, consider the triple correlation 

S(1t,tjp,t«;1|,f) = <p(£,t)p1p,f)Ap1q,t")> , (312) 

where Af> also obeys Eq. (311). S is of the form encountered in 
the energy balance equation of actual turbulence; with the model 
(311)t its time dependence is of the form 

S ~ <exp(-i1v vt + ip- vt' + iq»vt") 

= exp(-!5<v2>|1tt-Pt"-•qt"|2 ) . (313) 
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For unequal times, S too decays due to connective dephasing. 
However, the equal-time triple correlation S(t,t,t) is invariant to 
the random convection if we recall the triangle constraint k = p + q. 
This behavior is the simplest mathematical idealization of the 
physical statement that small-scale flow structures should be 
merely convect=id by large-scale fluctuations, without any internal 
distortion (or, hence, energy transfer into other small scales) . 
This assumption, one form of locality in k space, was implicit in 
our derivation of the Kolmogorov laws, and is considerably more 
general than the above example. However, it is violated by the DIA. 
The DIA expresses the energy transfer terms II or A as integrals 
over two-time functions. Since these are (correctly) affected by 
the convective sweeping of small-scale structures by large-scale 
ones, II and A are (incorrectly) also affected. Ultimately, this 
failure of th• DIA to properly respect random Galilean invariance 
is responsible for the divergence in the R equation when w* =0. 
[The integral in the energy equation is convergent. Also, note that 
the divergence arises in the limit of zero dispersion. This approxi­
mation is not uniformly valid in k for the drift wave problem, 
although it seems to be adequate for certain other problems (cf. 
Sudan and Keskinen 197 7)]. 

Several methods are available to "patch up" the DIA to make it 
invariant to random Galilean transformations. The simplest, but 
most ad hoc, approximation is to restrict the divergent p integral 
to p > otk, where a =0(1) (Kadomtsev 196 5, Kraichnan 1964). We 
invoked a similar approximation in our discussion of the guiding 
center plasma in Sec. 4.2, arguing on the basis of Brownian motion 
ideas that only scales shorter than k _ 1 should contribute to 
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decorrelation. Kraichnan (1971) has developed the test-field model, 
which provides a physically motivated but quasi-systematic recipe 
for a. which effectively retains the form of the response equation 
but modifies the form of b. so that only the mean-square shear rath-
er than the total energy in the long-wavelength fluctuations affects 
the inertial-range energy transfer. In the Lagrangian history 
DIA (Kraichnan 1965), commented upon briefly in Sec. 5.5, the 
problem with random Galilean invariance is eliminated by design; 
the approximation appears to be quantitatively quite accurate in 
certain applications (Kraichnan 1970b). 

Fundamentally, the correlations which preserve random Galilean 
invariance are described by the vertex renormalizations described 
in Sec. 6. Kraichnan (1964) has considered the application of the 
first vertex renorm&lization (273) to the idealized convection 
equation (311) . He concluded that the vertex renormalization 
significantly reduced the error in the two-time functions and 
reduced, but did not eliminate, the more troublesome error in the 
one-time functions. He pointed out that, because of the ubiquitous 
coupling between the two- and one-time functions, Galilean invariance 
would be a problem at any order in Eulerian renormalization, and 
argued for the Lagrangian description. Dupree (1974) showed that 
an appropriate Markovianizat.ion of (effectively) the Bethe-Salpeter 
equation led to Galilean-invariant results; however, since the 
Markovianization was ad hoc (as well as somewhat unphysical), it 
would not seem to offer quantitative improvement over either the simpler 
truncation of the wavenumber integral or the tes'--field model. 
Weinstock (1977) proposed a very detailed and complicated closure, 
based on three-point functions, which seems not to have received 
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much attention as yet. 
The possible lack of random Galilean invariance is a serious 

problem only when a well-developed inertial range exists. Thus, it 
is less troublesome in theories of, say, drift turbulence than in 
the theory of high Reynolds' number Navier-Stokes flows. When 
the scales of the turbulence are of comparable size (as is more 
or less true in drift turbulence), convection without distortion 
does not occur and it can be argued that the DIA should be quanti­
tatively accurate. This is but one example of a commonly voiced 
assertion that the DIA is better-suited for plasmas than for 
ordinary fluids. 

8: DIELECTRIC RESPONSE in VLASOV PLASMA 

8.1: Introduction 
The role of the dielectr; c functic : Ck,ui) in the description 

of polarization effects and collective oscillations is well-estab­
lished both in the general theory of dielectric media (Landau and 
Lifshitz 1960) and in the linear theory of plasmas (Krall and 
Trivelpiece 1973). In this section we develop the renormalized 
theory of e and describe some of its properties and consequences. 
Applications in which the correct form of the renormalized dielectric 
has been used are notably scarcej this is very much an area of 
active research. We shall, however, discuss briefly two model 
problems—the guiding center plasma and a certain drift wave model— 
which serve as informative prototypes for futher calculations in 
strong and weak turbulence, respectively. 
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H i s t o r i c a l l y , t h e f i r s t a t t e m p t s a t o b t a i n i n g a r e n o r m a l i z e d 

d i e l e c t r i c r e l i e d on i n t u i t i o n developed in l i n e a r t h e o r y . i n t h e 

e l e c t r o s t a t i c a p p r o x i m a t i o n , t h e l i n e a r d i e l e c t r i c i s , for B = 0 , 

e

< n c k \ u . ; { f ( 0 ) n = i + A-(dv ii'*l!2l/'°i- . (3U) 
H le1 ' ,-ij - k • v + i K 

One often interprets the causality factor i', as representing the 
presence of a small amount of turbulent colliFions; in the early 
renormalized theories (Dupree 1966, 1967, Sleeper and Weinstock 1972), it 
was concluded that this factor was replaced by the finite bandwidth 
6y associated with turbulent diffusion. Also, the factor of f 
which occurs in linear theory was retained nonlinearly, but inter­
preted as the mean distribution -'f.-. Thus, it was argued that the 
nonlinear dielectric could be obtained from the linear one by the 
rule 

E(ic,u1;{<f>}) = c ( , l ) (k\w+i6Yk;{<f>n , (315) 

where two well-known limits for &y, are 

!

(k2D) (unmagnetized—diffusion in v space) 
(316) 

k 2D (strongly magnetized—diffusion in x space). [k 

If the linear dispersion relation e ' (k\w) =0 has the roots 

U - a r k
(*> + iY k

(*J (317) 

Eq. (315) leads to the nonlinear dispersion relation 

u = „ r k<*> + i ( Y k
U ) - 6 Y k > . (318) 

In this approximation the turbulence gives rise to nonlinear damping 
6Y on all modes, so the system would be completely stabilized 'k 
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when the turbulence grew to a level such that 

fyK - r k
U ) (all k) . (315) 

When cross-field diffusion in real space dominates, as in ExB 
turbulence, Eqs. (319) and (316b) lead to the saturation criterion 

D > Y k
m / k j . 2 . (320) 

This expression can sometimes be used to find the spectral intensity 
at saturation if the formula for D in terms of <<ji2> is known. 

Formula (320) states that the system saturates when particlrs 
diffuse one wavelength in an e-folding time. Arguments of this 
kind have been invoked in estimating confinement times and scaling 
laws for confinement devices (Dean et al. 1974). However, although 
such estimates can be useful for some purposes, it must be stressed 
that the prescription presented above has several significant phys­
ical flaws. Most importantly, the "resonance-broadening theory" 
does not in general conserve energy (Galeev 196 7, 1969, Dupree and 
Tetreault 1978). That is, the nonlinear energy drain on all modes 
(associated with 67^) does not show up as heating of rosonant par­
ticles and cannot be accounted for otherwise; this contradicts the 
fact that the system is isolated. The problem arises because the 
propagator broadening, which leads to Eq. (315) , describes the 
effects of the turbulent medium on the particles but does not 
describe the back-reaction of those particles on the medium. This 
back-reaction, necessary for energy conservation, must be accounted 
for by a renormalization of the particle distribution function 
which is not considered by the primitive theories which replace f 
of linear theory by <f>. We will shortly derive an explicit 
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expression for the rcnormaiized distribution. 
Th<2 lack of medium response in resonance-broadening theory 

is also responsible for another problem: the detailed form of the 
resonance broadening, Eq. (316), is not correct. Equation (316) 
describes diffusion of bare ^articles; however, just as in weak 
turbulence theory, the polarization fields associated with dielectric 
shielding of those particles reduce the net diffusive effect of 
the turbulence. We give an explicit, if somewhat artificial, 
example in cur sbudy of the guiding center plasma in Sec. 8.4. 

Another deficiency of the resonance-broadening theory is that, 
;.f the proposed saturation mechanism were taken literally, it would 
predict that at marginal stability only the linearly most unstable 
mode would remain, all others having damped away. Such a single-
mode state is generally incompatible with the assumption of sto-
chasticity or turbulence. Finally, it is clear from the theory of 
stochastic instability that a description in terms of diffusion 
coefficients is appropriate only in the stochastic part of phase 
space. Formulas such as Eq. (315), which ignore the phase space 
dependence of &y, are, thus, at best gross approximations which must 
be justified. Admittedly, it is difficult to provide an analytic 
theory which handles correctly both adiabatic and stochastic ragions 
as well as the transition between them; however, the problem cannot 
be ignored. 

It should not be inferred that the early renormalized theories 
consisted merely of plausibility arguments. On the contrary, they 
were so detailed mathematically that the nature of the neglected 
terms was somewhat obscured (as also occurred in the early derivations 
of the DIA). In his study of self-consistent Vlasov turbulence, 
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Dupree (1966) decomposed the spectrum into many "background" waves 
olus a small number of "test" waves. (The decomposition was some­
what arbitrary; in particular, test waves and background waves were 
physically indistinguishable.) He then formally integrated the 
exact Vlasov equation, treating the test wave terms as a source. 
Finally, he averaged the result and invoked a certain closure. The 
entire procedure was not unlike Kraichnan's original derivation of 
the DIA. There was, however, a very important difference: in 
Dupree's approach, the fields of the test waves were assumed to be 
given until the very end of the calculation, at which point Pois-
son's equation was enforced. This means that self-consistency was 
n_t handled correctly (as is easily verified by noting that the 
correct weak turbulence limit could not be obtained); the procedure 
was, in fact, more appropriate for the stochastic acceleration 
problem. Though we shall not dwell on this, the point is that the 
infinitesimal response function R and the exact orbit integration 
operator U are not precisely the same entity; statistical correla­
tions which can be ignored in a low order theory for R may not be 
ignorable in a theory of similar complexity for <U> (Krommes 1979c). 

Weinstock (1969,1970) formulated the Vlasov turbulence problem 
in terms of a certain projection operator (see Sec. 10.2) which 
effected the statistical averaging. The low-order truncations of 
his expansions also mishandle self-consistency (although all of the 
physics is included in principle in his formal representations of 
the solut i.on) . 

Rudakov and Tsytovich (1971) computed the mass operator by 
adding an unknown "effective collision operator" v to both sides 
of the fluctuation Vlasov equation, then choosing v to cancel 
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secularities to a certain order. Though their procedure was a 
definite improvement, such methods (see PI'JO Horton and Choi 
1979) suffe- from the problem that the concept of "order" is diffi­
cult to define in a renormalized perturbation theory; indeed, they 
did not obtain all terms of a given order in the skewness. 

The functional techniques we have developed in Sec. 6, however, 
are ideally suited to deal with the problems of self-consistency, as 
well as the other deficiencies of resonance-broadeninq theory. Indeed, 
variation of the Vlasov equation with respect to an external 
source gives rise to a contribution E>5<if + i5E-5f , both terms of 
which are accounted for by the symmetrization we have imposed on 
the coupling coefficient U [see Eq. (151d)]. Only the first term is 
retained in the usual approximation of resonance-broadening theory, 
making its relation to the stochastic acceleration problem clear. 

8.2: The Renormalized Dielectric 
To define the dielectric, imagine probing a turbulent Vlasov 

poasma with an external,non-random field E &. This gives rise to an 
induced field E±, 

2 . = £ ( f { 2 } - f { 2 =u}) . I32D 

i e e 

Let us express the perturbation in the total mean plasma field as 

a functional power series in E : 
e - " W e(2)/ 
+ g(l,T)/ fiZ£? \ :2e(2)ge(3) - W (2)6E (3)/ 

The no ta t i on " 1 " denotes the se t " 1 " with ve loc i ty v x excluded. 
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We can then define the dielectric response function e as the 
proportionality factor between the external field and first order 
response: 

E - 1<1,2) = 6(1-2)+ g(l,T) • / f £ ( 1 )-\ - (323) 
\6g (2)/ 

This observable contains effects of all orders in the background 
turbulence. 

We can compute 6f/6E using the response function formalism 
of Sec. 6. From formulas (241) and (242), 

6<f(l)> = -<f (l)f (2)f (3)> £ (2)4,6(2-3) , (324a) 
+ e — I 

6<f (l)>/6Ee(2) = -|dv2<f(l)f(2)l3f(3)>+,3 = 2 . (324b) 

Writing the triple moment in terms of the triple cumulant and 
recalling that <£> = 0, we get 

<f (1)1(2)f(3)> + = <6f(l)fif(2)>+<f(3)> + <6f(l)Sf(2)6f(3)>+ 

= R(lr2)<f(3)> + G[+.?.+] • (325) 

[For an alternative derivation, see Krommes and Kleva (1979).) Thus, 
E_1(lr2) = 6(1-2) - 1(1.T) fdv. |R(T;2)f„<f (2) > 'Hi; 2) = 6(l-£) - 1(1,T) jdv 2fR(T;2)t,<f (2): 

+ tjG fl 2 3} I 
,+*-'+J |3-2 I (326) 

This expression can be rewritten in terms of the renormalized 
vertices using Eg. (199). Using obvious operator notation, we find 

e _ 1= 1 - ?R4T , (327) 

where 
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f = <f> + fif , (328a) 

S«f(T,2) = fdv2R?C(2,2)r^,2,3J + J2R(2;7)r(^,f J)1R(I;2) . 
(328b) 

In arriving at Eq. (328b), we noted that a term 

CH,J)l 3R(3;I)r[^,|)R(2;2) ( 3 = 2 (329) 

vanishes identically because of causality. That is, since 

G(+'-'-l = R ( i ; T ) r [ j ; 4 ' + ] R ( I : 2 ) R ( T ; 3 ) • ( 3 3 0 ) 

we have 

(CRD (1,2) = Gl3,::,3.'] | 3 = 2R"1(3,;3)C(3,1) = 0 , 

recalling the time ordering convention we adopted in Sec. 6.3 . 
We can further simplify Eq. (327) by replacing the response function 
by another function, the so-called particle propagator g. Note that 
since 

Z(1,D = E(T,1) = -!5r(l,2,3)G(2r2')G(3,3)Y(3",2,T) , (332) 

we have 
S_+(1,I) = - [ r K * ' + ) C ( I ' 2 ) + r(^^3]R(Z;2)jR(3;3)U(3,2,r) . (333) 

Let us use the form of U given in Eq. (151d) and define I' to be 
that part of E which does not contain the E operator acting to 
the right: 

E'U\T) s rr[i,J,j]t(^Dc(2-,2) + r(S2i3]f(TfnR(2-»2)]R[3»T).?T«(T-D 
(334) 
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The particle propagator g is then defined to obey 

[(g ( o ))- 1 + I']g = 1 . (335) 

The response function equation can then be written in terms of g: 

g _ 1R + 8f-£R = 1 . (336) 

From Eq. (336), 

?R = (1+ Eg-tf)" 1^ , (337) 

so we can r e w r i t e Eq. (327) a s 

E " 1 = 1 - (l + f g ' 3 f f L E g 4 l 

or 

E = 1 + Eg-ff , (338) 

whereupon 

?R = e _ 1 E g , (339) 

R = g ( l - l f . e " 1 E g ) . (340) 

The forms (338)-(340) have structure identical to the corres­
ponding results of linear theory . [Compare Eq. (340) with Eq. (157a)] 
We see, in fact, that the correct mapping which takes the linear 
dielectric into the renormalized one is 

g ( 0 ) + g , (341a) 
ifi •+ i£' , (341b) 
i ( 0 ) * I . (341c) 
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8.3: Dielectric and Propagator in the Direct-Interaction Approximation, 
and Reduction to Weak Turbulence Theory 

In the DIA we have T=y. By construction, the only nonvanishing 
y's contain exactly one "-" index, so that in the DIA 

r[-'l>l\ = Y(-'+'+) = "(1'2'3) ' ( 3 4 2 a ) 

[•(-,-, + ) = 0 . (342b) 

Then, if we define the fiold correlation 

£(1,2_) 5 ^g(l)<5£(2)> = ?(l,T)f(2,7)0(1,2" ) , 

we find 

E'(l.T) = -? • [R(1;3)^(3",D +fR(l,-3")<6g(T)6f ( 1 ) > ] 4 J 6 ( J - T ) , (343) 

3<5f"(l,2) = [dv2[^2<6f (2)6E(1)>-I1R(I;2) +I2ITC(2,T)-tR(T;2)] (344) 

(DuBois and Espedal 1978). Recalling Eqs. (339) and (340), we 
recognize two kinds of terms in Eqs. (343) and (344) : those 
containing an explicit factor of e~ and those missing such a 
factor. For reasons which will become clear shortly, we call the 
latter terms "diffusion" terms and denote them by a superscript 
"d"f we call the former terms "polarization" terms and denote 
them by "p". We thus write (Krommes and Kleva 1979) 

&f = 6 f U ) + 6f(P) , (346) 

where 
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£ C d )(l,l) =4 1-[g(l,2)^2,l)]4 2«(2-T) . (347a) 

E ( p >(l,T) = -?1.[(e"1tg) <l,2)<6S(2)6fU)> 

- (gtft~ltg) (l,2)£(2.,l)]-32<5(2-I) , (347b) 

36f ( d )(T,2) = -Jdv2[^2<6f(2)6E(l)>]-fig(T,2) , (348a) 

fsf ( p )(T,2) = -fdVj{[tJl1'1;C(2,D]-(e"1fg)(r,2} 

- [ 2̂<Sf (2)<sg(T)>]-l1(gtf"E_1-Eg) (1,2)] . (349b) 

To see that Z deserves its diffusion attribute, consider the 
action of T. *• ' on g: 

1i f »03 »C0 
d? dp dvE(d)(?,7,v;v")g(p-F,T-7,v;v') . (349) 

Q i-00 J—00 

If l' ' is peaked in f> and T relative to g and if the g in 1^ ' 

is taken to be approximately proportional to <5(v„ - v') , we can 
Markovianize Eq. (349) according to 

Eg = -$»D(v)4gtp,T,v;v') , (350) 

J• 00 *0O * OO 

a T dp dv2g(p,t,v?v2)^{p/T) 

= f dt f dv Jg + +(T,v,v ) ^ ( T ) . (351) 
'0 '-«• •»• k - o L a * k " ' 

The ic + J limit of expression (351) is the diffusion coefficient 
used in resonance-broadening theory. Z^ ' is the only term which 
would survive in the stochastic acceleration problem where E is 
specified statistically. However, for the self-consistent problem, 
the terms t ^ ' , 6?' d', and 6E"*P' are equally important. 
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To demonstrate the relation of formulas (338) and (345)-(348) 
to the conventional weak turbule nee theory, we expand Eq. (338) in 
powers of the fluctuation intensity (Krommes 1978a, DuBois and 
Espedal 1978, Krommes and Kleva 1979). From Eq. (335), 

= [ ( g ( 0 ) ) _ 1 + t']~l = g ( 0 ) - g ( Q ) r ' g ( 0 ) + (352) 

where this expansion is valid away from a wave-particle resonance. 
Equation (338) then becomes 

e = 1 + Eg(o)-I<f> + ?g(0).(3<5f - E'g ( o )t<f>) + ••• , (353) 

where <5F and £' must be computed to lowest nontrivial order in 
<6E2>. To this end, we use the linear version of the equation for 
<6f6f>, 

( g ( 0 ) ) _ 1 C + ?<f>.?C = 0 , (354) 

to find 

<6f (1)6£(1')> = - g ( 0 ) (l,T)lT<f>C (1,1*) , (355a) 

<<5f (l)6f (l')> = g ( 0 ) (l,T)? T<f>g ( D )(l ,
f2)t I<f> 6(1,2) . (355b) 

Substituting these results into Eqs. (347) and (348), thence into 
(353), and finally symmetrizing, we arrive at an expression for 
the dielectric correct to order E*. If this expression is Fourier-
transformed (assuming quasi-stationary turbulence), one finds the 
usual result of weak turbulence theory 

e = e U ) + e ( n ) , (356) 

where, if *fe(T) i (41t/ki) (nq)- , 
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e< £> =_ 1 - i $ k g < 0 ) i t 4 < f > 1357) 

is the linear dielectric and 

£ ( n ) = 2 J i E
( 3 1 ( k ] q , k , - q ) - 2 E

 ( 2 ) (k |q,k-q) e ^ £ U ) <k-q |-q,k> ] I (358) 

i s t h e n o n l i n e a r d i e l e c t r i c c o r r e c t t o 0 ( E 2 ) ; 

£

( 2 ) ( k | k 1 , k 2 > H ! s * k ( l ) g < 0 ) ( l ; 2 ) t g . f 2 g ^ 0 ) ( 2 i 3 ) i ? 2 4 3 < f ( 3 ) > + ( k ^ k 2 ) l , (359) 

e ( 3 ) ( k | k 1 , k 2 , k 3 ) 3 W V 1 > 9 k ° ) , 1 , 2 ) W k - k (2;3) 

* [ k >

2 4 3 g k

0 h ; 4 ) i c 3 - ' S 4 < f (4)> t- ( k 2 ^ k 3 ) ] . (360) 

That contact with weak turbulence theory can be established so 
easily is an important virtue of the present formalism. 

In Eqs. (358)-(360), E^ gives rise to the first term of e , 
while <5f~ accounts for the proper symmetrization of £ . The 
polarization terms 2 p and 6F t p together account for the terms in 
.(2) 

( 3 ) 
weak turbulence theory the term in c v , describing Compton scat­
tering (from bare test particles) is partly cancelled, at long wave-

f 2 ) 

lengths, by the term in e v , describing nonlinear scattering (from 
the shielding clouds). In the next subsection we show that a 
similar cancellation can occur in the renormalized theory. 
8.4: Dielectric Function of Guiding Center plasma 

In general, expressions (347) and (348) are extremely compli­
cated because of their nonlocal velocity dependence. To illustrate 
the importance, in the renornvalized theory, of the additional terms 
£ ^ p ) , 5f"( , and Sl^ introduced by self-consistency, we consider 
a nontrivial example in which this velocity dependence is absent. 
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The example is the Liouville equation for the fluctuating charge 
density p of guiding center plasma. 

3..P + v .7p = 0 , 

v £ = (c/B)nxV((i , 

V2(j> = -4np 

(361a) 

(361b) 

(361c) 

I f we make the t r a n s c r i p t i o n s 

f - P , 

* -- 4-rr/k2 , 

3 + (c /B)nx? = ( c / B ) n * ( i k ) , 

(362a) 

(362b) 

(362c) 

Eqs. (347) and (348) can be taken over directly. The details are 
presented by Krommes and Similon (1979). They show that Z^ ' and 
Z p combine in such a way that the order of £' is raised by (kX ) 2 

• (d) Similarly, 5 f ( d ) and 6 f ( p ) combine. In from the order of E 
the special but interesting case of thermal equilibrium, the result 
can be put into the form 

1 1 + *v 1 + 
-111)+ r^2 i k 2\ D

z+l 
k2D, 

(363) 

where D is a weakly-varying function of k which scales as the 
Bohm-like result (103) . The dispersion relation associated with 
Eq. (363) is 

-ik2D,. , (364) 

reasonably indicating a diffusive-like damping of disturbances. 
(The transport is not local, however; see Sec. 4.2 .) 
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Had 6f~ been ignored, only the vacuum tarm "1" would have survived. 
Formula (363) agrees in form with a result of Taylor (1974), who 
used very different techniques. In a resonance-broadening theory 
applied to the non-adiabatic part of the distribution (Lee and 
Liu 1973), the factor k 2\ 2/(k 2\ 2 + 1) would be replaced by unity. 
The associated dispersion relation would be 

it = -i(k2 + k D
2)D| k = Q, (365) 

which approaches a constant as k-»0, in contradiction to both 
numerical experiment and intuitive arguments about eddy diffusion. 

8.5: Aspects of the Drift Wave Dielectric 
Renormalization techniques, mostly along the lines of resonance-

broadening theory, have been applied for many years to the important 
problem of the nonlinear theory of drift waves. Because it can 
be estimated {Dupree 1967) that three-wave coupling is relatively 
unimportant as a saturation mechanism, attention has focussed on 
the dielectric response. We shall describe a few of the salient 
features of these calculations. Confusion in the literature over 
the proper formulation of the renormalized drift wave theory 
precludes a detailed calculation here. 

For the slab model with no magnetic shear, Dupree (1967) 
noted that, to avoid the strongly stabilizing effects of wave-
particle interactions, the waves are confined in linear theory to 
the range v <<oi/k<<v . However, in the presence of turbulence, 
the phase velocity spectrum can broaden into the ion distribution 
function, at which point substantial ion stochasticity and diffusion 
will ensue and, possibly, ultimately saturate the waves. The 
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r e q u i r e d b r o a d e n i n g i s of o r d e r <5v ^ v , - v ^ v , where v E 
d t i d' d 

(cT/eBLn) is the diamagnetic velocity. Inasmuch as the velocity 
fluctuations arise from E*B drifts, one estimates that 

<(e<)>/Te)2>!5 % ^ i L n ) " 1 , (366) 

an oft-quoted estimate for the fluctuation level at saturation, 
which also corresponds to density gradient fluctuations of order 
the background gradient. 

Dupree (1968) attempted to estimate the ion diffusion coeffi­
cient associated with Eq. (366). In a Markovian theory which 
neglected the polarization terms, he found 

((R 2-!) 5* (R>1), 
kA

2D/ui % \ ~ (367) 
( 0 (R<1), 

where the effective Reynolds number R r essentially the ratio of 
linear to nonlinear coherence time, scaled like cki

2<((i5> V^B . 
For y <<w, then, arguments based on y - y - k x

2D led to R ̂  1 
[which corresponds to (376)] and a very small D. However, for R>>1, 
D -v* wR/k^2 % (cT/eB) < (ecJ>/T )2>'2 , a Bohm-like or strong turbulence 
"result. The transition occurs at R^2. 

For y < w we will have 1< R< 2 at saturation. A potential 
problem with the above estimates is, then, that the system may be too 
close to the transition to turbulence for the simple statistical 
theories to be valid. We cannot enter here into this matter, 
largely unexplored for plasmas. Krommes (1979a) attempted to salvage 
the results by arguing that for R < 1 the beat resonances of induced 
scattering provide the necessary stochasticity in the ion distrib­
ution, but the issue seems to be still in doubt. 
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The Dupree (1967,1968) theories were not energy-conserving. 
This problem was first addressed by Galeev (1967) , who effectively 
showed that 6t was necessary for a proper theory. Dupree and 
Tetreault (1978) rederived this result for the drift wave problem 
and effectively computed 6f" ( d\ They concluded that the nonlinear 
damping on each mode was reduced by a factor (k v ./«)) 2 from the 
simple k lD estimate. Krommes (1979a) reconsidered the problem, 
including more carefully the wavenumber dependence of £' d' f and con­
cluded that the individual modal damping was not as predicted by 
Dupree and Tetreault. Rather, some y 's must of necessity be posi­
tive while others are negative in order that energy conservation 
hold. However, the net wave-particle energy transfer, -J (line ) 
*kz<l<t> 1 >2/4ir , was reduced by (k~ v ./ui)2, k being a typical 
parallel wavenumber, in accordance with the prediction of Dupree 
and Tetreault. Krommes' calculation also indicated a tendency for 
energy transfer to long wavelengths, causing concern about the 
possible inability of the system to reach saturation. However, 
Krommes, as well as Dupree and Tetreault,ignored both the polariza­
tion terms, the noise or mode-coupling terms in F (see Sec. 9), and 
the electron dynamics. 

Hirshman and Molvig (1979) considered the universal instability 
in sheared slab geometry, known to be stable in linear theory. 
They followed Catto (1978) [and, implicitly, Galeev (1967)] by 
applying resonance-broadening theory to the non-adiabatic part of 
the electron distribution. They concluded that small amounts of 
turbulence would destabilize the modes, but also that larger amounts 
would stabilize it. A similar theory (Molvig et al. 1979) applied 
to the finite-& drift wave predicted rather remarkable agreement 
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with a number of distinctive features of several confinement 
experiments. 

We shall not discuss here the detailed relation between our 
renormalized equations and the prescription of resonance-broadening 
only the non-adiabatic distribution. However, it can readily be 
seen from the example of the guiding center plasma that the latte/ 
arises from the former only by including f,I. N'uw it can be 
shown that Hirshman and Molvig included only part of 'I , ijiving rise 
to substantial violation of energy and enstrophy conservation (Simiion 
and Krommes 1979); they completely ignored the polarization terms. At 
the time of writing, then, it remains a challenge to justify in detail 
their tempting predictions. 

9: SELF-CONSISTENT FLUCTUATIONS and the BALANCE EQUATION 

9.1: Incoherent Noise and the Balance Equation 
The dielectric response we discussed in the last section was 

defined in terms of an externally imposed infinitesimal electric 
field source. However, as we emphasized in Sec. 6, an internal 
fluctuation can also play the role of the source to which the 
medium responds. This response will be both self-consistent and 
nonlinear. The equation which describes the resulting fluctuations 
is sometimes called the balance equation. In this section we derive 
the balance equation and interpret it physically. Unfortunately, 
we cannot be complete, since this equation remains quite poorly 
understood for plasmas; most of the interesting applications remain 
to be made. 
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It turns out to be very useful to discuss the self-consistent 
fluctuations in terms of concepts familiar from the theory of 
test particle response and superposition (Oberman, Chap. 2.3). 
We shall think of the fluctuation 6f as consisting of two parts, 

(c) a "coherent" part 5f and an "incoherent noise" part &£: 

it = 6 f ( c ) + &f (368) 

(Dupree 1972, Krommes 1978a,DuBois and Espedal 1978, Krommes 19 79b) . The 
coherent fluctuation describes the induced response to an internal 
fluctuation 6E and is defined by 

S f ( c ) = -glf-SE (369) 

(Dupree 1972). (Dupree actually uses <f> instead of F.) The 
incoherent fluctuation is to be thought of as a "bare" fluid 
element, with which is associated an incoherent field <5E related 
to the total plasma field by dielectric shielding. That is, 
according to Eq. (368) the total field is 

ISE" = f 5 f ( c ) + 6E" ; (373) 

upon noting the definition (338) of the dielectric, we find 

6$ = 5E/E . (371) 

We shall further postulate that the fluctuation 6f propagates with 
the single particle propagator g (the natural generalization of 
test particle streaming in the simplest linear theories), so that 
g" Sf represents the "initial" incoherent disturbance. With this 
interpretation, we can use Eqs. (369) and (370) to find 
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6f = R(g - 1«f) ; (372) 

that is, the plasma response to an incoherent disturbance develops 
with the full response function R. Of course, we have yet to give 
an explicit formula for 5f . 

It must be stressed that the above formulas are in some sense 
meaningless, since we are mixing observable quantities (g,R,£) 
with random variables. However, the relations acquire precise 
meaning when correlation functions are formed. Thus, for example. 
Eq. (371) leads to 

j - = <6m> „ i $ M i , ( 3 73) 

which states that the true (measurable) spectrum is the shielded 
incoherent spectrum. The fundamental correlation function in this 
approach is C = <6fSf> . The medium responds to C according to Eq. 
(37 2) , giving the total fluctuation spectrum as 

C = R[g" 1c(g" 1) tlR t . (374) 

We can determine an explicit formula for C by comparing Eq. (374) 
to the formal solution of the Dyson equations we have derived pre­
viously. Indeed. Eq. (210) can be written 

C = R P R t , (37 5) 

where F =-£__ . [Compare Eq. (375) with Eq. (135).] Upon comparing 
Eq. (374) with Eq. (375), we then identify 

C = g F g t . (376) 
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Such a relation was first given by Krommes (1978a) . Because the 
entire functional apparatus is available to determine the form of 
F, the relation (376) together with Eqs. (375) and (373) forms a 
nonperturbative and formally exact statement of the original 
heuristic ideas about coherent and incoherent response advanced by 
Dupree. 

To emphasize the consistency of our definitions, let us construct 
the mixed correlation <<5f<5E>: 

<6f6E"> = RF (e^Eg) l 

: <6f6E"> + <S£(c)6E"> . (377) 

This is consistent with Eq. (368). The second term can also be 
written as 

<6E"5£(c)> = e~1f<6f6f C c ) > . (378) 

Dupree (1972) argued that <Sf6f'c^> should vanish b -:ause of his 
interpretation of 6f as a highly random function. This argument 
is incorrect (Krommes 1978a,1979b) in view of the self-consistency: 
because the coherent response is related to the shielded incoherent 
response, 

6f ( c ) » -<3t^-z~ltd , (379) 

<6f8f^c*> is proportional to <«f<$f>^0. This fact has implications 
for certain of the "clump" theories (Krommes 1979c). 

The incoherent noise correlation C can be determined only 
through explicit solution of the coupleJ Dyson equations for C and R. 
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However, one can gain further insight by considering various 
approximations to the form of F. In the DIA, one has 

F = £:31c + 3-<6f<$£>.$<i5S6f> . (3g0) 

Inserting Eq. (375) in the form 

C = < 6 f ( c ) 6 f ( c ) > + <6f ( c )6f> + <-fiffif<c>> + C , (381) 

we obtain (DuBois and Espedal 1978) 

F = g:tt<&£{c)6f{c)> + ? . < 6 f ( c ) 6 g > . l < 6 g 1 5 f ( c ) > 

+ ^:?I<6t(c)(,if> + 3̂ <<5f (-c) &£>-H<&$Si> 

+ £:3?<6f5f ( c )> + ?-<6f6g>-I<6g6f(c)> 

+ £:3?C + i'<Sf6i>-t<6^&£> . (382) 

If we ignore the possibility that the velocity derivatives may change 
the nominal order of the terms, then the coherent parts of Eq. (381) 
dominate, for then F % £ 2 , C % £ 2 . Retaining only the coherent 
parts, one finds 

F(l,l) = p = [3, tgtf") (l,2U[$ T(g3f Hi,2)1 mi. I 

x[£(l,I)£(2,?) +£(1,2")£(2,T)1 - (383) 

This expression is most easily recognized by constructing the 
associated incoherent field and by assuming stationary turbulence, 
so that one can rigorously Fourier-transform. Introducing an 
Obvious symmetrization, one finds 
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<5* 2> k = 2 I l e ^ O c l k ^ k ^ l 1 ^ Ifc (384) 
k 1+k 2=k •"• 2 

which, when I is approximated as 2TTI 6[u-u(k)], reduces readily 
k k 

to the usual three-wave decay term of weak turbulence theory. 
The corresponding wave-kinetic equation, appropriate for a medium 
weakly inhomogeneous in space-time. As written by Krommes and 
Kleva (1979). 

9.2: Phase Space Granulation 
The mode^-coupling approximation considered in the last sub­

section contains no hint of the stochastic instability of particle 
orbits—that is, one sees in Eqs. (383) or (384) no exponential 
divergence of neighboring phase space elements. As Dupree (1972) 
has pointed out (in different language), this information is con­
tained in the terms of F [Eq. (382)] which explicitly involve 
incoherent fluctuations. Let us write F = F + F" and consider the 

m 
equation for C in the form 

g - 1C - F'g*1 = F g L . (385) 
xn 

For purposes of dimensional analysis, let us approximate 

F» = gtttc . (386) 

(The other term of F^ in <5fz is equally important? the terms in 
<6f6£^c'> represent polarization effects which may also be impor­
tant, especially at long wavelengths.', For stationary turbulence, 
Dupree has written in a Markovian approximation 
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(F'q1) (X,V,T;V) = -3-D (X, V) 4 C (X , V, T ; V) , (387) 

D(x,v) = Texp(ia.x}q2i g*. (388) 
q H 

If one now reinstates a weak dependence on the mean time T and 
considers the evolution of C ( T = 0 | T ) F he finds an equation of the 

form 

g 2
- 1 (T)C(0|T) = ( F ^ H T ) , (389) 

where g is a two-particle propagator, approximated here by 
g2(l,2,T;l',2',T') 

= !s[fi(l- l')M2 - 2') + 6(1- 2x)f>{2 - l')]'.(T- T') , (390) 

where D.. E D(X - x.) . 
ij i J 

To understand the physics of g„, it is convenient to introduce 
relative and centrix coordinates in both velocity and position 
space: 

-+ -V -V -4- -V- -V V = V - V , X . X - X , 
1 l - 1 1 ( 3 g l ) 

V + = 1 5(V 1 + V 2 ) , X + E ! i(X 1 + X 2) . 

Equation (390) then becomes 

f-L +V •_!_ + $ .~i_ - V -5-.D •-?- U 
ST - + + + ' .-*• vu »•* <- d i 3x_ + SX + N),y=+,- 3 v y

 v y 3v u > 

= ! j [ f i (X_-X_ '} + 5(X_ + X _ , ) 1 5 ( X + - X +

, ) 5 ( T - T » ) , (392) 

where X = {x,v} and 
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D- "= Dll + °22 " ( D12 + D 2 1 ) ' (393a) 

Dtl ^ ^ D l l - D 2 2 + ( D 1 2 - D 2 1 ) ] ' ( 3 9 3 b ) 

D
+
 ; ^ ( D11 + D12 + D21 + D 2 2 ) ' ( 3 9 3 C ) 

Because D depends on x , the diffusion coefficients behave differ­
ently in the limits of large and of small x . If we ignore the 
velocity dependence of the diffusion coefficients, and if k is a 
typical wavenumber of the turbulence, then we find the limiting forms 

D J 2 - 0 , (394a) 

D •+ 2D , (394b) 
(k x >>1) 
o « 

D , D_ + ->• 0 , (394c) 

D + + SjD r (39 4d) 
and 

n

l 2 * D ' (395a) 

(395b) 
(k x <<1) 

Q -D +_, D_+ + 0 , (395c) 

D + •* D . (395d) 

Because of property (394a), in the limit of large relative separation 
the solution of Eq. (39i) factors into the product of one-body 
propagators, signifying independent diffusion of the two phase 
space elements: 
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g 2 ( l , 2 , T ; l ' , 2 ' ) -* J j [U + ( 1 , T ; 1 ' ) U + (2 ,T j 2 ' ) + ( l< - -2 ) ]H(T) , ( ? 3 6 ) 

w h e r e U i s d e f i n e d b y 

(if + V ^ l " "I—D—T-] a (1.T.-1-) = 0 , (397a) 
*• 3 v 3 v J 

U + ( 1 , T = 0 ; 1 " ) = 6 ( 1 - 1 ' ) . ( 397b) 

However, at small x the physics is more interesting and describes 
correlated diffusion. 

For k X_<<1 we may ignore D and D in Eq. ( 392) . The 
solution of the resulting equation is 

3 2 = U+(X+,T;X+')n_(X_,T;X_')H(T) , (39R) 

where the relative propagator U obeys 

laV + V- — - " 4 — D <* '—T-l u <x - T: x ") = 0 . (399a) 
^ 3 r "3x_ 3v_ " " avj _ " 

u_(X_,T=0;X_') = W;[6(X_ - X_ ') + 6 (X_ + X_ ') ] . (399b) 

The propagator 0 describes ordinary turbulent diffusion of the 
centrix coordinates. Observe that if the two fluid elements are 
initially coincident (X_'=0), they remain so indefinitely since 
they have no initial relative motion (v_ = 0) and feel the same forces 
(x_ - 0) —mathematically, 

tMX M,T;X_') = % [ 6 (x_-v_T-x_ •) 6 (v_-v_ ') 

+ 6(x_-v_T+x_')6(v_+v_,)I (D_ = 0) 

= <5(x )6(v ) (v =x = 0) . (400) 
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To understand xie motion when the two elements are slightly 

separated, we approximate D by its first nonvanishing term in a 

Taylor expansion about x_= 0, 

D (x ) = (k X ) 2D" , k 2 D " = 3 2D /9x 2 , n , (401) 
- - O - 0 - - | X =0 ' 

and consider the f i r s t and second moments of the r e s u l t i n g equation 

for U_. To th i s end, define an averaging operat ion by 

fax <a(x ,v ,T)> = dx dv_a(x ,v_)U_(x ,v ,T;x ',v_') . (402) 

One then finds, from Eq. (393a) with Eq. (401), that <1>= 1 
•+ -+• 

—that is, probability is properly conserved—and that <x >= <v > = 0 . 
Specializing to one dimension for simplicity, one finds also that 

-^ <x z> - 2<x_v_> = 0 , (403a) 

-&I < x _ v _ > - <v_ 2> = 0 , (40.3b) 

•^ < v_ 2> - 2k o
2D"<x_ 2> = 0 , (403c) 

which combine to give 

3T 3 

where 

3 3 <x 2> - f^-] 3<x *> = 0 , (404) W 
T R = (!sk o

2D")~ 1 / 3. (40 5) 

Equation (404) was first given by Dupree (1972). With <x 2> <\, exp(sT) , 

the characteristic growth rates for Eq. (404) are 

s = 2 T K
_ 1 { 1 , -ij{l±i/T)} . (406) 
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We identify the growing solution <x_ 2>T, exp(2T/T ) with the exponen-
K 

tial orbit divergence we expect, and thus identify T _ 1 with the 
K 

K-entropy. Exact solution of Eq. (404) is straightforward but 
uninteresting. Asymptotically (Dupree 1972), 

<x 2> -\, '/a[ (x " ) 2 + 2x 'v ' T +2(v " ) 2
T
 2]exp(2T/ T ) . (40.7) 

This solution is valid for k 2<x 2><<1. Let us follow Dupree (1972) 
and define the "clump lifetime" T , as the time for two orbits 

c l 

i n i t i a l l y separated by (x_',v ') to diverge one wavelength, k 2 -x 2 ;• 

^ 1 . Then 

f-i l n f { 3 k _ ? [ ( x ' ) 2 + 2 x ' v 'T + 2 ( v ' ) 2 T 21 _ 1 } h 

| K [ 0 — — — K — K 
( T 1 > TJ 

c l K (408) 

Equations (40 3) have a ready physical derivation. (See Krommes 
et al. (1978), where an analogous calculation is performed in detail 
for the problem of stochastic magnetic fields.) Consider the exact 
equations for the infinitesimal separations Ax, Av between two 
adjacent orbits: 

g^ Ax = Av , (40 9a) 

dt A v = ( q / m ) [ 3x(0 AX . (40 9b) 

The second moments of Eqs. (409) obey 

g^<Ax 2> = 2 < A X A V > , (410a) 

££<AxAv> = <Av 2> + <(q/m)E'Ax z> , (410b) 

^ <Av 2> = 2<(q/m)E'AxAv> , (410c) 
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where E' (t) = 3E[x(t) ,tl /ax(t) • I f t v i n E<3 • ( 4 1 0 c l i s expressed in 
terras of E•Ax by integration of Eq. (4Q9b), and if a quasinormal 
approximation is made, Eqs. (403) emerge by neglecting <:E'Ax2> 
(which is smai:. in T / T R ) and with 

- - i • » » r 3 - / f3E[x(T),T]l f3E[x(0),0]]\ ( 4 1 1 ) 

D" = <q/m) 2J o dT { [ 3[ k ox( TMj [3[kox(0)J j / ' l 4 1 1 ) 

We can thus summarize our investigations of two-point propagation 
as follows. Phase space elements more than a characteristic 
wavelength apart move independently, each undergoing turbulent 
diffusion away from a free-streamiig trajectory. Phase space 
elements closer than a characteristic wavelength diverge exponentially 
rapidly from each other, because of the stochastic instability, 
in a characteristic time x - ^ T„ . 

We shall not discuss here the attempts at practical computations 
based on Eq. (385), in part because of some apparent disagreement 
between the points of view presented by us (Krommes 1979b, DuBois and E 
pedal 1978) ar1 by Dupree (1972) concerning the proper way of computing 
incoherent noise. Dupree has examined the role of clumps in ion 
acoustic turbulence (Dupree 1970) and in drift turbulence (Dupree 
1978). Numerical simulations support a number of the physical 
assertions about clumps and granulation (Hui and Dupree 1975, 
Dupree et al. 1975) . 

10{ MISCELLANEOUS 

10.1;_ Renormalization and Stochastic Magnetic Fields 
We comment briefly here on an application of apparent importance 

in both fusion and astrophysics research: particle transport in 
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stochastic magnetic fields (Krommes et al. 1978 and refs. therein, 
Krommes 1978b). it is assumed that a sheared stable equilibrium 
magnetic field exists in some region of space. In the simplest 
problem, this equilibrium is disturbed by very small directional 
perturbations, not self-consistent with the equilibrium, which 
resonate at many neighboring rational surfaces. if the pertur­
bation amplitude is large enough, the resonances wilI overlap and, 
as is well-known, the fields will become stochastic. It is of 
interest to determine the diffusion rate of the fields as well as 
of test particles placed into the field configuration. 

In more complicated situations, the particle diffusion must be 
made self-consistent with the magnetic perturbations. Such problems 
can be attacked using the statistical methods we have already 
developed. However, because little work has been done along these 
lines, we shall not discuss such applications here. [For some pre­
liminary calculations, see Kleva (1979) and Kleva et al. (1979).] 

A quasilinear description of the field lines is often adopted 
(Rosenbluth et al. 1966). The justification is similar to that 
Ljiven for the problem of test particle diffusion in a stochastic 
wave field discussed in Sec. 3. The magnetic field is described 
by a Hamiltonian whose canonical equations are dxx§=0. The per­
turbation Harailtonian is expressed in terms of a summation over 
parallel wavenumber k., = k*B/B. The trapping width around each 
rational surface tk.. (x) =0] is found, and the stochasticity 
criterion identified. The K-entropy of the field is determined 
by techniques similar to those described in Sec. 9—namely, equations 
are found for the separations between two infinitesimally separated 
lines, and statistically analyzed for the behavior of the second 
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moment of the separation as a function of distance along an un­
perturbed line. A difference between the test particle and field 
line problems emerges in the computation of the linear decay of 
correlations. In both cases, this is determined by the width 
Ak of the wavenumber spectrum. However, for the electrostatic wave 
case, Ak is ultimately determined by the dispersive properties of 
the waves, which limit the spectrum in k space. In the field-line 
case, however, &k is determined by the degree of spatial localiza­
tion of the Fourier modes aroung kj|(x) = 0, through an uncertainty 
relation between distances perpendicular and parallel to the lines. 
Quasilinear diffusion theory for the lines is then valid if the 
correlation distance 2tt/Ak|| is less than the exponentiation 
length. We write <Ax3> = 2D |z | . 

m 
Now let test particles be added to the stochastic field con­

figuration, and let the guiding center approximation be enforced 
in which the particles exactly follow the lines in the absence of 
collisions. If the particles are completely collisionless, then 
time and parallel distance are related according to z = v..t and the 
test particle diffusion coefficient is D^D |v..| (Jokipii and Parker 
1969). However, if the particles are collisional so that z a ̂  2D .t, 
a naive estimate would predict that Ax z/t^D (t>,./t)'5, so that no 

in II 
asymptotic diffusion coefficient would exist. However, particles 
can also become decorrelated from a given line by cross-field dif­
fusion. When this is taken into account, an asymptotic diffusion 
coefficient can be defined (Rechester and Rosenbluth 1978). However, 
the decorrelation time T is not simply xs = (k a

2D_ l)" 1; because of the 
stochastic instability, exponential divergence dominates and T 

c 
scales as T R , being only logarithmically sensitive to TA(Rechester 
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and Rosenbiuth 1978, Krommes et al. 1978). 

The DIA will incorrectly predict xr ^ T X because of the under­
lying Gaussian factorization of K. A theory which predicts T % T 
must retain intrinsic two-body correlations in order to describe 
the correlation of a particle with a specific line (which is 
stochastically unstable). Put more generally, any problem whose 
physics rests on finite K-entropy must retain intrinsic two-body 
effects because the K-entropy is a two-body quantity. Nontrivial 
closure at the level of the Bethe-Salpeter equation is required. 
The basic principles were described by Krommes et al. (1978); 
detailed quantitative work continues (Kotschenreuther and Krommes, 
unpublished). 

10.2: Projection Operator Techniques 
In this and the next subsection, we mention some of the alter­

native techniques which have been used to effect renormalization of 
plasma dynamics. We cannot hope to do justice here to the tech­
nical details of these approaches; our main purpose is to provide 
a guide to the literature. 

Consider first a dynamical equation of the form 

ati|>Ct) = L(tH(t) , (412) 

where the "evolution operator" L is linear and t|> may be a vector 
parametrized, for example, by space, velocity, and species indices. 
Equations (150) and (220) are of the form (412), with He= [F,H] 
for arbitrary F. Let us divide ii> into two parts, a wanted or 
"observable" part P\|) and an unwanted or "hidden" part Qi|i: 

<i = P!|i + QI|I . (413) 
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We assume t h a t P and Q a r e o r t h o g o n a l p r o j e c t i o n o p e r a t o r s s a t i s ­

fy ing 

P + Q = 1 , (414) 

P 2 = P , Q z = Q , PQ = QP = 0 . (415) 

Two important realizations of P are 

PF(t) E <F(t)> , (416) 

which when applied to \p generates its mean, and 

PF(t) = i|j(0)<iJj(0)̂ (0)>"1<i(j(0)F(t)> , (417) 

which when applied to ip(t) generates its covariance. It is easy 
to verify that both definitions (416) and (417) define a time-
independent ((3 ,P]=0), linear projection operator P. 

Our goal is to find an equation for the observable Pip. To 
this end, we apply both P and Q successively to Eq. (412), finding 
thereby 

Pip = PL(P+Q)i|i , ( 4 1 8 ) 

Q* = QL!Q+P) t , ( 4 1 9 ) 

where we inserted the identity (414) . Equation (419) can be 
formally solved for the hidden part Q\\i: 

* ft * 
Qi|) = 0 (tf0)Qi|i(0) + dt'U (t,t,)QL(t')P\jj(t') , (420) 

where 
U*(t,f) = exp+ff dt"QL(t")Q] . (421) 

Substituting Eq. (420) into Eq. (418), we find 
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t 
3tPiJi(t) = -in(t)P*(t) + f d f $(t,t')P*(f) + PL(t)U*(t,0)0^(0) , 

(422) 
where the operators £5 and $ are defined by 

-ifl(t) 5 PL(t)P , (423.) 

<t>(t,f) 5 PL(t)QU (t,t')QL(f)P • (423b) 

Often the system can be prepared so that Q\|>(0) 5 0. [This is 
automatically satisfied with the construction (417).] In this 
case, Eq. (423) is a formally closed equation for the observable PI|J. 

To better understand the content of Eq. (423) , define 

f*(t) = QL(t)iMO) (424) 

and u s e d e f i n i t i o n ( 4 1 7 ) . Br i e f m a n i p u l a t i o n s b a s e d on Eqs . (413) 

and (420) t hen l e a d t o 

t 
[3 + iu j ( t ) ] i j i ( t ) + [ d t ' v ( t , t ' H ( f ) = f ( t ) , (425) 

where 

u ( t ) = i<i j j (0)L(t) i ) j (0)><ii)(0)*(0)>" 1 , (426a) 

v ( t , t ' ) E - < f * ( t ) f * ( t ' ) > < i | ) ( 0 ) ^ ( 0 ) > " : L (426b) 

Equation (425) is oalled the generalized Langevin equation (Mori 
1965a), as its form is a simple generalization of the Langevin 
equation encountered in the elementary theory of Brownian motion. 
A good review is given by Kubo (1974) . Other familiar-looking 
relations are 
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<f (t)\|i(0)> = 0 , (427) 

which follows from Eq. (424), and 
t 

[3 + iu(t)]«|i(t)i|)(0)> + [ dt'v(t,t')<i{i(t,)<|)(0)> = 0 , (428) 

which follows from Eqs. (425) and (427) . Equation (426b) is a 
generalized Einstein relation. 

The problem with Eqs. (428), (422), or (425) is that they are 
extremely formal. The action of the modified evolution operator U 
is very difficult to evaluate explicitly because of the presence 
of the orthogonal projector Q. However, formal power series expan­
sions can be given (Birmingham and Bornatici 1971). Mori (1965b) 
has developed an interesting continued fraction representation of 
the solution. The generalized Langevin equation has been used 
successfully to develop dynamical models in many-body theory. 
(For a review, see Berne 1971.) Using definition (4i6), Weinstock 
(1969,1970) has couched the problem of Vlasov turbulence in the 
projection operator formalism. 

Workers of the Brussels school have developed projection 
operator techniques far beyond the level described here. Their 
approach has been described in detail elsewhere (Balescu 1975), 
so we do not comment further here. Misguich has written a number of 
very detailed papers describing their application to plasma turbulence 
(Misguich and Balescu 1975a,b, 1977, 1978a,b). 

10.3: Canonical Transformations 
A very stimulating and novel approach to statistical theories 

has been advocated by Dewar (1976) . The idea is to introduce the 
Hamiltonian corresponding to the (conservative) system under 
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discussion, then to seek a canonical transformation to new variables 
such that the statistical theory of the transformed system is 
simpler and perhaps more convergent. (We are referring to the 
ordinary Hamiltonian, a function of the canonical variables, not 
to the operator-valued Hamiltonian function of the extended fields 
in the MSR procedure.) For example, one might try to remove the 
oscillatory motions of non-resonant particles. Dewar has argued 
that the approach may be particularly useful for problems involv­
ing partial trapping. He has arrived at a number of interesting 
conclusions, but much further work remains to be done. One problem 
with the technique is that some information is "hidden" in the 
generating function for the canonical transformation and must be 
retrieved if results are desired in 1-boratory coordinates. An­
other is that the way of choosing the "best" canonical transforma­
tion has not yet been adequately systematized. However, it would 
seem that renormalized canonical transformation theory is a fruit­
ful area for further research. 

10.4: Additional References 
We list here a few additional references on subjects not ade­

quately covered in the text. A good review of fluid turbulence 
theory is given by Kraichnan (1975b) . A review of many aspects of 
resonance-broadening theory is given by Pelletier (1977). Discussions 
of renormalizations applied to high density plasmas and liquids are 
given by Ichimaru (1977) and by Cook (1978a) . The use of resonance-
broadening theory to describe certain tokamak instabilities is dis­
cussed by Ehst (1977) . 
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11: AFTERWORD 

Hopefully, it is by now clear that renormalization is important 
in a number of interesting and relevant problems of plasma physics. 
However, though we have indicated the general framework within 
which these problems may be handled, in relatively few cases did 
we succeed in carrying the problem to a definitive solution. Thus, 
we cannot say that we quantitatively understand drift wave tur­
bulence, with Reynolds number of order unity. Likewise, the 
detailed phase space dynamics associated with stochastically 
unstable systems are only partly understood qualitatively, and 
even less tfell quantitatively. Further exploration of these 
questions should be both challenging and exciting. As problems 
in nonlinear statisvi-al physics, they are scientifically important 
in their own right. More practically, a quantitative (renormalized) 
theory of plasma turbulence is one prerequisite to successful 
detailed computer modeling of laboratory discharges and, ultimately, 
to the design of a successful fusion reactor. Perhaps in no 
other example is the symbiosis between fundamental and practical 
so necessary—and so near. 
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APPENDIX A: CUMULANTS 

Consider a one-dimensional probability distribution P (x) 
of the random variable x. The moments of P are defined as 

<xn> dxx nP(x). (Al) 

Assume tha t P has a Fourier transform P, : 
k 

P k = dxexp(-lkx) P(x) (A2a) 

= <exp(-ikx)> (A2b) 

dx I i-~ i k ) x nP(x) (A2c) 
n=0 n! 

V (-J*)" n • (A2d) 
n = 0 

The cavalier interchange of integration and summation we have 
performed is usually justified in practice. Because of Eq. (A2d), 
we say that P. is the "moment generating function" for P : 

< x n > . _ * l _ P k | k _ o . (A3) 
D(-ik) n 

In general, even physically simple distributions contain 
moments of all orders. For example, the Gaussian distribution 

P{x) = (2TrA 2) _ i sexp[-(x-x o) 2/2& 2] 

has all even centered moments nonvanishing: 

<(x-x ) 2 n> = [ 2 n - l ) » A 2 n (Gaussian). (A4) 
o 
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Furthermore, in dimensionless units the moments become, in gen­
eral, rapidly large with order and are, thus, useless as expansion 
parameters. This motivates an alternative description of the 
distribution in terms of parameters which may often be small. 

Let us define the "cumulant generating function" W. , whose 
significance will be made clear shortly, by 

\ ^ lnP k . (A5) 

W. has its own formal Taylor expansion, the £-th coefficient of 
which we call the 2.-th cumulant and denote by «x » : 

W. = I ^ L l « x l » ; (A6) 

X 8. 

« x f » = ? — s : w

k | k - o = ~s. l n P klk-o • ( A 7 ) 

3 ( _ i k ) « . k | k - 0 a ( _ i k ) « . Klk-0 

We can use Eqs. (A2b), (A5), and (A6) to wr i t e 

I 0 0 . Jt \ 

I ( " i k ) «xRa> ] , 
J .= I t . ' I 

<A8) 

so the cumulant expansion affords a way—often useful in practice— 
of interchanging averaging and exponentiation. Furthermore, because 
the Fourier transform of a Gaussian is again a Gaussian, 

P k = exp(-ikxQ- '5kiA2) (Gaussian), (A9) 

we see that 
«x» = x Q , 
«x 2»= A2 , (Gaussian) (A10) 
«xZ» = o U>3) . 
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In general, if the distribution is nearly Gaussian--a result often 
guaranteed by the central limit theorem—the third and higher cumu-
lants will be small and thus become potentially useful expansion 
parameters. 

The general law relating moments and cumulants follows by ex­
panding Eq. (AS) in its formal Taylor series and then comparing the 
result to Eq. (A2d). Clearly, the £-th cumulant is determined by 
moments of order no higher than I, and vice versa. The general law 
states that the n-th moment is determined by all possible sums of 
products of cumulants of order n or lower, such that the total num­
ber of x's in the product is n, and with each term weighted with a 
combinatoric factor which gives the number of distinct combinations 
of x's in the product: 

n=lum- 1=1 l V J 

E!.-j=n 

where u is the number of identical 9,' s in the set {I. I I . 
m l n> 

Thus, through order four, 

<x> = «x» , (A12a) 
<x2> = <x>2 + «x2» , (A12b) 
<x3> = <x> 3 + 3<xx<x!» + « x 3 » , (A12c) 
<x*> = <x>" + 3<x*<x3» + 6<x>z «& z» 

+ 3 « x 2 » 2 + «x"» . (A12d) 

From Eq. (A12b), observe the important result that the second cumulant 

is the covariance of the fluctuation: 
« x z » = <-x-<x>)2> =<6x2> . (A13) 
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Also, note that the explicit decomposition for a centered Gaussian, 

< K 2 n > = (2n):_ < < x2 > ;n = ( 2 n _ 1 ) ; , A 2 n f ( A 1 4 ) 

nM2:> n 

agrees with Eq. (A4). 
The cumulant expansion can be extended in an obvious way to 

n-variate distributions: 

( m <-i*,^ t-ik )̂» b . , i 
<exp(-i*-x)> = exp I • t ^-2—«x 1

y- 1 x 2 2...xn
x-n» 

41...£n 1" n' ' 
all S-'s not 0 (A15) 

For distinct x's, the moment expansion in terms of cumulants becomes 
particularly transparent because all combinatoric factors are iden­
tically unity. For example, the fourth moment of a centered process 
becomes 

<x,x„x,x > = «x.x,»«x,x, » + «x,x,»«x„x. » + «x.x, »«x„x,» 1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3 
+ «x.x.x,x,» 

1 2 3 4 
Finally, we can describe random functions 18(1) of continuous 

parameters "1" by changing the discrete sums in Eq. (Al5) to integra­
tions in the usual way. We may thus define a generating functional 
by 

W{n} i ln< exp/dln(l)$ (D> (A17) 

(it is conventional to drop the factor "-i"), in terms of which 

«*!> .. .(ten) » - 6 T l ( ; ° W ! ^ ( n ) , r,. 0 . CMS) 

Here 6/Sn denotes a functional derivative (find)/fin(2) = 6(1-2)], familiar from 

v a r i a t i o n a l ca lculus and n ice ly described by Beran (19 68). The forms 

(A16) and (A17) w i l l be used extens ively in Sec. 6. 

A useful d iscuss ion of cumulants can be found in Kubo (1962). 
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APPENDIX B: FOURIER TRANSFORM CONVENTIONS 

The fundamental Fourier transform convention is 

E(x) = IE exp(ikx) . (si) 
k 

We writs amplitudes for discrete spectra as E, , for continuous 
spectra as E(k) . For a one-dimensional discrete spectrum with mode 
spacing 6kH2Tr/L , the following relations hold, in addition to (Bl) : 

• L 
Ek = -=— exp(-ikx) E(x) , 

o 

^ ^ = W < E E > k ' 

<|Efc|2> = <EE>k . 

The notation <E E>. means the transform with respect to p of the 
stationary correlation <E(x+p)E(x)> . Also, 

dxA(x) B{x) = L I A. B 
Jo k k ~K 

T r a n s i t i o n to a ono-dimensional cont inuous spectrum i s e f fec ted 

by 

E(k) = L E k , 

I •* J&k/6k . 
k 

In this case, the following relations hold: 

(00 
•|£- exp(ikx) E(k) , 

— 00 

E(k) = dx exp(-ikx) E (x) , 
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<E(k ) E ( k ' ) > = 2 T i 6 ( k + k ' ) <EE> ( k ) 

<JE(k) ] ? > = L<E E >(k ) , 

dxAu-.' 3(x) = J 4 r - A(k) B(-k) 
-CO 
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R e s p o n s e 
d i m e n s i o n l e s s 

F u n c t i o n : 
d i m e n s i o n a l 

T < 1 (x < T ) 
a c 

e x p f - J j K 2 7 2 ) e x p ( - ! s B 2 T 2 ) 

7 > 1 ( T > T ) a c exp(-K a7) e x p ( - B 2 x T) 

Table I. limits of the response function of the 
stochastic oscillator with Gaussian coefficient. 
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FIGURE CAPTIONS 

Fig. 1. Integration domain in the space of wavevector magnitudes. 

Fig. 2. Geometry for the fundamental wavevector triad. 
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F i g . 1. 802038 



Fig. 2. 802037 
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SYMBOLS 

Roman and Script 
a — mode-coupling coefficient for emission 
kpq 

b — mode-coupling coefficient for absorption 
kpq 

— magnetic field 

BSE — Bethe-Salpeter equation 

— speed of light 

C(T) — two-point correlation function normalized to unity 

two-point correlation function 

C. — residual third-order cumulant 

C(T) — Lagrangian correlation function: C X(T),T 

C{X,T) — Eulerian correlation function 

— number of space dimensions 

— diffusion coefficient 
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d i r e c t - i n t e r a c t i o n approximation 

dif fusion coe f f i c i en t for s t ochas t i c magnetic 

f i e l d l ines 

"plateau" dif fusion coef f ic ien t for convective c e l l s 

absolute value of e l ec t ron ic charge 

energy 

e l e c t r i c f ie ld 

e l e c t r i c f ie ld opera tor (Eq. 151e) 

ex te rna l e l e c t r i c f i e l d per turba t ion 

e l e c t r i c f ie ld induced in plasma by external f ie ld 

ex t e rna l random force? d i s t r i b u t i o n function 

zero-th order d i s t r i b u t i o n function 

renormalized distr ibut ion function 

"random" force in generalized Langevin equation 

covariance of e i t h e r random coef f i c i en t or 

random external force 
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"incoherent no i se" term in equa t ion for C 

mode-coupling p a r t of F 

F - F 
m 

particle propagator 

two-particle propagator 

particle propagator in linear theory 

two-point symmetric matrix of correlation and 
response functions 

Hamiltonian 

Heaviside function: H(t < 0) = o, H (0)= 1/2, 
H(t > 0) = 1 

Hamiltonian functional 

four-point interaction matrix in BSE 

potential spectrum 

imaginary 
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ordinary Bessel function of f i r s t kind, order 

v, and argument z 

{k, in, } ; sometimes, | £ | 

wavenumber 

t y p i c a l wavenumber of turbulence 

forcing wavenumber 

2 !j 

Debye wavenumber: \l 4t t (nq/r) s ] 

long wavelength cutoff 

wavenumber p a r a l l e l to magnetic f i e l d 
Kubo number BT ; the two-body s c a t t e r i n a ac 

function in the BSE 

transformed Hamiltonian 

system size? l inear operator (Sec. 10) 
- l 

density scale length: [7 ln(n)] 

legendre transform 
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particle mass (species s) 

mode-coupling coefficient 

density 

number of modes in wavepacket 

momentum: original momentum in canonical 
transformation 

wavevector 

new momentum in canonical transformation; 
projection operator (Sec. 10) 

probability functional of ij) 

particle charge (species s) 

new coordinate in canonical transformation? 
projection operator orthogonal to P (Sec. 10); 
test charge 

renormalized charge 

radial coordinate? perpendicular dielectric 
factor (Eq. 117b) 
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nonlinear envelope of correlation function 

(infinitesimal) mean response function; effective 
Reynolds number 

zeroth order (linear) response function 

fluctuating response function 

real 

signum function: t/|t| 

stochasticity parameter 

generating functional 

generating function 

time 

temperature (energy uni t s ) ; time-ordering operator 
• 

(Sec. 6); mean timet %(t+t ) 

anti-time-ordering operator 

t r i p l e correlation responsible for energy transfer 

dynamical fluid-like variable 
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initial condition for stochastic ascillator 

covaviance of u; time-ordered evolution operator 
(Sec. 6).- "enstrophy" constant of motion (Sec. 7) 

third order bare vertex 

linearized mean field operator 

three-point coupling coefficient for stochastic 
acceleration problem 

modified evolution operator in generalized Langevin 
theory 

particle velocity 

group velocity: 3aiOO/Qk 

U 

thermal velocity: (T/m) 

trapping velocity 

velocity in frame of v . 

guiding center e lec t r i c d r i f t : cE*B/B 

velocity of random Galilean transformation 
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v, — phase velocity: aj(k)/k 

W — "energy" constant of motion (sec. 7) 

W{r|} — cumulant generating functional (Eq. 18Rd) 

ft/ — shape factor for energy or enstrophy transfer 

x — spatial coordinate; genralized skewness for 
stochastic oscillator 
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inverse "temperature"; angle opposite k in 
triangle k = p + q; normalized wavenumber cut­
off in DIA 

r.m.s. value of random coefficient; inverse 
"temperature"; angle opposite p in triangle 
•r •* •* 

K = P + q 

bare vertex matrix; angle opposite q in 
• + - * - > • triangle k = p + q 

linear growth rate 

renormalized vertex 

3 2 i / i 

skewness parameter: <<i|) >>/<<ty >> 

positive infinitesimal 

"coherent" part of 6f 

"incoherent" part of 6f 

nonlinear part of if 

separation between adjacent wavenumbers: 2ir/L 
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v e l o c i t y spacing between ad jacen t r e sonances 

n o n l i n e a r bandwidth 

l i n e s h i f t 

Dirac function 

frequency spacing between bare resonances; 
integration domain for wavevector magnitudes 
which satisfy k = p + q; width of Gaussian 

wavepacket width in k space 

fundamental time step in random walk 

u minus direct-interaction contribution (Sec. 5) 

island width in velocity space 

fundamental space step in randon walk 

frequency width of a bare resonance 

frequency width of a renormalized resonance 



- 177 -

+ -+' ' d i e l e c t r i c opera tor : e (x , t ; x , t ) ; 

l i n e a r d i e l e c t r i c 

d i e l e c t r i c function: Fourier transform of 
•+ -> • ' 

E(X-X , t - t ) 

plasma parameter: < n ^ n ' 

covariance of e l e c t r i c f ie ld 

matrix of external functional "probes"; r a t e of 

enstrophy in jec t ion or t r ans fe r 

ex te rna l pe r tu iba t ion or funct ional "probe" 

e f fec t ive co r re l a t ion time between f luc tua t ions 

k, p , and q 

- l 
Debye wavenumber: k 

r a t e of enstrophy t rans fe r red across k 

v i s c o s i t y 

damping rate 

random field 
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r a t e of energy t ransfer red across k 

gyroradius ; spa t ia l separat ion 

ion gyroradius at e lec t ron temperature 

f luc tua t ing charge dens i ty 

Pauli spin matrix (Eq. 187a) 

nonl inear damping decrement 

mass operator? generalized resonance-broadening 

factor 

resonance-broadening fac tor 

quasinormal or quas i l inear approximation to T. 

"diffusion" part of I 

i 
"polarization" part of E 

time difference 

autocorrelation time 

decorrelation time 
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clump lifetime 

1 2 Vi diffusion time: (/3k D) 

inverse of Kolmogorev entrophy 

energy transfer time for n-th wavenumber band 

recurrence time: NT 
ac 

perpendicular correlation time 

electrostatic potential 

random multiplier in random coupling model 

memory kernel in generalized Langevin equation; 
vector of dynamical variables: 2? = (ty,i>) ; 
electrostatic potential 

memory kernel in generalized Langevin equation; 
potential operator 

random variable 

operator conjugate (in the sense of Martin et al.) 

frequency; often, a random coefficient 
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ui — bare oscillator frequency 

u(k) — mode frequency; e [ k,... (k) ] - 0 

w c s — gyrofrequency of species s: (qB/tnc)s 

w _ — plasma frequency of species s: U.4?(nq /m) P=> s 

OJ A — drift frequency 

U — frequency matrix in generalized Langevin 
theory; enstrophy 

°. — renormalized oscillator frequency 

n. — trapping frequency in bare resonance 

S2 — trapping frequency in renormalized resonance 

Operations on Arbitrary Functions or Operators A, B 

A — complex conjugate of A 

A +(t) — H(t)A(t) 

A_(t) — H(-fc)A(t) 

A — discrete Fourier transform of A 
k 
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A(k) — continuous Fourier transform of A 

ensemble average of A 

• < A - - — cumulant average of A 

A — fluctuation in A: A-' A-' 

A/': — functional derivative of A with respect to n 

1ArBl — commutator of A with B: AB-BA 

'iA — (q/m) liA/etv 


