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ABSTRACT 

The perpendicular energy gain of electrons from the applied 
extraordinary microwave field in ELMO Bumpy Torus (EBT) is calculated by 
means of the stochastic model for the field-plasma cyclotron resonance 
interactions. In these calculations an inhomogeneous bumpy magnetic 
field is chosen in order to simulate the field strength of the EBT as 
well as to include the effects of mirror trapping. 

The effects of the initial energy of the electrons and the value of 
the mirror ratio on the trapping are discussed, and the heating rate 
AW^/At (where At is the reflection time from the mirror) is estimated. 
The loaded cavity quality factor Q^ is then expressed from the heating 
rate, the result is applied to the EBT-I plasma, and a value of Q^ = 15 
is found. 

vii 



1. INTRODUCTION 

The basic heating mechanism in the ELMO Bumpy Torus (EBT) is based 
on the electron cyclotron resonance interactions between the applied 
microwave and plasma electrons.1 The nonuniform magnetic field con-
figuration of EBT provides an efficient means of energy gain for the 
electrons from the field. As is well known, the maximum energy increase 
for electrons takes place when the circularly polarized extraordinary 
component of the rf electric field, which'is propagating along the 
magnetic field lines, becomes resonant with the cyclotron motion of the 
electrons when the local Larmor frequency ft is close to the microwave 
frequency ID. The purpose of this report is mainly to consider the 
relation of the trapping of the electrons in a nonuniform magnetic field 
to their energy gain. 

In the literature there are a number of papers2 that deal with the 
calculation of the rate of energy gain of the electrons from the applied 
electromagnetic wave. Most of the researchers have used slightly 
increasing (or decreasing) nonuniform external magnetic fields. In this 
work the calculations will assume a more realistic magnetic field form 
that simulates the EBT field configuration. AI so, the importance of the 
mirror trapping of the nonuniform magnetic field will be considered 
through the magnetic invariant of the motion y. The approach for the 
computation of the energy gain of the electrons from the applied micro-
wave field is similar to that of Grawe's,3 except that here the particle 
motion is assumed to be nonrelativistic and to have the shape of the 
applied magnetic field. 

The purpose of this paper is twofold. First, the heating rate of 
the electrons will be estimated with the use of the following inhomo-
geneous magnetic field: 

1 
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This simulates the field strength reasonably well for the EBT.1* Here M 
is the mirror ratio, L is the distance between the mirrors, and z is 
the minor axis. In this field most of the electrons will be trapped in 
the potential well and eventually heated at the resonance regions. It 
should be mentioned that the work done by Sprott and Edmonds5 was based 
on Eq. (1) for the field model but that their computation was carried 
out numerically. 

In this study the calculations employ a stochastic approach. The 
effects of the initial energy of the electrons and the effect of the 
mirror ratio on the trapped and untrapped electrons in the field will be 
studied. However, the Doppler effect of the wave will not be considered. 

Second, after the heating rate dW^/dt is obtained, the loaded 
quality factor Q of the cavity will also be estimated. The results will 
then be applied to the typical EBT-I plasma. 
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2. THE BASIC EQUATIONS 

The Lorentz force on the electron moving in a magnetic field in the 
presence of a uniform rf electric field JS is given by 

dv v x 1$ 
m — = -eE - e + y • VB , (2) at — c — 

where the magnetic invariant of the motion y = mv2/2B and v^ is the 
perpendicular component of the velocity with respect to the magnetic 
field. If we assume that the electric field is perpendicular to the 
magnetic field and is of the form 

E(r_,t) = E exp (-iwt) , 

then the components of Eq. (2) in the Cartesian coordinate system are 
as follows: 

dv e e 
_JE. E Bv , (3) 
dt m x mc y ' v 

dv e e 
—JL E + — Bv , (4) 
dt m y mc x 

and 

dv d 2Z y dB 
— . (5) 
dt dt2 m dz 

Here e (>0) and m represent the charge and the mass of the electron, 
respectively. 

In these calculations the mirror ratio is defined as 

M - B< Z = 

B(Z = +L/2) 
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where z - ±L/2 is the location of the coil plane. 
From Eqs. (3) and (4) we get 

i£Ut)u - A exp (-iwt) , (6) 

where u » v - iv , ft(t) = [eB(t)]/mc, and -(m/e)A « E - iE is the x y x y 
right-hand circularly polarized (extraordinary) rf field. 

The solution of the differential Eq. (6) is of the form 

u(t) = J u (0) + Ah(t)| e x p [ - i J O(t') dt' ] , 

with 

ft h ( t ) - J exp [ i * ( t ' ) l d t ' , 
0 

and 

$ ( t ) » - a t + I £ i ( t ' ) d t ' 
0 

(7) 

(8) 

(9) 

Knowing u(t), we may compute the perpendicular energy change of the 
electron in the following manner: 

AWj^t) - | [v£(t) - v2(0)] - f [u(t)u*(t) - u(0)u*(0)] , (10) 

* 

where u (t) is the complex conjugate of u(t). 
From Eq. (7) we then find 

AW1^ = u C 0 ) A*h*(fc) + u*(°) + |h(t) |2 |A|2 . (11) 
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Noting that h(t) = |h(t) | exp (ii|>') and u(0) - v± (0) exp (i<t>') with an 
arbitrary phase <t>', we find 

u(0) A*h*(t) + u*(0) Ah(t) = 2^Ev i(0) |h(t)| sin (<J>') . 

Here, since E„ = 0 is assumed, E = E = \fl Ey. z x 

Making use of the stochastic approach,3 Eq. (10) becomes 

<AWx(t)> |a|2 |h(t)|2 . (12) 

Here 2ir ,, , 
0 

Before proceeding further, we will study y around the resonance 
region. Since y = mv^/2B, we may write 

Ay Av2 AB 

U V 2 B 

or 

In this study we assume that the thickness of the resonance region 
Az is small enough that y is still considered to be invariant. We 
should also mention that, under the weak electric field assumption, the 
energy gain of the electron is not large enough to violate the constancy 
of y for a single pass from the resonance surface. 
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In Sect. 4 we will compute h(t) by making use of the axial motion 
of the electron z(t). Thus, we need to know the time evolution of the 
electron motion along the field line. This will be discussed in the 
next section. 
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3. CALCULATION OF AXIAL ORBITS Z(t) 

Let us recall from Eq. (5) that 
+ . 0 . 

dt2 m dz 

Using 

V dB rv2(0)i2 2n 
m dz ~ I 2 J « < M - D . a = r -

in the above and noting that d/dt • v (d/dz), we get 

dz 
dt = (d + f cos az)1/2 (14) 

Here 

v.2(0) 
f = (M - 1) > 0 (15) 

and 

d = v2(0) - f . (16) 

The orbit equation Z(t) then becomes 

(17) 

where <f» = «z(t). 
From Graishteyn and Ryzhik6 we have 
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/ dx 
(a + b cos x)1/2 

( H Va + b N 2 

for a > b > 0 , 0 < x < i r , (18) 

0 < x < arc cos (-a/b), (19) 

where 

' - v ^ * - ™ s i " / ' Y + T x ) • 

K(k) S Pty - Tr/2,k), 

and the elliptic integral of the first kind 

F(t|»,k) - f dx 
i (1 - k2 sin2 x)1/2 

For our case f > 0, but d > 0 or d < 0 depending upon initial 
velocities and the mirror ratio. Let us study these cases separately. 

3.1 THE CASE FOR d > f > 0 

In this section, we will assume that d > f > 0. Since 

v2(0) 1 
< , 

v|(0) M - 1 

then from Eq. (18) we write 



saz v v (0) 
F [ y , r ) - at , (20) 

where 

v?(0) 
:2 = ± (M - 1) < 1 

v2(0) 

From Ref. 6 we have 

F(iJ<,k) a t|/ + i> ~ - ~ sin2 a ^ 

if k « 1. When this value is used in Eq. (18), 

(r . 0 -
az \ az v (0) 

Fl — ,rj s y~ = a t 

or 

z ( t ) s v z ( 0 ) t , ( 2 1 ) 

which describes the untrapped or passing electrons. 

3.2 THE CASE FOR f > |d| > 0 

Our basic assumption in. this section is that f > |d| > 0. In this 
case 

v2(0) 1 
* > ; 
v|(0) M - 1 

we then find 
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F ( Y ' r ) = J \ a t ' C22) 

Here 

(r sin f-) y » arc sin Ir sin J and (23) 

i- - i ± J L « i . 
r 2 2f 

We may again approximate f(y,l/r) as 

E ~ Y ™ a r c s i n ( r s i n IT") = y / \ a t 

or 

v_(0) 
z(t) = — sin (uTt) , (24) 

where 

o)T - f Vj,(0) (M - l) 1/ 2 . (25) 

We see from Eq. (24) that the electrons are oscillating in the 
magnetic trap with a frequency of f^ = o j^/2tt. We will consider this 
trapped electron case further: 

1. From Eq. (23) we write r sin aZ/2 = sin y. Since r » 1 and 
(sin y ) a 1 , then aZ/2 = 0 < i r/2 or z < l / 2 , which means that the max ' ' 
electrons are trapped in the mirrors. 

2. We may now estimate 6 = 0 by writing sin 6 = 1/r sin y m a x c 
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9 • arc sin c 
vz(0) az 

vL (0)V M - 1 

3. Let us find t = t , where z(t ) = Z . We know that Y s i/2 and c' c c 
t = t c when 6 = e^. Thus, from Eq. (22) we may write 

and for rz >> 1, 

k/1\ s]L ( 1 + _ J L 
^ r ' 2 V 4r2 

= V c (26) 

4. We now rewrite Eq. (14) as follows: 

1 /2 
v (t) = vi(0)(M - l)1/2 sin2 6c - sin2 ' . 

T.'his gives 

v2(0) 
sin2 6 < z 

V2(0)(M - 1) 

and for 9 • 8 , v (t - t ) «= 0. We may identify this as a turning point c z c 
of the electron. 

In summary, when y = ir/2, then 9 « 9 , t » tc, ^(tg) = z ~ zc> 
and t s t t / 2 u t . Henceforth, z^ will be identified as a turning point of 
the electron and will be denoted as Z , which is 1 - cos aZ = 1/r2. 
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4. CALCULATION OF h(t) FOR THE TRAPPED ELECTRON 

We start by recalling the definition of h(t), which Is 

t 
h(t) - f exp [i$(dt')] dt' , 

0 

with 

$(t) = -wt + J fi(t') dt' , 
0 

where 

= 1 - 8 cos ctz(t) . (27) 
"o 

Here fj = (M - 1)/(M + 1) and £2 s eB /mc. o o 
Let us define T(t) such that 

J n(t') dt' - nQt - noeT(t) 

and 

T(t) = I cos ctZ(t') dt' . (28) 
0 

Using Eq. (14), 

«T(t) - f C O S • d* , 
0 (d + f cos (J))1/2 
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or from Gradshteyn and Ryzhik6 we find 

Here E(iji,k) = / dx(l - k2 sin2 x W 2 is the elliptical integral of the Jo 
second kind and E(k) = E0|> = ir/2,k). Again from Ref. 6 we have 

E(i|/,k) = kfF(^,k) + kk2 ^ + k2 sin2 y = 
8k V 1 - k2 sin2 i/» 

with k 2 = 1 - k2. 
Using F(y,l/r) = Vf/2 at in the above relation, we obtain 

K ) sin2 y 
2r2(l - sin2 y/r2)1/2 

and therefore 

T(t) --t + , S l n 2 1 , 
Xr3 VL - sin2 y/r2 

where X = (a/2)vz(0). The case we are interested in is r2 » 1; thus 
Eq. (9) takes the form 

$(t) = 2wT<5t - k sin (2&>xt) . (30) 

Here 

2wT6 = [fto(l + B) - »] and (31) 
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n e 
K = — — . (32) 

our2 

We now compute the perpendicular energy gain for one reflection 
time, that is, when t„ = 2t : 

K C 

<AWx(tR)> = f jAj2 |h(tR)|2 , (33) 

with 

fcR 
h(tR) = J exp i [2wT5t - K sin (2u>Tt)] dt 

For the trapped electrons, we know that ^Ttc ss ir/2, which leads to 

*R 5 * V r = 2lT * 

Thus, 

2ir 
h(tR) = ̂ T / exp [i(6* - k sin *)] d¥ , 

T 0 

and since (see Appendix A) 

2ir 
f exp [i(v^ - z sin *)] d* = 2tt h(v,z) , 

then 

h ( V = ' ( 3 4 ) 
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5. ESTIMATION OF THE HEATING RATE d ^ /dt 

From Appendix A, we have 

|h(v,z) | - (2)| , 

where 

00 

- J_v(z> ^ S l° V7r / dt exp (vt - zSht) . 
0 

Recalling that |A|2 = (e2/m2)E2 and tR - 7r/wT, then the energy gain of 
the electron may be rewritten for At = t R as 

Hence the heating rate is 

dWx <AWi(tR)> 
di ^ ' 

Considering the density of the electrons ng in the plasma and the 
presence ot two resonance regions for a cavity, the heating rate for the 
plasma takes the form 

/ dW. \ u>2 
i d r j - i E 2 I3. swl 2. <35) 

where 



18 

rt B 
- 2 — , and (36) 
ay:2 

a (l + p) - 0) 
— • ( 3 7 ) 

Since B(z) =• B ( 1 - 6 cos az) and Ji(z) = fi (1 - 8 cos az) at the o o 
resonance region [i.e., z » Z^ or to = = ~ 3 c o s <*ẑ )], then 

6 = tt— (1 + cos az ) . (38) Zu>T y 

We may also define a mirror ratio M such that 1 y 

B(zy) Bq(1 - 8 cos az^) 
Mp 5 B(0) = Bo(l - B) 

or 

Mu " ( 1 " s c o s a V ' <39) 

Using Eq. (39) in Eq. (38) we obtain 

a m - M , 

' " ^ m T T * . i < 4 0 > 

and also 
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e = 
v*(0) 

y2(0) M - M 
(41) 

In terms of e, the expression for the turning point may take the form 

M - M 
cos az - 1 - 2e r̂ - . (42) t M. — J. 

i 
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6. THE CONDITION FOR THE RESONANCE HEATING 
OF TRAPPED ELECTRONS 

The condition for the" resonance heating is 

z < W t 

or 

cos az_ < cos az t V 

Using the expressions for and z^ we get 

+ f , (43) 

where A = ftoP/2u>T. Recalling that 

2A_ = M - 1 
5 M - M M 

and making use of Eq. (41) in Eq. (43), we find 

v2(0) 1 
< . 

v|(0) My - 1 

This is the necessary condition for electron cyclotron resonance 
interactions with the applied microwave field. On the other hand, as we 
discussed in Sect. 3.2, the condition necessary for mirror trapped 
electrons is 

vf(0) 1 > 
v|(0) M - 1 



22 

Therefore, combining these two equations, we write 

v?(0) 

M - 1 v£(0) M - 1 
(44) 
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7. THE LOADED QUALITY FACTOR Q L 

The experimentally observable quality factor QL is defined by 

= i + 1 
^L ^plasma ^wall 

where ° Fw/6g is the Q factor of the cavity wall due to skin 
effect losses. The form factor of the cavity F^ may be approximated to 
be the radius of the cavity R . The skin depth 6 is given by 

<5 s v way 

where yQ = 4ir x 10" 7 H/m and a is the conductivity of the wall. For an . 
aluminum wall, as in the EBT for example, <Sg as 6 x 10~5 cm at 18 GHz. 
Therefore, with very good approximation, we may write7 

Q, S Q - to ^ — . (45) XL xplasma P a b 

Here, W = E2/4tt is the stored energy of the wave and 

Pab ~ ( V®) ( s r ) 

is the absorbed power in the cavity; the plasma volume is V and the P 
cavity volume is Vc. Using Eq. (35) in Eq. (45), we find 

(17) 



24 

We may further simplify the above expression by assuming 6 to be 
an integer, that is, 

and from Watson8 

Jg(eS) * e e xP ( 5 V i -
v̂ irfi (1 - e2)*/1* (1 + v4 - e2)5 

which is valid when e lies between 0 and 1 and 6 is large. 
Substituting the last expression in Eq. (46) and recalling that 

Su>T - nQ(M - ty/(M +1), we obtain 

V f f M - M 
Q - 2 = £ - J L 2 . (47) 
L p f2 M + 1 P 

and the heating rate 

f 2 M + 1 7E2 /dP. \ f 2 M + 1 ( — ) 
\dt / f M - M 

P -o V < « . 8 > 

Here, we have f =» o)/2ir, f « w /2ir, f • fi /2it, and p p p o o ' 

S ( . . „ . a -.«»?'/«<i , <«,, 
e24 exp (26 vOT-e 2 ) 

which is studied in detail in Appendix B. 
We should also mention that the lower value of Q^ is advantageous 

because of more power absorption in the plasma; see Eq. (45). 
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8. APPLICATION TO EBT-I AND CONCLUSION 

The orientation of the microwave power coupling in EBT is ordinary 
wave rather than extraordinary wave,1 because the ordinary wave propa-
gates readily through the plasma under normal conditions of ai > u^ and 
also provides more uniform power distribution throughout the cavity. 
Since the cavity walls are highly reflective, the input wave undergoes 
multiple low loss reflections, and hence its polarization and direction 
change so that the total input wave is soon converted to the extra-
ordinary wave, which is damped heavily by the resonance interactions 
with the plasma. 

We should also keep in mind that the input power is distributed 
among the various plasma components of the EBT. For example, the total 
power P^ is the summation of the power loss in the transmission and 
distribution system P^, the annulus power P^ (which is needed for stable 
toroidal plasma), the power for the surface plasma Pg, and the power for 
the toroidal plasma Typically, we have9 

P P P 
= 0.35, ̂  - 0.2, ̂  = 0.2, and PT/P = 0.25. 

M M P 

We may now estimate the loaded Q value of the toroidal plasma. The 
typical EBT-I parameters are as follows:9 

N = 24 cavities, 
M = 2, 

B = 1 0 kG, max 
R = 1j0 cm (the major radius), o 
a ™ 10 cm (the plasma radius), 

Rc » 26 cm (the ravity radius), 

f = 18 GHz P 
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N E SE i o 1 2 cm""3 (the plasma density), and 

V - 1.35 m3 (the torus volume). 

With this information we can compute the following quantities: 

2ir N 
a -IT-*- • o 

Bo ° O l i P ) Bmax * 

B — 6.42 kG , V * 

B 
M - = 1.28 , u B . * K min 

f p - if ' 9 G H Z • 

n 
f « -2- = 21 GHz , and o 2ir ' 

(« - _ \M - 1 / vL 
3ir 

6 = 2A I n I ™ » 1 

From the resonance heating condition of Eq. (44), we have 

v2(0) 
1 < — < 3.5 . 

v2(0) 

We may now assume that the initial velocity distribution is isotropic; 
thus, 
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& 2 

v2(0) 

which satisfies the above condition. Furthermore, using this value in 
Eqs. (39), (41), and (42), we find 

Z = 0.177 L , 

e = j = 0.694 < 1 , 

and 

= 0.25 L > z . t y 

Knowing the total volume of torus V of the EBT and estimating the plasma 
volume from the turning points, we get 

V V 
— = — a 9.12 . 
V u2a2R P ° 

Using these computed quantities in Eq. (47), we find 

Q, » 2 x 9.12 x 1 8 X 2 1 x 2 ~ 1 > 2 8 x 0.72 
L 92 2 + 1 

and 

35 1 5 ' 

which is close to the previously estimated10 value for the EBT-1 plasma 
that includes the contribution from the annulus and surface plasma. 
Since one may write 
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where Q^, Qg, and Q^ are the Q values of toroidal, surface, and annulus 
plasma, respectively, then one can conclude that Qg, and Q^ > Q^ and 
thus Q l s qt. 

In conclusion, in this work, we have computed the heating rate of 
the electron cyclotron heated EBT plasma considering a bumpy magnetic 
field. We then obtained a relation for the quality factor of the cavity 
that may be observable experimentally. The expression of Q [Eq. (47)] 
contains most of the physical and plasma parameters of the device; thus, 
it may be useful for parametric studies of different devices. 
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APPENDIX A - COMPUTATION OF |h(v,Z)| 

Following is the computation of |h(v,z)|: 

2tt 
h(v,z) = J exp [i(v0 - Z sin 0)] d© 

0 

J cos (v0 - Z sin 0) d0 
0 

2 IT 
+ f sin (vO - Z sin 0) d0 ; 

11 J0 

h(v,z) = J V ( Z ) C O S 2 TTV + sin2 TTV 

+ i [Ev(Z) sin2 ITV + j JV(Z) sin2 irv ] . 

Here J (z) is the Anger8 function, 

Jv(z) = | - f cos (v0 - Z sin 0) d0 , 
0 

and E (z) is the Weber8 function 

1 f Ev(z) = — / sin (v0 - Z sin 0) d© . 
"0 

Since v and z are the real quantities for our case, then 
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|h(v,Z)|2 - cos ir\> + E^CZ) sin irv]2 , 

and, making use of the relation 

Ev(z) sin nv - JV(Z) ~ 3_V(Z) cos ttv , 

we find 

|h(v,Z)|2 _ |jf_v(Z)|2 

Again from Watson,8 

3 _ v < z > = J _ v < z > " / e x p ( v t " 2 S h t ) d t 

where J ,(z) Is the Bessel function of arbitrary order V 
Watson6 also gives the following: 

irZ \ Z2 / 

sin vnr. 
irZ 

v v ( 2 2 -

Lz z 3 

and assuming that Z «• ev when e < 1, we find 

sin vir 
J v ( 2 ) = J v ( e v ) ~ V e v ) + 

TTV (V) 
Furthermore, from Watson8 we also have 
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J.(ev) 
(ve)v exp (v Vi - e2 ) exp (-V^) 

exp (v) r(v + 1)(1 - e2)1/1^! + vi - e2)V 

with 

V a v 24v 
2 3e2 

(1 - e2)3/2 
- 2 
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APPENDIX B - COMPUTATION OF F(e,6) 

In this appendix we estimate F(e,6), which is Eq. (48) for large 
values of 6 as a function of e. Let us start by making a variable 
transformation in Eq. (48); we write 

F(e,6) - x ( 1 + X> 6 e-*«» . 
(1 - x) 

where x = (1 - e2)1/2. Recalling that 

k 00 

and furthermore replacing k by 6, we find 

e 6 x * lim ( l + | = 11m (1 + x)6 . 

Similarly, 

e = 11m (1 - x)^ . 
(S -> 00 

Therefore, F becomes as 

-.4 w m e 6 x -2 6x lim F(x,o) = x — j — e = x 
5 * oo e~ 

or 

lim F(e,6) = (1 - E 2 ) 1 / 2 

6 00 
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^ 
The values of F are given below for 0 < e < 1. 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
F 1 0.995 0.979 0.957 0.916 0.866 0.8 0.714 0.6 0.435 0 
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