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ABSTRACT

The need for Receiver Operating Characteristic (ROC) analysis
is indicated by a discussion of the limitations of "accuracy" and
of "sensitivity" and "specificity" as indices of diagnostic detec-
tion or discrimination performance. The concept of a variable
decision threshold is shown to lead in a natural way to the ROC
curve as a means for specifying diagnostic performance. Practical
techniques for measuring ROC curves are described, and directions
for possible generalizations of conventional ROC analysis are
indicated.

INTRODUCTION

How can we measure the quality of diagnostic information and
diagnostic decisions in a meaningful way? That basic question
has become increasingly important in recent years as an abundance
of new diagnostic tests has been introduced and as government and
the public grow ever more insistent that the medical community
must justify the costs and possible risks of diagnostic procedures.
'The question must be addressed; it will not go away.

The fundamental relationships between the physical properties
of a diagnostic medical image (such as resolution, contrast, and
statistical fluctuations) and the ability of a human observer to
properly detect and interpret relevant image features are poorly
understood. In real diagnostic tasks, these relationships are
undoubtedly complicated by problems of complex background struc-
ture, normal anatomical variations, and observer training. Thus,
at present, one cannot confidently predict the diagnostic perfor-
mance of a medical imaging procedure from knowledge of its
physical characteristics. Instead, one must objectively measure
the diagnostic detection performance that can be achieved by
human observers who view images made with real medical imaging
systems. Hopefully, the data obtained in this way ultimately

* Much of the text of this paper is taken from: Metz, C.E.,
Basic Principles of ROC Analysis, Seminars in Nuclear Medicine
8: 283-298, 1978.
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will contribute to an improved understanding of the visual process
in diagnostic medicine. For now, these data — if properly
collected ~ can provide an empirical quantitative description of
diagnostic imaging system performance.

Any meaningful approach to the evaluation of diagnostic per-
formance must inevitably involve many complex technical and social
issues, and one cannot reasonably expect that the typical physicist
or physician should master all of the subtleties involved. Still,
the basic concepts upon which diagnostic performance analysis rests
are quite straightforward and need not be regarded as mysterious.
Although these concepts are (unfortunately) often clothed in
seemingly occult jargon -- because of the need for concise and pre-
cise terminology—5 the principles themselves are mostly formalized
common sense or at least can be recognized as reasonable when
explained in plain language.

This paper will attempt to guide the reader through the basic
principles of an approach that provides a structure for the mean-
ingful evaluation of diagnostic techniques. Although this approach
is essentially quantitative, its merit does not depend only upon
the use of numbers. The approach focuses attention on the issues
involved in diagnostic evaluation and diagnostic decision-making,
and the reader will likely find that he has informally considered
some or all of these issues already. To the extent that this is
true, the reader may find himself in the position of Moliere's
gentleman who was pleased to learn that he had been speaking prose
for years.

DILEMMAS IN EVALUATING DIAGNOSTIC TESTS

What does "Accuracy" Mean?

xV Any assessment of diagnostic performance seems to require
some comparison of diagnostic decisions with "truth." Perhaps
the simplest measure of diagnostic decision quality is the frac-
tion of cases for which the physician is correct, which is often
called "Accuracy." Although we are willing to accept that high
accuracy is good (all other things being equal — and. that's the
catch), the number can be very misleading. In screening for a
relatively rare disease, for example, one can be very accurate
simply by ignoring all evidence and calling all cases negative.
If only 5% of patients have the disease in question, a physician
who always blindly states that the disease is absent will be
right 95% of the time.1

Accuracy is of limited usefulness as an index of diagnostic
performance because disease prevalence affects the resulting num-
ber so strongly, and no mathematical "correction"or"normalization"
for disease prevalence can redeem this index in a meaningfu1 way.
One might be tempted to suppose that, though this be true, "Accu-
racy" should be meaningful at least as an index for comparison of



diagnostic techniques applied to a given population in which disease
prevalence is known and fixed. Here, too, the index is limited,
however. Two diagnostic modalities can yield equal accuracies
but perform differently with respect to the types of correct and
incorrect decisions they provide; the incorrect diagnoses from one
might be almost all false negatives (misses), while those from
the other might be almost all false positives (false alarms).
Clearly, the relative usefulness of these two tests for patient
management could be quite different in various situations.

Though accuracy provides a single simple number for diagnostic
performance, it is often too simple and must be interpreted with
considerable caution. The limitations of this index force us to
introduce some complexity into our evaluation scheme: we must
sort out the effect of disease prevalence, and we must score
separately the various kinds of right and wrong diagnostic
decisions.

Sorting Things Out

Both of the obvious limitations of the accuracy index can be
overcome by defining decision performance in terms of the pair of
indeces:

v _FN_ T.. TY _ Number of true positive (TP) decisions
atumiiviiT - Number of actually positive cases '

„ „ _ Number of true negative (TN) decisions
drtui-iuiT = Number of actually negative cases

In effect, sensitivity and specificity represent two kinds of
accuracy: the first for actually positive cases and the second for
actually negative cases. One must note carefully that the terms
"positive" and "negative" in these definitions concern some
particular disease state; this disease state must be specified
clearly in calculating and quoting sensitivity and specificity
values. For simplicity, these indices require that all possible
states of health and disease be classified into two categories.
These categories can be defined in any way that is convenient and
meaningful for the problem at hand, but they must be made explicit.
For example, patients could be classified as having one or "more
tumors (malignant or benign) or no tumor, as having malignant
tumors or no malignant tumor, etc.

Accuracy, or the fraction of all cases that is decided
correctly, is related to sensitivity and specificity by the simple
formula:

ACCURACY = [SENSITIVITY ] x

+ [SPECIFICITY ] x

Fraction of all cases that
.is actually positive
Fraction of all cases that
is actually negative.



The reader should think through the proof of this relationship as
a simple exercise in the sort of manipulation that is used
repeatedly in our approach. Notice that accuracy is defined as:

ACCURACY = # correct decisions
§ cases

so

ACCURACY =

# True Positive
decisions

# cases

# True Positive
decisions

# actually
positive cases

i True Negative
decisions

# actually
negative cases

# True Negative
decisions
# cases

# actually
positive cases

# cases

# actually
negative cases

# cases

and the relationship is proven. A little arithmetic and a little
common sense go a long way in this field! '

At this point, we must introduce some additional terminology
that is commonly used in the approach we are taking. True Positive
Fraction (abbreviated "TPF" is simply the same thing as "Sensi-
tivity," and True Negative Fraction)(abbreviated "TNF") is simply
the same as "Specificity." As one can see from the definitions of
"Sensitivity" and "Specificity," the terms TPF and TNF are more
directly descriptive of the concepts involved and, for this writer
at least, are a lot easier to remember. These new terms suggest
two other definitions:

and

FALSE POSITIVE
FRACTION (FPF)

FALSE NEGATIVE
FRACTION (FNF)

# False Positive decisions
# actually negative cases .

# False Negative decisions
# actually positive cases

Note that FPF and FNF represent, respectively, the fractions of
actually negative cases and of actually positive cases that are
decided incorrectly.

If we presume that all cases are diagnosed as either positive
or negative (with respect to a specified disease), then, for
either actual state, the number of correct decisions plus the
number of incorrect decisions must equal the number of cases with



that actual state. Thus it is easy to show that the various frac-
tions defined above must be related by

TPF + FNF = 1
and

TNF + FPF = 1

(The reader should prove these relationships as an exercise.)
Because of these constraints, one can always compute FNF from
knowledge of TPF, for example, so it is necessary only to specify
one fraction from each of the above relationships in order to fix
all four types of decision fractions.

One additional set of notations must be defined before we
proceed. It is common to denote the four decision fractions de-
fined above by using the symbols of conditional probabilities,
because each decision fraction represents an estimate of the
probability (or relative frequency) of a particular kind of
decision, given that (or conditional on the fact that) an indivi-
dual case actually has a particular health or disease state. Let
"D" represent the Disease in question, and let "T" represent the
result of a diagnostic Xest, i.e., a particular decision. Then
FPF, for example, is equivalent to the conditional probability
P(T+[D-), which is read as "the probability of a positive test,
given the absence of disease." Similarly, TPF is often denoted by
P(T+|D+); FNF by P(T-jD+); and TNF by P(T-jD-). Note that the use
of conditional probability notation makes explicit the kinds of
test results (decisions), T, and actual disease states, D, that
are in the numerators and denominators of the definitions of the
four kinds of decision fractions. Also, this notation emphasizes
that all four decision fractions are conditional on (i.e., are
normalized with respect to) actual disease states.

Finally, the prevalence of disease in the population subjected
to the diagnostic test (or for vyhich diagnoses are to be made) can
bev represented by P(D+), the prior probability of tha actual
presence of the- disease in a case from the population studied.
Similarly, P(D-) = 1 - P(IH-) represents the prior probability
that disease is actually absent in a case from the studied popu-
lation.

The relationships among the various quantities that we've
defined so far are summarized in Table I. Note, in particular,
the sense in which thinking of the conditional probabilities as
fractions helps one to remember the definitions and the relation-
ships.

Apples and Oranges

The concepts defined in the previous section allow us to sepa-
rate out the effect of disease prevalence and to score separately
the performance of a diagnostic test or a diagnostic decision maker
with respect to actually positive and actually negative cases.
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TABLE I. Definitions of, and relationships among, the various
decision performance indices described in the text. (Metz, Ref. 3)

Definitions: ,'

TPF = SENSITIVITY = P(T+|D+)

FPF = l-(SPECIFICITY) = P(T+|D-)

TNF = SPECIFICITY = P(T-JD-)

FNF = 1-(SENSITIVITY) = P(T-|D+)

Disease Prevalence = P(D+) = 1 - P(D-)

Relationships

TPF + FNF = P(T+|D+) + P(T-|D+) = 1

TNF + FPF = P(T-|D-) + P(T+]D-) = 1

ACCURACY = SENSITIVITY x P(D+)

+ SPECir.JITY x P(D-)

= TPF x P(D+) + TNF x P(D-)

= P(T+|D+) x P(D+) + P(T-jD-) x P(D-)

In order to see how these concepts can be applied to a collection
of diagnostic decisions, consider the following hypothetical situa-
tion. Suppose that 1,200 cases from a defined population have
been subjected to some diagnostic test "A" and that the actual
health or disease state for each case has been determined later by
biopsy, follow-up, or some other means. Suppose that 200 actually
positive cases were ultimately found in the population studied and
that the diagnostic test to be evaluated yielded 140 true positive
j(TP) decisions, 60 false negative (FN) decisions, 900 true nega-
tive (TN) decisions, and 100 false positive (FP) decisions. These
data can be summarized by the "decision matrix" shown in Table II.
Note that summing across rows yields the number of cases with an
actual health or disease state, while summing in a column yields
the total number of times that the corresponding decision was
made. Note also that the values for TNF, FNF, and Accuracy
obtained using the relationships summarized in Table I are the
same as those that would be obtained using the definitions of
these quantities directly.

We see from the calculated indices that this test, used as
it has been used here, is more "accurate" for actually negative
cases than for actually positive cases, since TNF is greater than
TPF—even though more actually negative then actually positive
cases were decided incorrectly. The latter observation is not
paradoxical, but merely reflects the preponderance of actually



TABLE 2. Decision data and calculated indices
for hypothetical Test "A". (Metz, Ref. 3).

Actual State

Positive (D+)

Negative (D-)

Test Result
(DiagnosisT

Positive (T+) Negative (T-)

140
(TP)

100
(FP)

60
(FN)

900
(TN)

240
+ decisions

Calculated Indices

TPF = Wx = 0.70; FNF = 1-TPF = 0.30

960
- decisions

200
actually +
cases

1000
actually -
cases

1200
total cases

FPF = j j j [ j_ = 0.10; TNF = 1-FPF = 0.90

p (D + ) " Y§§Q = 0.17; P(D-) = 1-P(D+) = 0.83

ACCURACY = TPF x P(D+) + TNF x P(D-) = 0.87

negative cases in the population studied; recall that TPF, TNF,
etc., represent "rates" and not "numbers of cases."

The decision fractions allows us to predict how the "Accuracy"
index would change if this sar,.e test were applied (in the same
way) to a population with a different prevalence of disease,
P(D+). If the various decision fractions are kept constant but
P(D+) is increased to 0.6, for example, then "Accuracy" v/ould be
(0.7) x (0.6) + (0.9) x (0.4) = 0.78. This value is lower because
the test is less accurate for actually positive cases, and these
have become more frequent.

Often we wish to compare diagnostic tests. Suppose that the
same population of cases used to evaluate Test "A" were studied
using a different test, Test "B", with the results shown in
Table III. Comparison of Tables II and III clearly shows that
these two tests are performing very differently--though the
"Accuracy" indices ate the same.1 Test B is performing worse than
Test A for actually positive cases--TPF is lower and FNF is

\ higher—but it is performing better for actually negative cases—



TABLE III. Decision data and calculated indices
for hypothetical test "B". (Metz, Ref. 3).

, Test Result

Actual State

Positive (D+)

Negative (D-)

(Diagnosis)

Positive (T+) Negative (T-)

80
(TP)

40
(FP)

120
(FN)

960
(TN)

120
+ decisions

1080
- decisions

Calculated Indices

TPF = 20TJ- = 0.40; FNF - 1-TPF = 0.60

FPF = j ^ g - = 0.04; TNF - 1-FPF = 0.95

P(D+) = ^ = 0.17; P(D-) - 1-P(D+) = 0.83

ACCURACY = TPF x P(D+) + TNF x P(D-) = 0.87

200
actually +
cases

1000
actually -
cases

1200
total cases

THF is higher and FPF is lower. The "Accuracy" indices are equal
because this "trade-off" in performance is just balanced by the
disease prevalence, P(D+), that we have used in our example. It
should be clear that, in many applied situations, Tests A and B
(as used here) are not of equal value: If the implications of a
false positive decision for subsequent patient management are bad
and overriding, the Test A is worse, and if the implications of a
false negative decision are bad (and overriding), then Test B is
worse.

What to do? How can we balance the apples and oranges of TPF
and FPF (or, equivalently, of TPF and TNF)? We could at this point
attempt to incorporate into our analysis "weights" for the good and
bad of the various types of correct and incorrect decisions.
First, however, let us consider a further complication, which will
suggest a solution to the present dilemma.



DISTRIBUTION FOR
ACTUALLY -NEGATIVE
CASES ONE POSSIBLE

DECISION
THRESHOLD

DISTRIBUTION FOR
ACTUALLY POSITIVE
CASES

-TPF

FNF

DECISION AXIS —»

T TEST RESULT VALUE, OR SUBJECTIVE

[JUDGEMENT OF LIKELIHOOD THAT CASE IS POSITIVEj

Fig. 1. Two hypothetical distributions of a quantity
on wnich decisions are based, showing one possible

decision threshold. The conditional probability of
each kind of decision is equal to the area under a

distribution on one side of the threshold. (Metz, Hef. 3)

The Implicit Variable

In the use of almost any diagnostic test, test data do not
necessarily fall into one of two obviously defined categories that
can be uniquely ascribed to the presence or absence of the disease
in question.

For diagnostic tests that yield a single number as a result-
such as 24 hour thyroid uptake, various blood serum assays, etc.—
the distributions of result values in actually positive and in
actually negative patients overlap, and no single "threshold" or
"decision criterion" can be found which separates the populations
cleanly. Otherwise the test would be perfect! Usually a threshold
value must be chosen arbitrarily, and different choices will yield
different frequencies for the various kinds of correct and incor-
rect decisions. For example, if high results tend to indicate the
presence of disease but the distribut . ,s of test result values in
actually negative and in actually pos : ve patients overlap, as
shown in Figure 1, then increasing the threshold value will make



both false positive and true positive decisions less frequent, but
will also make both true negative and false negative decisions
more frequent. A threshold value must be selected that is believed
to yield an appropriate compromise between these gains and losses.

Similarly, diagnostic tests which yield results that must be
judged subjectively, such as imaging studies, usually require that
some "confidence threshold" be established in the mind of the
decision maker. If an image suggests the possibility of disease,
how strong must that suspicion be in order for the image to be
called "positive?" The confidence threshold than an observer
adopts undoubtedly depends upon many things—his "style," his
estimate of prior odds or probability, and his assessment of the
consequences of the various possible correct and incorrect deci-
sions—and the concept of a confidence threshold may be hard to
quantify. Still, in most situations, a confidence threshold can
be varied, and the various decision fractions will vary with it.

Recognizing the arbitrary nature of decision threshold selec-
tion might seem to complicate our problem even more. Aside from
the "apples and oranges" of TPF and FPF, how can we compare Tests
A.and B if the data in Tables II and III could be changed simply
by arbitrarily selecting different thresholds or by using a
different set of considerations in making a subjective decision?

We resolve this dilemma by intentionally forcing the decision
threshold to vary and by observing the resulting changes in the
various decision fractions.

THE INSIGHT PROVIDED BY RECEIVER
OPERATING CHARACTERISTIC ANALYSIS

Varying the Variable

\ - If we explicitly change the decision threshold by reinterpre-
ting the results of a quantitative test using a new threshold of
abnormality or by having the observer re-read a set of images
requiring that he be more (or less) certain that a case is posi-
tive before calling that case "Positive," then we will obtain a
different set of decision fractions. If we change the decision
threshold again to a new level, we will obtain yet another set of
decision fractions. Since TPF and FPF together determine all four
decision fractions, we need only keep track of how these two
fractions change as the decision threshold is varied.

If we imagine that the distributions of test results (or, for
subjective tests, the distributions of some quantity like "esti-
mate of the likelihood of disease, given the test information")
are of. the form shown in Figure 1, then we see that lowering the
decision threshold, for example, must increase both the TPF and
FPF. After some thought, one should realize that whatever the
form of the distributions, TPF and FPF must increase or decrease
together as the decision threshold is changed.
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Fig. 2. A typical conventional ROC curve,
showing three possible operating points. (Metz, Ref,. 3)

If we explicitly change the decision threshold several tines
as>described above, we will obtain several different pairs of TPF
and FPF. These pairs can be plotted as the "y" and "x" coordinate
Vclues of points on a graph like that shown in Figure 2. The axes
of this graph both range from zero to one because these are the
limits of possible TPF and FPF values. Since we can imagine
repeatedly changing the decision threshold and obtaining more and
more points on this graph, and since TPF and FPF must always change
together in a way determined by the test result distributions, «e
see that the points representing all possible combinations of TPF
and FPF must lie on a curve. This curve is called the "Receiver
Operating Characteristic" or "ROC" Curve for the diagnostic test,
since it describes the inherent detection characteristics of the
test (or, for subjective studies, the observer-test combination)
and since the "receiver" of the test information can "operate" at
any point on the curve using an appropriate decision threshold.
Figure 2 shows three possible operating points that might corres-
pond to use of "strict" threshold (case called "positive" only if



judged almost definitely positive), a "moderate" threshold, or a
"relaxed" threshold (case called "positive" if any suspicion of
disease).

Conventional ROC curves of the kind described here (in which
two actual states are possible and in which two decision alterna-
tives are available) inevitably must pass through the lower left
(FPF = 0, TPF = 0) corner of the graph because one can adopt a
threshold so strict that almost all tests are called negative, and
the curve must pass through the upper right (FPF = 1, TPF = 1)
corner of the graph because one can adopt a threshold so relaxed
that almost alii tests are called positive. Also, if the test
provides information to the decision maker, the intermediate
points on a conventional ROC curve must be above the major diagonal
(i.e., lower left to upper right diagonal) of the ROC space,
because in that situation a "positive" decision should be more
probable when a case is actually positive than when a case is
actually negative—i.e., P(T+|D+) should be greater than P(T+|D-).
Finally, one can show theoretically that, if the decision maker
knows the underlying probability density functions and uses test

' information in a "proper" way, the slope of the ROC curve must
steadily decrease (i.e., it must become less steep) as one moves
up and to the right of the curve.

What the Curve Means

Essentially, a conventional ROC curve describes the compro-
mises that can be made between TPF and FPF--and hence among the
relative frequencies of true positive, false positive, true nega-
tive, and false negative decisions—as a decision threshold is
varied for a given test. By appropriate choice of the decision
threshold, a decision maker or observer can operate at (or near)
any desired compromise that lies on the curve. Since the ROC
curve is a graph of TPF versus FPF, both which are independent from
disease prevalence when a fixed decision threshold iu used, the ROC
curve does not depend upon the prevalence of disease in a popula-
f.ion to which the corresponding test may be applied.* Thus ROC
analysis provides a description of disease detectabil'ity that is
independent from both disease prevalence and decision threshold
effects.

* The curve may depend on the spectrum of disease states classi-
fied as "actually positive," however. If early disease is harder
to detect than advanced disease, for example, then the ROC curve
will depend on the mixture of early and advanced actually positive
cases studied. Thus cases in the actually positive component of a
study population must be chosen so as to represent the population

- at large to which the conclusions of the study will be applied.
Similarly, the actually negative component should appropriately
reflect the relative frequency of normal variants.



We will discuss later the issue of optimal choice of an
operating point on an ROC curve, but a few comments seem appropriate
here. If disease prevalence is very low, then False Positive Frac-
tion (FPF) must be kept small. Otherwise, almost all positive
decisions will be false positive decisions, and these diagnoses
will burden the health care system end patients with many unneces-
sary follow-up examinations and/or treatments. Also, if conse-
quences of a false positive decision are overridingly bad, perhaps
because high-risk surgery would then be done unnecessarily, FPF
must again be kept small. In either or both situations, the deci-
sion-maker should operate on the lower left part of the ROC curve
to keep FPF small, even at the expense of a low TPF and correspond-
ingly high FNF. Conversely, if the same test with the same ROC
curve is applied to a population in which disease prevalence is
high and/or in which the need for finding actually positive cases
is of overriding importance, then the decision-maker should adjust
his decision threshold to operate higher on the curve, accepting
a higher FPF in order to keep TPF high and FNF low. The ROC
curve shows the extent to which FPF must be increased, for example,
in order to increase TPF to any required level. .

For diagnostic tests in which the test result must be judged
subjectively, an ROC curve describes the decision performance of
an observer-test combination. Clearly, disease detectability can
be poor if the test provides little information, or if the observer
is not skilled in interpreting the information provided, or both.
Because it gives an empirical description of decision performance,
ROC analysis of subjective diagnostic tests cannot reveal whether
the technology or the individual human is performing badly, How-
ever, ROC analysis of the decision performance of several indivi-
duals using a single diagnostic test can indicate the extent to
which usefulness of the test depends upon individual skill and/or
experience.1 A more subtle issue related to performance of the
decision maker, as opposed to the test, concerns his ability to
hold fixed his decision threshold. Variations in use of the deci-
sion threshold from decision to decision cause decision performance
to be degraded, with a consequent effect on the measured ROC curve?
This effect of threshold inconsistency on the measured ROC curve is
appropriate and desirable, because any aspect of decision-making
behavior that degrades decision performance should be included in
an empirical analysis of the observer-test combination.

Dilemmas Resolved

We can now resolve the dilemmas that we faced in attempting to
compare the hypothetical Tests A and B on the basis of the decision
performance data shown in Tables II and III. From the perspective
of ROC analysis, the combination of TPF and FPF obtained there for
each test merely represents one point on the ROC curve for each
test. By varying the decision threshold for one test, we could
change the combination of TPF and FPF in such a way that the TPFs
for both tests are made equal, allowing comparison of the two
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resulting FPFs, or we could make the FPFs for both tests equal,
permitting comparison of the two TPFs. More directly, we could
measure the two curves and compare the curves themselves.

Figure 3 shows an "ROC" space" in which are plotted two
points corresponding to the two combinations of TPF and FPF found
for Tests A and B on the basis of the data given in Tables II and
III. If we were to measure ROC curves for the two tests by chan-
ging (consistently) the two decision thresholds, the ROC curves
might turn out to be those shown by the solid lines. If these
curves were found, we could conclude that Test A offers greater
detectability of the disease in question than does Test B, because
for any given FPF the TPF provided by Test A is greater, and for
any given TPF the FPF provided by Test A is less.

Alternatively, we might find that the two ROC curves are
(essentially) the same, such as the dotted curve in Figure 3. In
that case vie would conclude that the two tests provide equal
detectability of the disease in question, because the tests can be



made to perform identically by choosing the two decision thresholds
appropriately.

In general, we may conclude that better decision or detection
performance is indicated by an ROC curve that is higher and to the
left in the ROC space. It is conceivable (though not common) that
two ROC curves may cross (and possibly recross). In such a case
the relative quality of decision performance provided by the two
tests in question must be judged in the context of the diagnostic
situation to which they will be applied, because disease prevalence
and the costs and benefits of the consequences of the various types
of decisions determine the part of an ROC curve on which a deci-
sion-maker should operate.3

Figure 4 displays ROC curves obtained in an experiment
designed to evaluate the relative visual detectability of small,
low contrast objects that is provided by four different radiogra-
phic screen-film systems. Each graph shows the ROC curves obtained
by a single observer. These results are of particular interest
in that the (RP, TF-2) and (RP/R, PS) systems provide \ery differ-
ent detectability but have essentially the same speed—and hence
require the same patient exposure. The (RP, PS) and (RP/R, TF-2)
systems require approximately twice and one-half the exposure of
the other systems, respectively. Thus these ROC curves show that
the (RP, TF-2) system is clearly superior to the (RP/R, PS) system
for detection of such objects, and they indicate the gain or loss
in detectability that can be achieved by increasing or decreasing
patient exposure by a factor or two.

PRACTICAL CONSIDERATIONS

The Rating Method Trick

, • As we have seen, an ROC curve can be generated by varying the
decision threshold that defines the "cut point" between results
ascribed to (though not necessarily due to) actually "positive"
and actually "negative" cases.

Data from a diagnostic test that yields a single quantitative
value for each case can easily be rescored as "positive" or "nega-
tive" by using various decision thresholds. A number of points
on the corresponding ROC curve can be plotted in this way, and a
smooth curve can be drawt: through or fitted statistically to
the points.

This approach is often impractical for diagnostic tests that
must be interpreted subjectively, however, because human observers
may not find it possible to associate a continuum of numerical
values with their subjective impressions of certainty. The
simplest way of expressing a diagnostic decision in terms of
"positive" or "negative", even though that decision may have been
reached by comparison of a subjective impression v/ith a decision
threshold. These binary (two-valued: yes or no) decisions cannot
be reanalyzed to determine what the decision maker would have said
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Fig, 4. ROC curves generated by (A) observer 3, a senior radiolo-
gist; (B) observer 4, a physicist; and (C) observer 5, a physicist.
These curves were obtained in a radiographic signal detection ex-
periment described elsewhere.11 The signal was the radiographic
image of a 2-mm diameter Lucite bead, and noise resulted from the
radiographic mottle of the following diagnostic screen-film combi-
nations: RP-Kodak RP X-omat medical x-ray film (normal speed);
RP/R-Kodak RP Royal X-omat medical x-ray film (fast speed); PS-
DuPont Cronex Par Speed Screen (medium speed); and TF-2-Radelin TF-
2 Screen (fast speed). Open and solid symbols of a given shape in-
dicate independent trial runs with the same observer and the same
set of images. Each trial run consisted of approximately 100
observations. Note the reproducibility of the curves from
observer to observer for this simple detection task. (Metz et.al.
Ref. 16).



if he had used a different confidence threshold, however. Thus,
an ROC curve can be generated from subjective "yes-no" response
delta only by requiring the decision maker to "re-read" the entire
set of cases several times, using a different decision threshold
each time. This repeated "yes-no" approach is clearly burdensome
and usually impractical.

A practical technique for generating response data that can
be used to plot an ROC curve in such a subjective judgement situa-
tion is called the "Rating Method" and was developed in experimen-
tal psychology. "* Essentially the method represents a compromise
between accepting a "yes-no" response and requiring that the
decision maker select a value from a continuous scale to represent
his confidence that the case in question is positive. Instead, the
observer or decision maker is required to select one of several
"ratings" or categories of confidence to represent his judgement
based on the information provided by the diagnostic test (and per-
haps on other supplementary information available to him). These
categories can be given qualitative labels such as: (1) "definitely
or almost definitely negative," (2) "probably negative," (3) "pos-
sibly positive," (4) "probably positive," and (5) "definitely or
almost definitely positive." The use of five categories seems to
represent a reasonable compromise between the needs of ROC analysis
and the precision with which an observer can be expected to repro-

\ duce his ratings. We show below that use of N categories^'11
yield (N-i.) non-trivial points on the ROC curve.

The rating data obtained in this way are used to compute
points on the ROC curve as follows.

First, only those responses in the category corresponding to
highest certainty that a case is positive are scored as "positive"

i decisions, and the rest are scored as "negative" decisions. Thus
for the category labels listed above, responses in category "5"
only would be scored as "positive" decisions at this stage of
data analysis. These "decisions" are then compared with the actual
presence or absence of disease for each case, and TPF and FPF are
calculated. This combination of TPF and FPF is plotted as a point
in the ROC space and can be interpreted as the ROC curve operating
point corresponding to use of a "strict" decision threshold, with
which a case is called positive if and only if the the decision
maker is certain or almost certain that the case in question is
actually positive.

Next, the rating scale response data are rescored, this time
intrepreting as a positive decision a response in either of the
two categories corresponding to greatest certainty that a case is
actually positive. Thus for the labels listed above, a response
in either category "5" or category "4" is scored as a positive
decision. The resulting values for TPF and FPF are then calculated
and plotted in the ROC space. This point represents an ROC curve
operating point corresponding to the use of a less strict decision
threshold, that is, corresponding to the situation in which the
decision maker would call a case "positive" if he judges that the



Table IV. Simulated rating scale data and
calculation of ROC points.

RATING SCALE DATA
Confidence Rating:

Actually (+) cases

Actually (-) cases

1

5

30

2
6

19

3

5

8

4
12

2

5 1
22

1 1
Z = 50

Z = 60

Entries show number of cases for wRich indicated rating was used.

CALCULATION OF ROC POINTS

. A. (5) - "+" decision
TPF =22/50 = 0.44
FPF = 1/60 = 0.02

B. (5 or 4) = "*" decision
TPF = (22+12)/50 = 0.68
FPF = (l+2)/60 i 0.05

C. (5, 4, cr 3) = "+" decision

TPF = (22+12+5)/50 = 0.78
FPF = (l-i-2+8)/60 = 0.18

D. (5, 4, 3, or 2) = "+" decision

TPF = (22+12+5+6)/50 = 0.90
FPF = (K2+8+19)/60 = 0.50

case is at least probably positive.
This procedure is then repeated, successively interpreting as

a "positive" decision a rating in any of the three categories of
highest certainty that a case is positive (here, "5" 0£ "4" or.
"3" = "positive"), then a rating in any of the highest four'cate-
gories, etc. When finally anŷ  response is scored as a "positive"
decision, both TPF and FPF become equal to 1.0, so the last
plotted operating point is always in the upper right corner of the
ROC graph. A smooth curve is then drawn through or fitted statis-
tically to the plotted points to yield the measured ROC curve.

Table IV shows an example of rating scale data (generated by
computer simulation) and the calculation of ROC operating points
from those data. Figure 5 displays the calculated operating
points on an ROC graph, together with the +_ 1 standard deviation
error bars estimated from the data (by the method explained in the
next section) and the maximum likelihood ROC curve estimated from
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Fig. 5. Simulated rating scale data with the
actual (broken) and fitted (solid) ROC curves

the data (using a procedure referenced in the next section). Also
shown, by a broken line, is the actual ROC curve from which the
rating scale data were generated by computer simulation. The dis-
crepancy between the actual and estimated ROC curves is typical
of that which can be expected if about 50 trials of each kind are
used to measure an ROC curve.

Curve Fitting

The Rating Method yields several points in the ROC space that
represent experimental estimates of operating points on a single
ROC curve. Because the number of cases that can be included in
any ROC experiment isv limited by practical considerations, each
plotted point is subject to statistical error.

Standard deviations of the variations that can be expected in
any one plotted operating point--if the experiment was repeated
using a different set of the same number of cases—can be estimated
by the expressions5:*

* The denominators inside the square roots are of the form (N-l).
rather than N here to yield "unbiased" estimates of variance.
In practice, this is usually a minor issue.
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These expressions can be used to plot +_ 1 or 2 standard deviation
error bars vertically and horizontally around the experimental
points in the ROC space in order to provide a visual impression of
the reliability of the points.5 Note that: (1) the standard: devia-
tions depend on the position of a point in the ROC space, being
largest when TPF or FPF is close to 0.5; (2) the standard deviation
of TPF is inversely related to the number of actually positive
cases used in the experiment; and (3) the standard deviation of FPF
is related to the number of actually negative cases used. Since
precision or" TPF and FPF are usually equally important, it is cus-
tomary to attempt to use roughly equal numbers of actually positive
and actually negative cases in an ROC experiment. These estimates

, of ROC point reliability can be used as a guide in drawing a smooth
curve that passes appropriately through or near the plotted points.
Often a smooth curve fitted subjectively by eye provides an adequate
estimate of the full ROC curve.

If a more objective curve fitting procedure is desired, some
assumption must be made regarding the functional form of the curve
to be fit to the data. An assumption commonly used in experimental
psychology is that the ROC curve is of the same functional form as
would be generated from twc "Gaussian" or "normal" probability
distributions centered at different positions on the decision axis,
and with possibly different standard deviations, as shown in
Figure 1. Each decision is assumed to be made by comparing the
decision variable outcome (position on the horizontal axis) with
some decision threshold and deciding "positive" if the threshold
is exceeded. Although the applicability of this underlying theore-
tical model cannot be proven even for idealized experimental situa-
tions, various theoretical arguments can be made in its behalf
the literature of experimental psychology contains much empirical
evidence that curves of the functional form predicted by this model
provide good fits to ROC data from experiments in which decisions
are based on subjective judgements.

The ROC curves predicted by this theoretical model depend on
two parameters: the distance between the centers of the two normal
distributions on the decision axis, expressed in units of the
standard deviation of one of the distributions, and the ratio of
the standard deviations of the two distributions. Various combina-
tions of these two parameters yield different ROC curves, and one
combination can usually be found that fits experimental ROC data
quite well. Conveniently, the ROC curves predicted by this theore-
tical model graph as straight lines if they are plotted on a pair
of transformed coordinate axes that are linear not with respect



'to TPF and FPF, but instead with respect to
the standard deviates corresponding to the TPF and FPF values*.
Graph paper with these transformed "double probability" coordinate
scales is available** and can be used to plot the ROC data points
in such a way that a straight line can be fit to the points. The
slope and one axis intercept of this fitted straight line then
correspond to the two parameters of the underlying theoretical
model, and these can be used to summarize the detectability of
disease described by the ROC data.6

If an objective statistical curve-fitting procedure is
desired, conventional "least-squares" fitting of a straight line
on a "double-probability" graph is not appropriate because the
assumptions implicit to conventional least-squares methods (equal
variance vertically, no variance horizontally) are not valid for
ROC data. Instead, a special "maximum likelihood" curve-fitting
computer program should be used, which finds the pair of inodel
parameters that make the observed ROC data most likely (i.e.,
least unlikely). Different programs are available for ROC data
generated in "yes-no" experiments7 or in rating-method experiments?

The maximum-likelihood programs mentioned above provide, as
a by-product, estimates of the variances and covariance of the two
ROC curve parameters. These can be used to construct a test of
the statistical significance of apparent differences between a
measured ROC curve and an assumed curve or between two ROC curves
measured from statistically independent data. Statistical testing
can be done either in terms of a single index of detectability
derived from the two curve parameters, or in terms of the two
parameters simultaneously using an appropriate Chi-square statistic
with two degrees of freedom.

Truth, Cases, and Common Sense

V A fundamental aspect of almost any objective approach to the
evaluation of diagnostic decision-ma king—whether in terms of
Accuracy, Sensitivity and Specificity, or ROC analysis—is the need
for a sufficient number of cases in which the actual state of
health or disease has been determined. Diagnostic "truth1 must be
known in order to score the quality of each decision,-and enough
cases must be used to ensure acceptable statistical precision in
the measured performance indices. Although these requirements are

* Consider a normal distribution with standard deviation equal to
1.0, centered on Z - 0, The transformed coordinates mentioned
aboye represent the values of 1 such that the areas under this
distribution to the left of I correspond to TPF and FPF, respec-
tiyely.

** "Double Integrated Normal Chart," available as item Y4 231 from
the Codex Book Co., P. 0. Box 366, Norwood,Massachusetts
02062



sometimes tedious to satisfy in clinical situations, ROC analysis
is no more demanding in this regard than other objective methods
of evaluation analysis. In short, the quality of diagnostic
decisions cannot be determined if the correct answers are not known.

The problem of establishing "truth" is straightforward in
evaluation studies that use artificial test samples or 'ohantom"
images, but this problem can be exceedingly tedious and -frustrating
in studies employing actual clinical cases. The definition of
"truth" is ultimately a philosophical issue, of course, and opera-
tional standards for diagnostic truth must be established for the
purposes of evaluation analysis; these must take into account the
goals of the evaluation study, potential sources of bias, and
common sense. In short, standards of truth need not be "perfect"
but must be considerably more reliable than the tests to be eval-
uated; judgments of truth should be independent from information
provided by the tests to be evaluated;9 and one must balance
thoughtful reflection on the potential errors and difficulties of
such evaluation studies against the useful, even if limited, infor-
mation that they can provide.

In the selection of cases to be included in'an evaluation
study, due consideration must be given to include an appropriate
spectrum of disease characteristics in the sample case population,

v because the conclusions drawn from the study are applicable only
to, and cannot, be defined more specifically than, the sampie
population.9'10

The various issues that should be considered in designing a
study for the evaluation of diagnostic medical imaging procedures
are discussed in a general protocol currently in the final states
of preparation.*

No simple answer exists to the question of how many cases are
necessary fo" meaningful conclusions to be drawn from an ROC analy-
sis of decision performance, but several issues should be consi-
dered.

First, no matter what means may be used to infer the signifi-
cance of apparent differences between ROC curves, the required
precision of measured ROC points will depend upon the magnitude
of the differences that actually exist. More cases are needed to
demonstrate subtle differences in diagnostic performance than
gross differences.

Second, statistical variations in ROC data and fitted ROC
curves are due to at least two factors: the extent to which the
limited number of cases used in an ROC experiment represents the
total population of such cases at large, and the extent to which
diagnostic test results and subjective diagnostic judgements are

* This document is currently in the final stages of preparation by
Bolt, Beranek and Newman, Inc., Cambridge, Mass, under National
Cancer Institute Contract NOi-CB-64010 ("Standard Protocol for

- Evaluation of Imaging Techniques in. Cancer Diagnosis": John A.
Swets, Principal Investigator).



reproducible. Although the cumulative effects of these two sources
of variation can be expressed in terms of binomial and multinomial
statistics and can be estimated by the expressions for standard
deviations quoted above, t'he relative magnitude of the individual
effects has not been studied and their interaction is not under-
stood. The fact that both of these two effects do occur unques-
tionably complicates the issue of interpreting apparent differences
between measured ROC curves, however. Because of these two sources
of statistical variation, an observed difference between the deci-
sion performance of two diagnostic tests acting on the same sample
population may in fact be more significant than an assumption of
sample independence would suggest: If the limited case sample
is atypically difficult for one test, it may be atypically diffi-
cult for the other also. Tn this situation, the ROC curves for
the two tests should vary up and down together if they are applied
to different population samples of the same limited size. Thus
"error bars" computed on the basis of the independent sample
assumption may be unduly "pessimistic" concerning the significance
of differences between curves in this situation.

Because no generally accepted statistical test yet exists for
demonstrating the quantitative statistical significance of apparent
differences between ROC curves, the number of cases required to
achieve significance cannot be predicted. This state of affairs
is certainly unsatisfactory, and current theoretical efforts, hold
promise for better statistical techniques in the future. Mean-
while, common sense and experience suggest that meaningful qualita-
tive conclusions can be drawn from ROC experiments performed with
as few as about 100 clinical cases1 or experimental images.11

GENERALIZED RECEIVER OPERATING CHARACTERISTIC METHODS

The conventional ROC methods that we have described up to this
point apply to situations in which actual states of health and
clisease are grouped into two categories and in which two decision
alternatives are available to the decision maker. In this section
we sketch how these methods can be generalized to apply to more
complicated decision-making situations.

The most fundamental property of the ROC approach is that it
describes the trade-offs that are available among the conditional
frequencies of various types of correct and incorrect decisions.
By viewing the approach in this broad way, we can see that a
generalized ROC approach would account for the ways in which the
frequencies of certain types of decisions must vary with the fre-
quencies of other types of decisions as one or more decision
thresholds is changed.

Consider first the situation in which the decision maker must
not only call an actually positive case positive, but must also
state where the case is positive in order to receive credit for a
fully "true positive" decision. If localization of disease to
within the proper image quadrant is required, then five actual
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Fig. 6. Conventional ROC curve and generalized
curve for detection and localization task.

(Starr et a!., ref. 12)

states and decision alternatives are available: "no disease,"
"disease in upper left quadrant," etc. We have shown theoretically
end experimentally12'13 that decision performance in this more
complex task can be predicted from knowledge of the conventional
ROC curve measured for the two-alternative "detection-only" task
and that the resulting generalized ROC curve is a curved line in
three-dimensional space, which can be plotted as two curves on a
two-dimensional graph.

Typical results obtained using this generalized ROC approach12
are shown in Figure 6f. The solid symbols of different shape repre-
sent conventional ROC data points obtained from separate viewing
sessions by the same observer (viewing the same image set, which
consisted of 50 signal-plus-noise and 50 noise-only images). The
solid curve was fib to these data points and was used to predict
the lower, broken curve, which should represent observer perfor-
mance when the image quadrant containing the signal must be speci-
fied. The open symbols show data obtained in an experiment in
which both detection and localization were required and agree with
the predicted broken curve.



Another situation of interest is that for which more than one
lesion, for example, may be actually present and for which the
observer must, in effect, count the lesions present. We have shown
that, if the possible lesions are similar, decision performance
in this "multiple signal" task can again be predicted from know-
ledge of the conventional ROC curve (measured when zero or one
lesion may be present) and that the generalized ROC curve is a
curved line in multidimensional space, which can be plotted as a
set of two-dimensional graphs.1'1

These two studies have shown that decision performance in some
multi-alternative tasks employing medical images can be related
uniquely and predictably to decision performance in a simple two-
alternative task, which is measured by a conventional ROC curve.
Thus, in these situations, the conventional ROC curve provides a
sufficient conceptual and experimental description of decision
performance.

A common aspect of the tasks used in these two studies is that
the decision maker can be assumed to base his selection of one of
several decision alternatives on the repeated comparison of a
single kind of judgement against a single decision threshold. In
the "multiple-signal" detection task, for example, he is assumed
to try to detect lesions in various parts of an image by repeating
a similar judgment process and then "adding up" the number of
lesions that he has "found." ,

An appropriate theoretical model for what we might call a
"simultaneous detection and differential diagnosis" task is less
clear.10 For example, suppose that the decision maker is confronted
with a population of cases, each one of which may be actually
"negative," "positive with disease A," or "positive with disease B"
No fully general multi-alternative ROC approach is yet available
to measure and describe decision performance in this task. An
approach that may suffice at present is the measurement of three
conventional ROC curves, either by grouping the actual states into
two alternatives in the three possible ways or by deleting cases
with one actual state in each of three decision experiments.

Theoretical and experimental efforts to deal with this impor-
tant situation within the context of ROC analysis are continuing.

IMPLICATIONS FOR MEDICAL DEC.SION-MAKING

In performing a diagnostic study, one |^ys a price (in terms
of money, risk of complications, and/or radia ion exposure) to gain
information that should be of benefit in subsequent patient manage-
ment. ROC analysis provides a means of measuring and describing
diagnostic detectability in terms of the combinations that can be
achieved among the relative frequencies of true positive, false
positive, true negative, and false negative decisions. Thus,
through ROC analysis one can determine the information that a
diagnostic test can provide. The term "information" here can be



interpreted either in the loose sense of "detectability" or in the
technical sense developed by Shannon.15'16

With disease detection performance specified by ROC analysis,
several important questions remain, however. In a particular
diagnostic task, which is the best of the possible combinations
among the various decision frequencies, that is, what is the best
operating point on the ROC curve? How can one judge whether the
diagnostic information purchased by the use of a diagnostic test
is (expected to be) worth the price paid? And how can a diagnostic
test best be used within the context of a diagnostic strategy?
These questions can be addressed, at least conceptually, by com-
bining ROC analysis with the techniques of cost/benefit analysis
and decision analysis. Discussions of this approach can be found
elsewhere.3'17

SUGGESTIONS FOR FURTHER READING

Introductory discussions of ROC analysis for diagnostic evalu-
ation have been published by Swets18, Turner19, and by McNeil and
colleagues20'21, and these papers are recommended for the addition-
al perspective that they provide. Other introductory papers by
Swets22 and by Swets and Green23 trace the development of ROC ana-
lysis in experimental psychology and indicate applications in other
fields. VJe have published elsewhere a partially technical discus-
sion of the ROC approach to diagnostic evaluation that includes
examples of the various techniques17 and also a concise summary
with an extensive bibliography.21*

A recent introductory book by Egan25 clearly illustrates the
mathematical relationships among various decision strategies,
decision variable distributions, and the corresponding ROC curves.
Signal Detection Theory and Psychophysics by Green and Swets1*
continues as the standard comprehensive reference work on ROC
techniques. Finally, although it does not consider the implica-
tions of ROC analysis for optimizing diagnostic strategies, a
classic book by Raiffa26provides an excellent introduction to the
principles of decision analysis.
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