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Zero-Point Energy in Bag Models
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Abstract
The zero~point (Casimir) energy of free vector (gluon)
flelds confined to a spherical cavity (bag) is computed.
With a suitable renormalization the result for eight gluons
is

0.51
E=+ = .

This result is substantially larger than that for a spher-
ical shell (where both interior and exterior modes are pre-
'senc), and so affects Johnson's model of the QCD vacuum,

It 48 also smaller than, and of opposite sign to the value
used in bag model phenomenology, so it wili have important ’

implications there.
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I. Introduction

Quantum chromodynamics (QCD) may well be the appropriate theory of hadronic
matter. However, the theory is not at all well understood, It may turn out
that color confinement is roughly approxirated by the phenomenologically suc~
cessful bag model [1,2]). 1In this model, the normal vacuum is a perfect color
magnetic conductor, that is, the color magnetic permeébility p is infinite,
while the vacuum.in the interior of the bag is characterized by|¢= 1. This
implies that the color electric and magnetic fields are confined to the
interior of the bag, and that they satisfy the following boundary conditions

on its surface S:

= 0, @)

where 0 1s normal to S. Now, even in an "empty" baz (i.e., one containing
no quarks) there will be non-zero fields present because of quantum fluctua-
tions. This gives rise to a zero-point or Casimir energy [3,4]. It would
be anticipated that this energy would have the form -Z/a, where a is the
radius of & (spherical) bag and Z is some pure number. Indéed, such a term
has been put in bag model calculations, and a good fit has been obtained for
Z=1,84 [1,2]. 1t is my purpose here to insist that the Casimir energy muét
be deternined by the underlying dynamics, presumablyQCD. I will calculate
Z in the approximation that the gluons are free inside the bag (which is
roughly justified by asymptotic freedom), with # result that apﬁéars to
be quite incompatible with the phenomenological value. |

A related, but sqmewhat different motivation for this work comes from
Johnson's recent model for the QCD ground state wave function [5]. Effectively,

he supposes that space is filled with bags, the boundaries of which confine



color to small, asymptotically free, regions. He uses the classic result of
"Boyer [6], as subsequently improved [7,8], for the electrodynamic Casimir
energy of a perfectly conducting spherical shell, together with various guesses
for the higher-order cffects, to estimate the parameters of the bag model.

But the QED calculations cannot be properly extrapolated to this situation,

for they refer to a single shell in otherwise empty space. There ic a

delicate balance.between interiof and exterior energy contributions, so

that only the sum is cutoff independent. The closely packed bags in Johnson's
model present a quite different situation. In fact, the energy density Johnson
requires will be provided by the result of the calculation presented here,
gsince the energy of space filled with contiguous bags is simply the sum of

the field energles contained within each bag.



II. Calculation of Zero-Point Energy

Our discussion follows closely on the formalism developed in [8], as
extended to the cases of dielectric and conducting balls in {9]. For electro-
dynamics the situation we consider is as shown in Fig. la. Duality
(E-.ﬁ,ﬁ;.~f) then allows us to extend the result to the QCD case, Fig. 1b,
where one also must allow, for the fact that there are 8 vector gluon fields.

There are several methods of proceeding. One can compute the energy
(or the stress on the surface) when the dielectric constant ¢ is finite in
the exterior region, letting g¢-o at the end of the calculation. This is
the procedure followed in [9]). Alternatively one can calculate the result
directly for a spherical cavity in an infinite conductor. Since all methods
agree, we simply derive here the expression for the zero-point energy in ‘
the latter case, It may be obtalned from the interior contribution of

Eq.(3.9) of [8]:
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We should emphasize that the cutoff 1 -0 emerges naturally from the overlap
of f£ield points, with no reference to the properties of the shell. Here

k= |w|, and F, and G, are the transverse electric and magnetic Green's func-

2
tions from which the vacuum parts have been removed:
F,(r,x)
? . - 4
r,v’ < a: AF,G ik jz(kr)jz(kr s 3)
Ez(r,r')



where
o w1
AF hz (ka)/jg(ka),
A= (ka b’ (ka)]/{ka 3, (ka)l’ . ()
G 2 2

In the spherical shell calculation of [8] there were both interior and exterior
contributions to the energy, ahd as a consequence the surface term [the seacond
term in (2)] vanished. This 1s not the case here; in fact, the surface term

cancels a portion of the first term in (2), leaving us with

B = —-—2 @o+2 )f e T +A)
f=1

2
x kaf(Tka 3, (ka)1)" + ((ka)? - 204+1)) (1, (k)
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where we have performed a Euclidean rotation [8],

w- 1k, k-»i]ka‘, T~ i(x, %)), (6)
and let '

x= [k Ja, &= (x, -x/)/a. | &)
The Bessel functions of imaginary argument here are.

5,00 = /2P, 00,

e 0 = /Mm%, (). ®



E#preséion (S)Iis nearly, but not quite, the same as that found by'Bender
and Hays [10]. Apart from an overall sign, théir formula has an extra term
which arises précisely from the neglect of the surface term in (2).
The result (5) is exactly what one would anticipate from the earlier

work in [8] and [9]. The term proportional to

Sl S//

;—‘-Z-P-gfv:-‘&% 1ogs£s},
is just the inside part of the spherical shell result, Eq.(3.15) of {8]), while
the remaining term is just the corresponding "contact term,'' Eq.(31) of {91,
which cancels for a shell. [It is the negative of what one would obtain from
use of the free space Green's function f{n (2).] What we have here is simply

the "mirror image' of the exterior result of (9], Eq.(51). That means we

can with no labor obtain a numerical result, since

Einterior = Esheit ~ Pexterior ° &

Now Eshell is cutoff (§) independent, and has been numerically evaluated

to 4 significant figures (Eq.(5.21) of [8]):

Bohell ™ 0.04618/a. (10)

On the other hand, E has a term depending on §; when the finite part

exterior
was extracted using uniform asymptotic expansions it was found that (cf. Eqs. (55)
and (56) of [9]. but here included are o((za—§>“3) terms in the expansion of the

curly bracket of (5) as well)

o Lf & Ly 3
Eoxterior “'na( 2 8) + 1%8a (11)



For consistency we should use the same, very good approximation for Eshéli

(see Eq.(5.17) of [8]):

I
Eshell T bha (12)

(Note that half this value appears as the second term in (11).) Then the
zero~-point energy of a single, free, vector field confined by a spherical

cavity of radius a is

4 1 /16
E > . + 43 (13)
interior 31ra 62 1283(n )

Note that the cutoff-dependent term in (13) has the form, but not the sign,
predicted by Balian and Bloch [11]. (The discrepancy may lie in our '"volume

energy subtraction, see [8] and [9].)



iII. gonclusions’

The cutoff-dependent term in (13) reflects our continuing ignorance about
field theory. Renormalization remains a recipe for dealing with difficult
physics that we do not really understand. However, let us suppose that the
constant force term (recall §= 7/ia) involving § can be absorbed by a suitable

counterterm [2]. One is left then with

Ren,QeD __ 1 (16 _ 0.063
interior ~'128a(n +3) a (14)
The QCD bag value is eight times larger:
Ren,QCD __ 1 (16 . 0,31
Eintertor = 16a(n +3) P | (15)

We can now make various comments,

(1) The numerical value in (15) is substantially smaller than, and of
opposite sign to,~Z used in bag model parameterizations. (A typical value there
is Z=1,84 [1,2]. However, part of this is a center of mass effect [12], s0
the appropriate number to compare with ours 1s Z’~1.) The force here, like
for the shell, is repulsive, contrary to one's naive expectations.

(11) The value here presented is of the scame sign, but 40 percent
larger than that appropriated by Johnson in his model of the vacuum [5].
This may have significant numerical implications for the phenomenological
applications; however, since his parameter b (representing higher order effects)
remains uncomputed, no decisive statement can yet  be made.

(111) The presence of the cutoff-dependent term in the zero-point energy
(after all standard volume energy subtractions have been performed) is a serious
matter which must be understood, and may prove to be quite important, The
validity of the asymptotic expansion used in obtaining these results might

also be questioned. In particular, it is disturbing to note that the 0((£4~§)7“)



terms appears to introduce an additional, logarithmic dependence on §. [It
appears fortuitous that the shell result (10) is independent of §.])

(iv) I am presently recomputing the Casimir energy due to massless quarks
in this modél. (The previous calculation is in [10].) 7The results will

be presented elsewhere.
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Figure Caption

(a) The geometry of a spherical cavity imbedded in a perfect conductor.

(b) Thc dual geometry of the bag model,




