OAK

. RIDGE
NATIONAL
LABORATORY

| UNION
CARBIDE

8 OPERATED BY

" UNION CARBIDE CORPORATION
| FOR THE UNITED STATES -

DEPARTMENT OF ENERGY -.- -

DR 1056

ORNL/TM-7064

MASTER

Electron Cyciotron Heating
Rate and Cavity Q Estimations
for an EBT Plasma

T. Uckan

DISTRIBUTION OF THIS DOCUMERT IS UNLIMITED




ORNL/TM-7064
pist. Category UC-20 £,g

Contract No. W-7405-eng-26

FUSION ENERGY DIVISION

ELECTRON CYCLOTRON HEATING RATE AND CAVITY

Q ESTIMATIONS FOR AN EBT PLASMA

S

T. Uckan-

DISCLAIMER

This bogt was Drepared as an account of work SDONsOred by 8h gency of the United States Government,
Neuther the United States Governmient nor any agency thereof, nor any of their empioyees, makes any
warranty, exifess or ymplied, of asumes any legal ligbibity or responsibiity for the accuracy,
completeness, O¢ usefulness af any INfOrmalion, appa'alus, oroduct, ar process disclosed, or
renresents that s yse would not nfringe prvetely ownedt rights, Reference heremn 10 any specific
Commerciat BIOLLT, DFOCESS, OF WPVILE L/ Mrade Ramne, track . f ) o0 ¢, does
Nl necessatly consutute Or imply Ms efcorsement, recommendation. or favoring by the Uated
States Guvernment or any agency thereot, The views and oMoy of authors expressed hefen da nat
necessanly state of reflect those of the Lnned States Government or any agency thersof,

Date Published - April 1980

NOTICE This document contains information of a preliminary nature,
1t is subject to revision or correction and therefore does not represent a
final report. :

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

WRTRIGUTION OF THIS DOCUNENT (S UHLIMITED



CONTENTS

ACKNOWLEDGMENTS.O.o.--n-ona-n...c0..-.....o---o.o-..---nnooof'.cll. v

vii

ABSTRACT LI A I B A RN R R A R N N N N I NI A I I I NI I AN A A I A A A LA I I

1. INTRODUCTION . uceveveceaocacossacnsscnoncasascane vasnasanseas T

2. THE BASIC EQUATIONS PSP EOPT LT PP IR GO IINTTERIIENEBCEGESIIERENSBUEODY 3

3. CALCULATION OF AXTAL ORBITS Z(t) .ueeercecscccncacaasasescnsens
3.1 The case ford>f>o.l...ll.l.....lI.IU..IQ.II.I...II..

3.2 The case for £ 2 [d| > 0 teciiveercansecsssacacenncsasnans
4, CALCULATION OF h(t) FOR THE TRAPPED ELECTRON .....ccvoccoccesese 13
5. ESTIMATION OF THE HEATING RATE dW, /dt .eceiernnenernreccnsenens 17

6. THE CONDITION FOR THE RESONANCE HEATING
OF TRAPPED ELECTRONS +eeeeeecvevaccasnnsansscasasscsnsasaasnnse 21

7. THE LOADED QUALITY FACTOR Q) seeceessnarcecessaacearsocsnsennns 23
8. APPLICATION TO EBT-T AND CONCLUSTON ..ccececenaccecnccansassnne 2D
APPENDIX A — COMPUTATION OF [h(v,Z)] .eiieeiecinreciniiiancancnnnss 29
APPENDIX B — COMPUTATION OF F(€,8) +veveresescrroceccnnnnaasonsnans 33

REFERENCES 62 000 BN BN BRNTOLOOEINONNOPBOIOIDPPPELOGIOIRNOOETSITIEEBRS TS 35

iij



ACKNOWLEDGMENT S

The author would like to express appreciation for the constructive
criticisms of D. B. Batckelor, 0. C. Eldridge, and J. Sheffield.



ABSTRACT

The perpendicular energy gain Ah& of electrons from the applied
extraordinary microwave field in EILMO Bumpy Torus (EBT) is calculated by
means of the stochastic model for the field-plasma cyclotron resonance
interactions. In these calculations an inhomogeneous bumpy magnetic
field is chosen in order to simulate the field strength of the EBT as
well as to include the effects of mirror trapping.

The effects of the initial energy of the electrons and the value of
the mirror ratio on the trapping are discussed, and the heating rate
AWL/At (where At is the reflection time from the mirror) is estimated.
The loaded cavity quality factor QL is then expressed from the heating
rate, the result is applied to the EBT-I plasma, and a value of QL =15

is found.

vii



1. INTRODUCTION

The basic heating mechanism in the ELMO Bumpy Torus (EBT) is based
on the electron cyclotron resonance interactions between the applied
microwave and plasma electrons.! The nonuniform magnetic field con-
figuration of EBT provides an efficient means of energy gain for the
electrons from the field., As is well known, the maximum energy increase
for electrons takes place when the circularly polarized extraordinary
component of the rf electric field, which is propagating along the
magnetic field lines, becomes resonant with the cyclotron motion of the
electrons when the local Larmor frequency f is close to the microwave
frequency w. The purpose of this report is mainly to consider the
relation of the trapping of the electrons in 2 nonuniform magnetic field
to their energy gain.

In the literature there are a number of papers? that deal with the
calculation of the rate of energy gain of the electrons from the applied
electromagnetic wave. Most of the researchers have used slightly
increasing (or decreasing) nonuniform external magnetic fields. In this
work the calculations will assume a more realistic magnetié field form
that simulates the EBT field configuration. Also, the importance of the
mirror trapping cf the nonuniform magnetic field will be considered
through the magnetic invariant of the motion it. The approach for the
computation of the energy gain of the electrons from the applied micro-
wave field is similar to that of Grawe's,3 except that here the particle
motion is assumed to be nonrelativistic and to have the shape of the
applied magnetic field.

The purpose of this paper is twofold. First, the heating rate of
the electrons will be estimated with the use of the following iniiomo-

geneous magnetic field:

s -5, [1 - (352) o (225) .




This simulates the field strength reasonably well for the EBT.* Here M
is the mirror ratio, L is the distance between the mirrors, and z is
the minor axis. In this field most of the electrons will be trapped in
the potential well and eventually heated at the resonance regions. It
should be mentioned that the work done by Sprott and Edmonds® was based
on Eq. (1) for the field model but that their computation was carried
out numerically,

In this study the calculations employ a stochastic approach. The
effects of the initial energy of the electrons and the effect of the
mirror ratio on the trapped and untrapped electrons in the field will be
studied. However, the Doppler effect of the wave will not be considered.

Second, after the heating rate dWL/dt is obtained, the loaded
quality factor Q of the cavity will also be estimated. The results will
then be applied to the typical EBT-I plasma.



2., THE BASIC EQUATIONS

The Lorentz force on the electron moving in a magnetic field in the
presence 0of a uniform rf electric field E is given by

3t = £ . +u - VB, (2)

where the magnetic invariant of the motion u = myf/ZB and vy is the
perpendicular component of the velocity with respect to the magnetic
field. If we assume that the electric field is perpendicular to the
magnetic field and is of the form

E(x,t) = E exp (-iwt) ,

then the components of Eq. (2) in the Cartesian coordinate system are

as follows:

dv e e

T - " mBx " me Py oo S
dv e e

dt =_EEy+;EBvx’ ()

and

dv, d?z u dB

— P2 —— B e o —— . (5)
dt de? m dz

Here e (>0) and m represent the charge and the mass of the electron,

respectively.

In these calculations the mirror ratio is defined as

M = B(z = 0)
B{z = £L/2)
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where z = #L/2 is the location of the coil plane.
From Eqs. (3) and (4) we get

%‘-;—+ 12(t)u = A exp (-iwt) ,

where u = Ve = iv , Q(t) = [eB(t)]/mc, and ~(m/e)A = Ex - iEy is the

y
right-hand circularly polarized (extraoxdinary) rf field.

The solution of the differential Erf. (6) is of the form

t
u(®) = [u© + ane) | exp (-1 [ acen ae'],
0

with

t
h(t) =] exp [i0(t")] at’ ,
0

and

t
¢(t) = -ut + .[ Q(t') de!’ .
0

(6)

€))

(8)

(9

Knowing u(t), we may compute the perpendicular energy change of the

electron in the following manner:

oW (£} = 3 [WE(D) - vE(@] = 3 [u(tu*(e) - a1 ,

*
where u (t) is the complex conjugate of u(t).
From Eq. (7) we then find

a2 = w0y A"t + M@ ane) + [n(e) |2 (a2 .

(10)

(11)



Noting that h(t) = |h(t)| exp (i¥') and u(0) = v, (0) exp (i¢') with an
arbitrary phase ¢', we find

uw(0) A"h"(t) + u"(0) An(t) = 2 £ Ev (0) |n(t)] sin (6'¥ ") .

Here, since E, = 0 is assumed, E = v/ E_ = V2 Ey.
Making use of the stochastic approach,3 Eq. (10) becomes

<aw (£)> =5 [A[2 |n()[? . (12)

Here

Before proceeding further, we will study u around the resonance

region. Since y = myf/ZB, we may write

iy S
2
h) v1 B
or
M, (2 3 ) -
. bz\zpom W -=-en3B) .

In this study we assume that the thickness of the resonance region
Az is small enough that p is still considered to be invariant. We
should also mention that, under the weak electric field assumption, the
energy gain of the electron is not large enough to violate the constancy

‘'of u for a single pass from the resonance surface,



In Sect. 4 we will compute h(t) by making use of the axial motiom
of the electron z(t). Thus, we need to know the time evolution of the
electron motion along the field line. This will be discussed in the

next section.



3. CALCULATION UF AXIAL ORBITS z(t)

Let us recall from Eq. (5) that

2
4%z  udB_

. (13)
dt2 mdz

Using
u dB [vf(O) 2 27
maz -l aM-1), a=3

in the above and noting that d/dt = vz(d/dz), we get

Loy, =@+ £ cos a)l/2, (14)
Here
vZ(0)
f=—5—M-1)>0 (15)
and
d = v%(O) -f. (16)

The-orbit equation z(t) then becomes

¢
—d¢ = at , Coan
0 (d + £ cos ¢)1/2
~ where ¢ = az(t). ‘
From Graishteyn and Ryzhik® we have -



= G
——7F(=,r
a+b 2

fora>b >0, 0<x< 7,

[ dx - :
(a + b cos x)1/2

2
\/—;F(y,%), for b > |a| > 0,

0 < x € arc cos (-a/b),

where

K(k) = F(¥ = 7/2,k),

and the elliptic integral of the first kind

Y dx
F(y,k) = £ PRTRTRRTY?

For our case £ 2 0, but d > 0 or d < 0 depending upon initial

(18)

19)

velocities and the mirror ratio. Let us study these cases separately.

3.1 THE CASE FOR 4 > £ > 0

In this section, we will assume that d > £ > 0. Since

\ .
vZ(0) 1l
1 <

2 -
vZ(O) M-1

then from Eq. (18) we write



F‘(Ef-,r) = VZ;O) ot ,

v# (0)

v2(0)

2 =

M-1) <1.

From Ref. & we have

2 2
F(b,k) =y + ¥ 5 - 5= sin? =y

if k << 1. When thas value is used in Eq. (18),

2 2

oz oz vz(O)
,;) at

F(5 e
or

z() = v (0t ,
which describes the untrapped or passing electrons.

3.2 THE CASE FOR £ > |d| > 0

(20)

(21)

Qur basic assumption in this section is that £ > |d| > 0. 1In this

case

2
ve(0) 1

1 >
v%(o) M-1

we then find
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F (Y,%) =\/-f; at .

(22)
Here
aZ
Y = arc sin (r sin 2—) and (23)
1 _d+¢f <«<1 .
r? 2f
We may again approximate £(y,1l/r) as
F 'yl)?-‘y = arc sin(r sinlz—)=\/£_ t
’r 2 2 @
or
v, (0)
zZ(t) = sin (th) , (24)
¥
where
=& - 1y1/2
wp =3 v (0) - 11/2 . (25)

We see from Eq. (24) that the electrons are oscillating in the

magnetic trap with a frequency of fT = wT/Zn. We will consider this
trapped electron case further:

1. From Eq. (23) we write r sin az/2 = sin y. Since r >> 1 and

(sin Y)max = 1, then a2/2 = 8 < 7/2 or 2 < L/2, which means that the
electrons are trapped in the mirrors.

2. We may now estimate 8 ax = . by vwriting sin 6 = 1/r sin vy or
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vz(O) } azc
v (OVH - T )

ec = arc sin[
2

3. Let us find t = t_, where z(tc) = z . We know that y = n/2 and
t = tc when 6 = ec. Thus, from Eq. (22) we may write

i 1 _ - 1
F(i ¢ r) - w’l‘tc K(r)

and for r? >> 1,

K(l)a T (1 +—1? = ut_ . (26)
r 2 4r

4, Ve now rewrite Eq. (14) as follows:

1/2
= - 1y1/2 2 - 2 02
vz(t) vl(O)(M 1) / sin Oc sin 2 .
"his gives
v2(0)
sin? 8 < s

v (M - 1)

and for 8 = ec, vz(t = tc) = 0., We may identify this as a turning point
of the electron.

In summary, when y = w/2, then 0 = ec, t =t vz(tc) =0, 2= z,,
and t, = n/ZmT. Henceforth, z, will be identified as a turning point of

the electron and will be denoted as zt' which 1is 1 - cos az, = 1/r2.

t
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4. CALCULATION OF h(t) FOR THE TRAPPED ELECTRON

We start by recalling the definition of h(t), which is

t
h(t) = f exp [14(dt’)] dt’ ,
0

with

‘t
o(t) = -wt + [ a(t’) dt’,
0

where

QL) _

%

1 - 8 cos az(t) .

Here B = (M - 1)/(M + 1) and a = eBo/mc.
Let us define T(t) such that

{ Q(t’) dt’ = @t -  BI(t)

and

t
T(t) = f cos az(t') dt' .
0

Using Eq. (14),

b
o) = [ cos ¢ o ,
0 (4 + £ cos ¢)1/2

(27)

(28)
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or from Gradshteyn and Ryzhik® we find
T(e) = fE [m(v,—l-) - F(Y,‘l')] : (29)
a2f T r

v
Here E(y,k) = ]; dx(l - k2 sin? x)1/2 ig the elliptical integral of the
second kind and E(k) = E(y = n/2,k). Again from Ref. 6 we have

2 2
EQW,k) = k3F(y,k) + kk$ 9F , __k” sin® y
2 2
ok \/1 - k sin '4’

with k2 = 1 - k2,
Using F(y,1l/r) = Vf/2 ot in the above relation, we obtain

1 2
E (Y,—) - sin® vy
r 2r2(1 - sin? 'Y/rz)ll2

and therefore

sin? Y

T(t) = -t +
ae3 Vi - sin? y/r2

where A = (a/2)v,(0). The case we are interested in is r2 >> 1; thus
Eq. (9) takes the form

2(t)

ZwTGt ~ k sin (2th) . (30)

Here

2wT6 [ﬂo(l + B8) - w] and . (31)
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88
k= 2 . (32)
mTrz

We now compute the perpendicular emergy gain for one reflection

time, that is, when t_ = Ztc:

R
m : - ~
<, (ep)> = 3 [A]2 [n(ep) |2, (33)

with

t
R
h(tR) = j- exp 1 [20,8t - ¢ sin (ZmTt)] dt .
0

For the trapped electrons, we know that

rte & /2, which leads to

Wk = ZmTtR = 2% .

27

B(ry) = 2—‘01; { exp [1(8¥ - k sin ¥)) av ,

and since (see Appendix A)

2
Jf exp [i(v¥ - z sin ¥)] d¥ = 27 h(v,z) ,
0

then

w
h(cy) = qh(_a,n) . (34)
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5. ESTIMATION OF THE HEATING RATE dW&/dt~

From Appendix A, we have
law,2)| = 13_)| ,

where

o0
F_ (@ =3_ (@ - —sl:-ﬂ f dt exp (vt - zSht) .

Recalling that |A|2 = (e2/m?)E% and tp = m/ug, then the energy gain of
the electron may be rewritten for At = tR as

. 2E2 . 2 .
<Aw.|. (tR)> - ;;'_ (":;_) lJ_s(K) |2 .
T

Hencé the heating rate is

dw, _ <AW, (tR)>

de te

Considering the density of the electrons n, in the plasma and the
presence oi two resonance regions for a cavity, the heating rate for the
plasma takes the form

aw, w2 . . «
T EZ‘E; E2 |J_|?, (35)
P
" where
2
2 . 4ﬂnee
P m ?
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] 90(1 +B8) -w

ZmT *

8

Since B(z) = Bo(l - B cos cz)-and Q(z) = Qo(l - 8 cos az) at the
ﬂ(zu) = ﬂo(l - B cos azu)], then

resonance region [i.e., z = zu or w =

QOB
6 = 5——-(1 + cos az ) .
. u

We may also define a mirror ratio M]_l such that

) B(%p) _ Bo(l - B cos azu)
n - B(0) B (1-8)

=
m

or

M+ 1
. 2 (1 - B cos azu) .

Using Eq. (39) in Eq. (38) we obtain

8 M-M
§ = -2 KW
Wep M+1 °?

and also

(36)

37

(38)

(39)

(40)
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K vg(O) 1
€ S ‘g‘ = 2 o (41)
v (0) M - M\-l

In terms of g, the expression for the turning point may take the form

M-M'Ll
cos aZt =] -~ 2¢ -1 - (42)
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6. THE CONDITION FOR THE RESONANCE HEATING
OF TRAPPED ELECTRONS

The condition for the resonance heating is
zu:< z,

or

cos 0Z,_ < cos az .
t M

Using the expressions for Z_ and Zu we get

t

24 K
g—<l+6 » (43)

where A = QOBIZwT. Recalling that

and making use of Eq. (41) in Eq. (43), we find

vf 0) 1
< *

2 -
vz(O) M‘J 1

‘This is the necessary condition for electron cyclotron resonance
interactions with the applied microwave field. On the other hand, as we
discussed in Sect. 3.2, the condition necessary for mirror trapped
electrons is

\ .
vi(0) 1
> L]

2 -
vz(O) M-1
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Therefore, combining these two equations, we write

1 vf(O) 1
< <

- 2 -
M-1 vy (0) Mu 1

. : (44)
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7. THE LOADED QUALITY FACTOR QL

The experimentally observable quality factor QL is ZJefined by

1 1

—

+ 1
b
QL Qplasma Qwall

where Qwall = Fw/6s is the Q factor of the cavity wall due to skin
effect losses. The form factor of the cavity Ew may be approximated to
be the radius of the cavity Rc' The skin depth Gs is given by

6 =/-z k4
] woy

where My = 4 x 10~7 H/m and o is the conductivity of the wall. For an .
aluminum wall, as in the EBT for example, 68 =6 x 107> cm at 18 GHz.

Therefore, with very good approximation, we may write’

W
Q = Q a2 g — , (45)
L plasma Pab

Here, W = E2/41 is the stored energy of the wave and

v dv&
ab v dt
c P

is the absorbed power in the cavity; the plasma volume 1s V and the
cavity volume is Vc. Using Eq. (35) in Eq. (45), we find

W, v 1

Q ===\ —— . (46)
L v 1302
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We may further simplify the above expression by assuming & to be
an integer, that is,

[3_s0) 12 = 32(es)

and from Watson8

JG(SG) o e6 exp (Gv{ - €2) ,
\/Z-ms 1 - e2)i/s 1 +\/{ - e2)8

which is valid when ¢ lies between 0 and 1 and &§ is large.
Substituting the last expression in Eq. (46) and recalling that
GwT = QO(M - Mu)/(M'+ 1), we obtain

M-M ,
L #(e,8) (47)

VC ufo
o =23
Ly 2 M+l

and the heating rate

(d&’l) £2 M+1 B2
—) =2

dt £, M- M 4F(e,8)

Here, we have fu = /2w, fp = wp/2w, fo = QO/Zw, and

Fe oy = G=eB2 @ s A= en?
e28 exp:\(za ,/i\:‘_ 2 )

(48)

which is studied in detail in Appendix B. »
We should also mention that the lower value of*QL*is advantageous

because of more power absorption in the plasma; see Eq. (45).
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8. APPLICATICN TO EBT-I AND CONCLUSION

The orientation of the microwave power coupling in EBT 1s ordinary
wave rather than extraordinary wave,l! because the ordinary wave propa-
gates readily through the plasma under normal conditions of w > wp and
also provides more uniform power distribution throughout the cavity.
Since the cavity walls are highly reflective, the input wave undergoes
multiple low loss reflections, and hence its polarization and direction
change so that the total input wave is soon converted to the extra-
ordinary wave, which is damped heavily by the resonance interactions
with the plasma.

We should also keep in mind that the input power is distributed
among the various plasma components of the EBT. For example, the total
power Pu is the summation of the power loss in the transmission and
distribution system PD’ the annulus power PA (which is needed for stable
"toroidal plasma), the power for the surface plasma PS’ and the power for

the toroidal plasﬁa P Typically, we have?

T.

rd
rd

P
D A S
= 0.35, P = 0.2, 51: = 0.2, and PT/PU = 0.25.

u p

We may now estimate the loaded Q value of the toroidal plasma. The
typical EBT-I parameters are as follows:®

z
"

24 cavities,
M= 2,
10 kG,

(-]
il

150 cm (the major radius),

OW
n

o
]

10 em (the plasma radius),
R = 26 cm (the ravity radius),

rh
]

18 GHz
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n, = 1012 e¢m™3 (the plasma density), and

v, =1.35 m3 (the torus volume).

With this information we can compute the following quantities:

I."'g
ole
-

M+1
BoE(ZM Bmax’
B = 6.42 kG ,

u

B
M =—H =1.,28
u B

nin

(M - Mu 3
6=2AM_l -vl(O)/c»l'
From the resonance heating condition of Eq. (44), we have

vZ(0)

vZ(0)

1 < < 3.5 L]

We may now assume that the initial velocity distribution is isotropic;
thus,
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v2(0)

—— D

vZ(0)

which satisfies the above condition. Furthermore, using this value in
Eqs. (39), (41), and (42), we find

z =0.177 L ,
u

€= 0.694 < 1,

R
il

and

z =0.25L >z .
t H

Knowing the total volume of torus Vt of the EBT and estimating the plasma

valume from the turning points, we get

v v
L -t =~9.12.

2,2
Vp 'naRo

Using these computed quantities in Eq. (47), we find

18 x 21 2 -1.28
92 2+ 1

n

2 x 9.12 x

QL x 0.72

and

n

QL 15 »
which is close to the previously estimated!® value for the EBT-I plasma
that includes the contribution from the annulus and surface plasma.

Since one may write
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where QT’ QS’ and QA are the Q values of toroidal, surface, and annulus
plasma, respectively, then one can conclude that QS’ and QA > QT and
thus QL == QT'

In conclusion, in this work, we have computed the heating rate of
the electron cyclotron heated EBT plasma considering a bumpy magnetic
field. We then obtained a relation for the quality factor of the cavity
that may be observable experimentally. The expression of QL [Eq. (47)1]
contains most of the physical and plasma parameters of the device; thus,

it may be useful for parametric studies of different devices.
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APPENDIX A — COMPUTATION OF |h(v,z)|

Following is the computation of [h(v,2)|:

II—-‘

2m
h(v,z) = 2"]' exp [1(v0 - z sin ©)] de
0

Ii—‘

]

27
“f cos (vO - z sin ©) do
]

i 27
+§;[ sin (VO - z sin ©) dO ;
0

h(v,2) = 3\)(2) cos? Tv +-:]Z; E\)(z) sin? v

5 2 1z 5 2
+ 1 Ev(z) sinc nv + 5 Jv(Z) sin wv] .

Here 3\)(2) is the Anger® function,

0l
[ cos (V@ - Z sin ©) do ,
0

and Ev(z) is the Weber® function

Ul
f sin (VO - Z sin 0) 46 .
0

Since v and z are the real quantities for our case, then
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|h(v,2) |2 = [Jv(Z) cos TV + Ev(z) sin mv]2 ,
and, making use of the relation

ﬁv(Z) sin v = 3v(2) - 3_v(2) cos v ,
we find

[h(v,2)[2 = li_v(z)l2 .

Again from Watson,®

~ sin vrn
J_V(z) J_v(z) -~

0

where Jv(z) is the Bessel function of arbitrary order v.

Watson® also gives the following:

~ -y2
J(z) =3 () + 2ABVT (1 N Sk i )
T2z z2

o0
j. exp (vt - zSht) dt ,

_ sin vﬂ.[E _v(22 - v?)

Tz pa z3

and assuming that Z = ev when € £ 1, we find

~ = F sin vn l-¢
JV(Z) J,(ev) = Jv(ev) + ( ; ) .
™ €

Furthermore, from Watson® we also have

v
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(ve)’ exp (v Vg ez) exp (-V)
exp (V) T(v + 1)@A - e2)1/*1 +A - ey

Jv(ev) =

with

vgl[ 2 + 3¢2 _2].
Voo2aw | @ - e2)3/2
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APPENDIX B — COMPUTATION OF F(e,8)
In this appendix we estimate f(s,d), which is Eq. (48) for large

values of § as a function of €. Let us start by making a variable
transformation in Eq. (48); we write

8
f"(e,é) = ME-ZGX .
(1 - x)

where x = (1 - 6251/2. Recalling that

k
e = 1Lim (1+% ,

k >
and furthermore replacing k by &6, we find

8
¥ o 1im (1+6—") = 1im @+ x° .

§ > § § > >
Similarly,
e = 1m a-0%.
§ »
Therefore, F becomes as
lim F(x,8) = x E:E— e 26x x
§ » o e X

or

1im F(e,8) = (1 - e2)1/2
§ >
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The values of F are given below for 0 < e < 1.

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F 1 0.995 0.979 0.957 0.916 0.866 0.8 0.714 0.6 0.435 O
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