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Abstract

The zero-point (Casimir) energy of free vector (gluon) 

fields confined to a spherical cavity (bag) is computed. 

With a suitable renormalization the result for eight gluons 

is

This result is substantially larger than that for a spher

ical shell (where both interior and exterior modes are pre

sent), and so affects Johnson's model of the Q C D  vacuum.

It is also smaller than, and of opposite sign to the value 

used in bag model phenomenology, so it will have important 

implications there.

* On leave ifrom Department of Physics, University of California, 
Los Angeles, CA 90024.



I. Introduction

Quantum chromodynamics (QCD) m ay we 1.1 be the appropriate theory of hadronic 

matter. However, the theory is not at all well understood. It may turn out 

that color confinement is roughly approximated by the phenomenologically s u c 

cessful bag model [1,2]. In this model, the normal vacuum is a perfect color 

magnetic conductor, that iis, the color magnetic permeability n is infinite, 

while the vacuum.in the interior of the bag is characterized by n = l .  This 

implies that the color electric and magnetic fields are confined to the 

interior of the bag, and that they satisfy the following boundary conditions 

on its surface S:

n . & j g =  0, n x B l g =  0, (1)

where n is normal to S. Now, even in an "empty" bag (i.e., one containing 

no quarks) there will be non-zero fields present because of quantum fluctua

tions. Thi3 gives rise to a zero-point or Casimir energy [3,4]. It would 

be anticipated that this energy would have the form -Z/a, where a is the 

radius of a (spherical) bag and Z is come pure number. Indeed, such a term 

has been put in bag model calculations, and a good fit has been obtained for 

Z - 1 . 8 4  [1,2]. It is m y  purpose here to insist that the Casimir energy mus t  

be deternined by the underlying dynamics, presumably QCD. I will calculate 

Z in the approximation that the gluons are free inside the bag (which is 

roughly justified by asymptotic free d o m ) , with a result that appears to 

be quite incompatible with the phenomenological value.

A  related, but somewhat different motivation for this w o r k  comes from 

Johnson's recent model for the QCD ground state wave function [5]. Effectively, 

he supposes that space is filled with bags, the boundaries of which confine



color to small, asymptotically free, regions. He uses the classic result of 

Boyer [6], as subsequently improved [7,8), for the electrodynamic Casimir 

energy of a perfectly conducting spherical shell, together with various guesses 

for the higher-order effects, to estimate the parameters of the bag modei.

But the QED calculations cannot be properly extrapolated to this situation, 

for they refer to a single shell in otherwise empty spacc. There is a 

delicate balance between interior and exterior energy contributions, so 

that only the sum is cutoff independent. The closely packed bags in Johnson's 

model present a quite different situation. In fact, the energy density Johnson 

requires will be provided by the result of the calculation presented here, 

since the energy of space filled with contiguous bags is simply the sum of 

the field energies contained within each bag.
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Our discussion follows closely on the formalism developed in [8], as 

extended to the cases of dielectric and conducting balls in [9]. For electro

dynamics the situation we consider is as shown in Fig. la. Duality

then allows us to extend the result to the QCD case, Fig. lb, 

where one also must allow.for the fact that there are 8 vector gluon fields.

There are several methods of proceeding. One c an compute the energy 

(or the stress on the surface) when the dielectric constant e is finite in 

the exterior region, letting e-°° at the end of the calculation. This is 

the procedure followed in [9]. Alternatively one can calculate the result 

directly for a spherical cavity in an infinite conductor. Since all methods 

agree, we simply derive here the expression for the zero-point energy in 

the latter case. It may be obtained from the interior contribution of 

Eq.(3.9) of [81:

II. Calculation of Zero-Point Energy

We should emphasize that the cutoff -r-0 emerges naturally from the overlap 

of field points, with no reference to the properties of the shell. Here

4 = 1 q

(2)

k -  [w], and P  and 8. are the transverse electric and magnetic Green's func

tions from which the vacuum parts have been removed:

F^(r,r')

r,r' <  a: (3)

C^(r,r')



where

Â, = h ^ ( k a ) / j ^ ( k a ) ,

A g -  [ k a h ^ > ( k a ) ] ' / [ k a j ^ ( k a ) ] '  . (4)

In the spherical shell calculation of [8] there were both interior and exterior 

contributions to the energy, and as a consequence the surface term [the second 

term in (2)] vanished. This is not the case here: in fact, the surface term

cancels a portion of the first term in (2), leaving us with

°--iE "W
4=1. '°°

'\2
X ka{([ka j^(ka)]') +  ((ka)^- 4(4 +  l))(j^(ka))3}

= +  +  <s'
4 = 1  ° ' 4 4 ?

where we have performed a Euclidean rotation [8],

to-*ik^, k -*i]k^[, T - i ( x ^ - x ^ ) ,  (6)

and let

X "  j k j a ,  6 =  ( x ^ - x ^ ) / a .  (7)

The Bessel functions of imaginary argument here are - 

s^(x) * ( n x / 2 ) ^ _ ^ ( x ) ,

(x) - (2/-rr)(TTx/2)^^(x). (8)



Expression (5) is  ne a r ly , bu t not q u ite , the same as th a t  found by Bender 

and Hays [10]. Apart from an o v e ra ll s ig n , th e ir  formula has an ex tra  term 

which a r is e s  p re c ise ly  from the neg le c t o f the surface term in  (2 ) .

The r e s u l t  (5) is  ex ac tly  what one would a n t ic ip a te  from the e a r l ie r  

work in  [8] and [9]. The term p ro p o r tio n a l to

is  ju s t  the in s id e  p art o f  the sp h e r ic a l s h e l l  r e s u lt ,  E q .(3 .15 ) o f {8 ), w h ile  

the rem aining term is  ju s t  the corresponding "con tac t te rm ," Eq.(31) o f [9], 

which cance ls fo r a s h e l l .  [ I t  is  the nega tive  of what one would o b ta in  from 

use o f the free  space G reen's fu n c t io n  in  (2 ) .]  What we have here is  s im ply  

the "m irro r image" o f the e x te r io r  r e s u l t  o f [9], E q .(5 1 ). That means we 

can w ith  no labo r ob ta in  a num erical r e s u l t ,  s ince

^ in t e r io r  ** ^ s h e ll " ^ e x te r io r  *

Now is  c u to f f  (6) independent, and has been num erica lly  evaluated

to 4 s ig n i f ic a n t  fig u res  (E q .(5 .21 ) o f [8]):

On the o ther hand, has a term depending on 6; when the f in i t e  p a r t

was ex trac ted  using  un iform  asym ptotic  expansions i t  waa found th a t (c f . Eqs.(55)

Bshell
* 0.04618/a. (10)

-3
and (36) o f [91, bu t here inc luded  are 0 ( (4  + § ) ) terms in  the expansion o f the

cu rly  bracket o f (5) as w e ll)

(11)
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For consistency we should use the same, very good approximation for E g ^ n  ' 

(see Eq.(5.17) of [8));

^shell " 6 4 a  '

(Note that half this value appears as the second term in (11).) The n  the 

zero-point energy of a single, free, vector field confined by a spherical 

cavity of radius a is

^interior "  " ^ 2 ^  128a
Jtra o

Note that the cutoff-dependent term in (13) has the form, but not the sign, 

predicted by Balian and Bloch [11]. (The discrepancy may lie in our "volume" 

energy subtraction, see [8] and [9].)
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The cutoff-dependent term in (13) reflects our continuing ignorance about 

field theory. Renormalization remains a recipe for dealing with difficult 

physics that we do not really understand. However, let us suppose that the 

constant force term (recall 6 = f/ia) involving $ can be absorbed by a suitable 

counterterm (2]. One is left then with

III. Conclusions

We can now make various comments.

(i) The numerical value in (15) is substantially smaller than, and of 

opposite sign to,-Z used in bag model parameterizations. (A typical value there 

is Z=<1.84 [1,2]. However, part of this is a center of mass effect [12], so 

the appropriate number to compare with ours is z ' ^ 1 . )  The force here, like 

for the shell, is repulsive, contrary to one's naive expectations.

(ii) The value here presented is of the eame sign, but 40 percent 

larger than that appropriated by Johnson in his model of the vacuum [5].

This m ay have significant numerical implications for the phenomenological 

applications; however, since his parameter b (representing higher order effects) 

remains uncomputed, no decisive statement can yet be made.

(iii) The presence of the cutoff-dependent term in the zero-point energy 

(after all standard volume energy subtractions have been performed) is a serious 

matter which must be understood, and m ay prove to be quite important. The 

validity of the asymptotic expansion used in obtaining these results might 

also be questioned. In particular, it is disturbing to note that the 0((jt +  ̂ ) "^)

Ren,QED

interior
(14)

The QCD bag value is eight times larger:

0.51

a (13)
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terms appears to introduce a n  additional, logarithmic dependence on 6. [It 

appears fortuitous that the shell result (10) is independent of $.)

(iv) I am presently recomputing the Casimir energy due to massless quarks 

in this model. (The previous calculation is in [10].) The results will 

be presented elsewhere.
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Figure Caption

(a) The geometry of a spherical cavity imbedded in a perfect conductor.

(b) The dual geometry of the bag model.

6 = co
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