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ABSTRACT

The National Urcnium Rescurce Evaluation (NURE) Project has as its goal
estimation of the nation's uranium resources. It is possible to use
discriminant analysis methods on hydrogeochemical data collected in the
NURE Program to aid in formulating gecchemical models thch can be used
to ideatify the anomalous regions necessary for resource estimation.
Discriminant analysis methods have been applied to data from the
Plainview, Texas Quadrangle which has approximately 850 groundwater
samples with more than 40 quantitative measurements per sample.
Discriminant analysis topics involving estimation of misclassification
probabilities, variable selection, and robust discrimination are
applied. A method using generalized distance measures is given which
enables assigning samples to a background population or a mineralized
population whose parameters were estimated from separate studies. Each
topic is related to its relevance in identifying areas of possible

interest to uranium exploration.

Keywords: discriminant analysis, variable selection, uranium favor-

ability, generalized distance measures, regional variables.
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INTRODUCTION

Multivariate statistical methods provide a natural framework for
studying the interrelationships of geochemical parameters considered in
mineral exploration. Typically, samples of some media are collected
over wide geographic areas and analyzed for numerous geochemical para-
meters. The interpretative phase consists of separating typical back-
ground samples from anomalous samples which are possibly associated with
mineralization. The following presentation has as its objective the use
of discriminant analysis methodology to: (1) identify the geochemical
parameters which may be important in formulating regional geochemical
models, (2) wvalidate the geologic origins of the samples, and (3)
identify possibie mineralization related samples based on either the
background population or known mineralized populations. Groundwater
data from the Plainview NTHMS Quadrangle, collected as part of the

National Uraninum Resource Evaluation (NURE) Program, are used for

illustration.

Prior to application of discriminant analysis methods it is important to
consider preprocessing the data. Treatment of censored laboratory data
ar” evaluation of distributional considerations of the variables are
jmportant aspects of preprocessing. Additionally, it is assumed that-
the samples are preliminarily assigned to a geologic unit representing

the geologic origin of the sample. This assignment will be assessed by

discriminant analysis as part of the preprocessing.
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DESCRIPTION OF STUDY AREA

The Plainview NTMS Quadrangle in Texas was selected from the NURE
program because it "had both published® hydrogeochemical data and a
published evaluation of potential uranium mineralization using geologic,
radiometric, drilling, and hydrogeochemical data (Amaral, 1979). The
Plainview Quadrangle is an area of approximately 20,350 km® (7,860 mi?)
located in the Great Plains Province between lat. 34° and 35° N and
long. 100° and 102° W. It is divided into Rolling Plains to the east
and the Llano Estacado of the southern High Plains to the west by the

generally. north-south trending Caprock Escarpment.

Although the subsidence of the Palo Duro Basin exerted an influence on
depositional systems throughout the end of the Permian, units exposed at
the surface are re]ativé]y flat 1lying, creating a relatijvely simple
geology. The San Andres (Blaine) Formation (coded as PGEB), Whitehorse
Group (coded as PGWC), and Quartermaster Group (ccded as POQ) dip
generally 25 ft/mi to the west. The Dockum Group and Ogallala Formation
(coded as TPO) overlie the Permian section at an uncomformable surface
and dip generally to the southeast at approximately 10 ft/mi;'These are
relatively shallow dips and.the lack of major faulting resuit in rela-
tively predictable geology in the subsurface with the surficial outcrop
pattern complicated by the relatively deep erosion in the Palo Duro

Canyon along with the Caprock Escarpment.
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The wuniform dips of the bedrock units result in relatively simple
groundwater flow patterns for those aquifers that are penetrated by
dom2stic water wells. The water table surface in the Permian section
east of the Caprock Escarpment follows the general topographic slope.
West of the Caprock Escarpment, groundwater in the Permian units may
flow along regional dip which is approximately 25 ff/mi to the west.
Groundwater flow in the Dockum Group appears to be to the southeast with
a regional dip of the water table of approximately 10 ft/mi. The
Dgallala formation is the major aquifer in the western half of thg
quadranale and groundwater flow appears to be relatively consistent with
a regional dip of the water table to the southeast at approximately 10
ft/mi. It is recognized that although regional topography and dip are
relatively consistent, there may be many variations in groundwater flow
diregtion resulting from changes in permeability, local structures; and

oversumping of the aquifer.

DESCRIPTION OF DATA AND PREPROCESSING

Well and spring water samples were collected by field personnel and
shipped to Oak Ridge, Tennessee, where chemical analyses consisting of
about 40 measurements were performed. A field form with approximately
30 items of information was completed for each sample in the field. The
information on the form includes the assignment of a geologic producing
horizon of the groundwater, and the measurement of the total alkalinity,

pH, and conductivity (converted to specific conductance) of the water.
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Chemical analysis procedures included fluorometry for uranium, atomic
absorption for arsenic, spectrophotometry for sulfate, and plasma source
emission spectrometery for barium, boron, calcium, Tithium, magnesium,
molybdenum, sodium, vanadium, and zinc. Complete details of field and
laboratory procedures are described by Arendt (1978) and appear in the
"Reports Procedures Manual for Groundwater Reconnaissance Sampling"
(Uranium Resource Evaluation Project, 1978). Basic data analyses and
displays of both the groundwater and stream sediment data appear in the
report "Hydrogeochemical and Stream Sediment Reconnaissance Basic Data
for Plainview NTMS Quadrangle, Texas" (Uranium Resource £Evaluation
Project, August 1978). (A computer tape of all data can be obtained
from Dalton Atkins, GJOIS Project, UCC-ND Computer Appiications Dept.,
4500N Building, ORNL P. 0. Box X, Oak Ridge, Tennessee 37830.)

Since the discriminant analysis methods to. be used in subseguent
analyses require noncensored (above the laboratory detection 1imit) data
whose distribution may be reasonably approximated by a multivariate
normal, the preprocessing portion of the data analysis is an initial
screening method to reduce the number of variables under consideration
and to evaluate the statistical distribution of the selected variables.
The following steps are involved: (1) check and note the samples within
each geologic unit for missing data; (2) plot histogram and probability
plots (these plots may be used as an initial screen for obvious non-
normality); (3) determine the proportion of noncensored data; (4) test
for normality for each of those variables that are not affected by

missing data or a large proportion of censored observations.
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An examination of the data for the original set of observed variables
for each of the five geologic units of interest revealed that problems
of missing data or censored observations were non-existent or minimal
for the 12 variables: uranium, boron, barium, calcium, 1ithium,
magnesium, sodium, zinc, sulfate (S04), specific conductance (SP), total
alkalinity (TAK), and pH. These were the variables used in the distri-

v

bution evaluation portion of the preprocessing.

Summary statistics for the 12 variables, as well as three additional
uranium-related variables (arsenic, vanadium, and molybdenum) to be used
Tater, were examined for each geologic unit. Robust measures, such as
the median, were examined to evaluate the influence of any censored
data. After the deletion of observations with missing values, the
sample sizes for the different geclogic groups were: 345 for TPO, 118
for PGEB, 267 for PGWC, and 73 for POQ. Groundwater samples from the

Dockum Group were not considered because of the small sample size (16).

Figure 1 is a histrogram of the calcium variable of the Quartermaster
(POQ) Group. An examination of this figure reveals an apparent bimodal
distribution. The observations associated with each mode were clustered
together in distinct geographic regions. Therefore, the POQ samples
were partitioned into two separate subgroups, denoted by POQE (39

samples) and POQW (34 samples) for subsequent analyses.

The next phase of the data preprocessing was to determine if the distri-

bution of the observed variables could be reasonably approximated by the
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normal or lognormal distribution. A combination of different techniques
was used to evaluate the adequacy of the log-transformation: proba-
bility plots (Sinclair, 1976), histrograms, sample skewness and kurtosis
measures (Snedecor and Cochran, 1967), Shapiro-Wilk test statistics
(Shapiro and Wilk, 1965), and a modified version of the Kolmogorov-
Smirnov D-statistic (Stephens, 1974). The tests of normality for ail
five geologic groups indicated that the legarithmic transformation was
appropriate to achieve marginal normality for each of the observed
variables, except calcium, within each of the groups. The pH variable
was not transformed since it already represents the log of a concen-
tration and was approximately normally distributed. Therefore, in all
subsequent analyses all variables, except calcium and pH, were trans-

formed using the log transformation.

DISCRIMINANT ANALYSIS

Discriminant analysis provides a criterion for classifying a collection
of observation vectors into one of a specified number of groups {Agter-
berg, 1974). In this section we want to determine whether or not a
subset of the observed variables could be used to adegu:ately discri-
minate between the five geologic groups (TPO, PGWC, PGEB, POQE, and
POQW). The chemical concentrations of individual samples will be used
to determine if the prior assignment of samples to one of the 5 groups

is tenable. Additionally, the chemical parameters which most accentuate
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the differences in the five units will be determined, enabling formula-
tion of possible geochemical models to characterize the regional geo-

chemistry.

The discriminant scores used to cjassify an observation vector are known
linear (equal population covariances) or quadratic (unequal population
covariances) functions of the observed variables if the observation
vectors follow a multivariate normal distribution. The observation
vectors from each geologic unit were used to estimate the mean vector
and covariance matrix of the assumed multivariate norma} distribution.
The estimated 1linear or guadratic discriminant score was used to
classify each cbservation depending upon the results of a test of the

homogeneity of the within-group covariance matrices (Kendall and Stuart,

1961).

Different methods are available for reducing the number of variables
used in discriminant analysis and are similar to the variable selection
procedures of regression analysis. Criteria based upon a measure of the
differences between groups or upon minimizing the probability of mis-
classification are intuitively appealing and relatively easy to apply.
The Wilks A-statistic (Rao, 1965) defined as the ratio of the determi-
nant of the within sum of cross product matrix (W) to the total sum of
cross products matrix (T)is a common measure used to evaluate dif-

ferences between groups. The estimated probability of misclassification
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js the measure used to evaluate the performance of the discriminant

function and is estimated by

Uy
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where P is the probability an observation vector comes from group i
(for this example ty = ... = ng = 1/5) and Pr (jli) is the observed pro-
portion of vectors known Lo come from group 1 that are incorrectly
classified in group j by the sample discriminant function. Variations

in the procedures arise when equal covariance matrices are not assumed

for all groups. The applied procedures are described as follows:

1. . DISCRIM (McCabe, 1975) is a procedure which chooses the subset of
variables based on the minimum value of the Wilks A-statistic,
A= iw’/}Ti,-where lAj is the determinant of the matrix A. This
selection procedure assumes equal covariance matrices for the

different geological groups.

2. BMDP7M (Dixon and Brown, 1977) is a stepwise discriminant analysis
procedure which uses the F-statistic as a default to select the

best subset of variables. This procedure also assumes equal

covariance matrices.

3. Modified DISCRIM (McCabe, 1979) is a procedure which allows for
unequal covariance matrices and makes use of the modified Wilks A

statistic nig, Iwi,/ITil where ]wil and ITi, are the determinants
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of the individual within and total sums of cross products matrices

for each group.

Forward selection procedure first considers each variable sepa-
rately, tests for equality of the covariance matrices over the.
different groups, calculates the discriminant function, and esti-
mates the probability of misclassification by reclassifying the
original data wusing the estimated discriminant function. The
variable with the smallest overall probability of misclassification
is chosen as the best single discriminatory variable. The remain-
ing variables are individually considered with the best single
variable and the ahove process is repeated to produce the best pair
of discriminating variables in terms of the estimated probability
of misclassification. The above process is repeated until all of
the variables are included in the discriminant function. This
procedure has the property that once a variable has been included
in the discrimant function it will always be inciuded in subsequent

stages.

Backward selection procedure is similar to the forward selection
procedure except that it starts with the complete set cf variables
and drops each variable separately at the first stage. The smal-
lest estimated probability of miscalssification determines the
first variable to be deleted. The procedure is repeated with the
reduced set of variablies to determine the second variable to be

deleted. Once a variable is deleted it is excluded from further
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consideration. The SAS procedure DISCRIM (Rarr, et al, 1976) was
used to do the necessary calculations for the forward and backward

selection procedures.

Figure 2 summarizes the results of these preliminary analyses and
displays the estimated criteria values as a function of the number of
variables in the model. An examination of this Figure indicates that
there is more than one feasible subset of variables based upon the Wilks
A, the 4ﬁodified Wilks A statistic, or the estimated probability of
misclassification, Figure 2(a) is a plot of the estimated probabiiity
of misclassification for the different variable selection procedures
considered. Figure 2(b) is a plot of Wilks A and modified Wilks A from
DISCRIM. The major reduction in these criteria occurs as the number of
variables in the model increases from 1 to 3. A plot of the change in
the ‘estimated probability of misclassification going from a p to p +1
(p =1, 2,..., 11) variable model is shown in Figure 3 for the modified
DISCRIM procedure. Small values of this change would indicate possible
stopping points for the number of variables to be included in the model.
Low values of the change in misclassification probability for p of 4, 7,
and 10 correspond to three possible candidate models. An examination in
this same figure of the corresponding changes in the modified Wilks A
statistic shows the major reduction in this statistic occurs at p = 7.
Therefore, the seven variable model seems appropriate since both the
probability of misclassification and the group separation show only
small changes for p > 7. The seven variables included in this model

are: 1n(U), 1In{SP), 1In(B), CA, 1In(LI), In(MG), and In(SO,); these
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Figure 2
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Figure 3
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variables will be denoted as the regional variables. Using the standard
default options the BMDP stepwise procedure selected a ten variable
model as its final choice. However, this procedure did not allow for
unequal covariance matrices and resulted in an estimated probability of

misclassification greater than that for the seven variable model using

the modified DISCRIM procedure.

For most -reconnaissance geochemical data, the differences in geology
will cause varying means and covariances between the geoiogic popu-
lations. The different covariance matrices, as observed in the
Plainview data, necessitate use of variable selection procedures based
on guadratic discrimination. Therefore, the modified DISCRIM, forward,
or backward procedures were found to have an advantage over the

unmodified DISCRIM or stepwise BMDP7M procedures which assume equal

covariance matrices. .

It is possible that additional geologic considerations might motivate
the choice of a different set of variables. Table 1 displays some of
the alternative model choices for the different variable selection
criteria. Many of these alternative sets of variables have values of
the optimization criteria that differ only slightly from the minimum
value. When the geochemistry of the region is considered, one of the
alterpative seven variable sets may provide a more parsimonions model
for the data. Selection of a set of variables from Table 1 based on a

geochemical model, would probably improve the analyses in the next

section.



Table 1
ALTERNATIVE MODELS FROM DIFFERENT VARIABLE SELECTION METHODS

E]ements(a) Function(b)
METHOD U SP B BA CA LI MG NA 504 TAK IN PH Value
DISCRIM X X X X X X X 5.40
X X X X X X X 5.43
X X X X X X X 5.52
¥ X X X X X X 5.53
X X X ) X X X 5.54
X X X X X X X 5.61
Modified
DISCRIM X X X X X X X 1.09
b X X X X X X 1.33
X X X X X X X 1.35
X X X X X X X 1.490
X X X X X X X 1.40
X X X X X X X 1.40
Forward X X A X X X X 0.232
X X X X X X X 0.235
X X X X X X X 0.236
X X X X X X X 0.246
X X X %X X X X D.255
X X X X X x X 0.258
Backward X X X X X X X 0.204
X X X X X X X 0.228
X X X X X X X 0.245
X X X X X X X 0.245
X X X X X X X 0.248
X X X X X X X 0.249

(a)All observed element values have been transformed, except CA and PH.

(b)Functign values are Wilks A(x 10 2) for DISCRIM, modified Wilks
A{x 10 8) for modified DISCRIM, and estimated probability of mis-
classification for forward and backward selection procedures.
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Let X and Y be p-dimensional column vectors then
D2 (XY, €) = (X- VT (X~

is a general functional form of the squared multidimensional distance
from X to Y where € is a p x p positive definite matrix so the D2 > 0.
If X =y and Y = py, where p's are the mean vector from y-dimensional
multivariate normal distributions with C equal to the common covariance
matrix =, then D? (Hl; u2 2) is the Mahalanobis distance (Rao, 1965).
The D2 distance from group i to group j may be estimated by the sample

value Dz(gi, gj, S) for the case when the covariance matrices are
assumed to be equal, where gi(gj) is the sample mean vector for group i
(i, and S is the pooled sample covariance matrix from all groups. When
it is not reasonable to assume eguality of the group covariance
matrices, the D? distance from group j to group i, is estimated by
Dz(gj, gi, S{)-where Si is the estimétéd covariance matrix from the

observation vectors of group i.

Table 2 shows values of the generalized squared multidimensional
distance matrix for three different seven-variable models. The D2
distance between the different groups indicates a reasonable separation
between TPO, POQW, and the remaining groups PGEB, PGWC, and POQE. Since
the generalized squared distance was used in classifying the observa-
tions to the different geologic groups, it is not surprising that the
éstimated misclassification probabilities also revealed an overlapping
of the three Permian units PGEB, PGWC, and POQE. This overlap suggest

that the available geochemical data cannot distinguish samples in these



Table 2

GENERALIZED SQUARED DISTANCES FOR THREE
DIFFERENT SEVEN-VARIABLE MODELS

(A) Best seven-variable model from DISCRIM [D2 (Ei; Sj’ )]

FROM/T0 , TPO POQW POQE PGEB PGWC
TPD 0 14 42 - 41 40
PoQwW 14 0 14 16 14
POQE 42 14 0 3.4 0.85
PGEB 41 16 3.4 0 4.8
PGWC 40 14 0.85 4.8 0

(B) Best . .en-variable model from modified DISCRIM [D? (X.; gj, 521

FROM/10 1P0 POQW POQE PGEB PGWC
TPO 0 16 730 95 47
POQW 12 0 180 19 1
POQE 270 9% 0 2.9 3.6
PGEB 340 160 1.9 0 3.0
PGWC 240 86 0.87 0.17 0

(C) Best seven-variable model from backward procedure [D2 (gi; Sj’ Sj)]

FROM/TO TPO POQW POQE PGEB PGWC
TPO 0 13 81 57 35

POQW 17 0 33 11 9.5
POQE : - 81 21 0 1.2 1.3
PGEB 63 23 2.6 g 4.6

PGWC 78 23 1.6 ’ 3.3 0
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3 groups; combipation of the groups simplifies the analysis and
increases the samples sizes which improve estimation. This could be
evidence for possibly considering these groups as a single population
rather than three different populations. In fact, the overall estimated
probability of misclassification when these three groups were combined
was reduced from 24 to 6% using the seven regional variables. Hence we
may conclude that the discriminant function using a reduced set of the
original varijables 1is appropriate for separating the three or five

different geologic populations.

A prerequisite for the use of the previous discriminant analysis pro-
cedures is the preliminary assignment of samples to the five geologic
unit groups. This assignment of samples can be verified by standard
discriminant analysis methods. Considering only samples near. the
geologic contacts, three samples were reassigned (12131, 11896 from PGWC
to TPO; 11886 from TPO to PGWC) in the Plainview data. These reclassi-
fications will, of course, have negligible influence on the Plainview
analyses. However, field classification of the geologic origin is often
unavailable or more complex geology could increase the misclassification

of samples.

A primary concern in any statistical analysis is the robustness, i.e.
sensitivity to the underlying statistical assumptions, of the procedures
that are employed. To evaluate the robustness of the linear and quad-

ratic discrimination procudures used, the robust discriminant analysis
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methods described by Randles, et al, (1978a, b) were used on six pair-
wise discrimination problems from the five geologic groups using the
seven regional variablas. The 15 various possible versions of the
robust discriminant analysis methods did not appreciably improve upon
the standard linear and quadratic discrimination methods. The two
standard methods only differed by a few misrlassified samples from the

best robust method, which typically made use of the Huber (1977) esti-

mate of the covariance matrix.

INTERPOPULATION DISTANCE MEASURES

The distribution of DZ(X; g, Z) is xg (Anderson, 1958, Theorem 3.3.3) if
g and X are known. It will be assumed that the large sample sizes
enable the sample estimate 2 (of ) and‘S {ot 3) to be ﬁonsidered as the
known quantities p and Z. The presence of unusual geochemical samples
will be determined by examining the fit of D2(X; g, $) to a y®-distri-
bution. Standard Q-Q plots (Gnanadesikan, 1977, pp 198-199) are used to
evaluate the distributional fit and determine the D2 threshold for
unusual values. If the plotted values are on a line of slope one, only
a single population is present. However, if more than a single line
appears, several geochemical populations may be present. Alternatively,
nonlinearity in the Q-Q plot could represent nonnormality of X or poor
estimates of p and 5. Samples with values of D2 above the threshold
will be geographically plotted. Geochemical subpopulations will be

fdentified by a contiguous group of samples with unusual D2 values.
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Figure 4 shows four points which are equal distance from the mean (iu,
iAs)’ for uranium and arsenic. In fact, any point on the ellipse has
the same D2 value. However, the simple Euclidean distance between the
four points is quite variable. Figure 4 illustrates how the positive
correlation bhetween U and As would alter what might be considered an
unusual sample. In general, because of the geochemical interrela-
tionships in nature, it is meaningful to use the intervariable corre-
-latiens to weight the observed deviations from the mean in defining
anomalous samples. Unusual samples defined by this procedure in some
cases may be relevant to uranium mineralization. However, it is impor-
tant to note that samples with very low or moderate uranium values may
have unusually high D2 values (Figure 4). While these samples may be
meaningful in detailed analyses, attention is primarily restricted here
to samples with uranium values above the median.

I. REGIONAL SUBPOPULATIONS

The selection of the seven regional variables that enable discrimination
in the Ogallala formation and Permian wunits suggests that these
variables in some way characterize the regional geochemistry. Figure 5
(a) and (c) show the Q-Q plot for DZ(x.; X, §) in the Ogallala and
modified Permian units. The main body of the graph (D2 < 12) in Figure
5(a) is reasonably linear, suggesting the expected x2 distributional fit
is appropriate. However, 48 samples (14%) have values of D2 above the
threshold (D2 > 12), suggesting some lack-of-fit in the tail of the

chi-square distribution. Similarly, in Figure 5(c) 71 samples (16%) in
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the modified Permian Units have values of D2 above the threshold (D2 >

12), showing a similar lack-of-fit.

The lack-of-fit in the regional variables may be due to outlying samples
causing poor estimates of ¢ and Z. Figure 5(b) shows that using a Huber
(1977) robust estimator for u and X does improve the fit somewhat for
the low 02 values, but accentuates the Jack of fit for the large D2
values. Figure 5(d) shows the same general characteristic for the
modified Permian samples. A possible interpretation of the accentuation
of the nonlinearity is that the robust estimates minimize the influence
of atypical samples in the estimates of p and X, and this makes the

atypical samples have even more unusual D% values.

Figure & is a geographic plot of the samples having D% > 12 in the
Dgallala Formation. Two areas I-A and I-B standout as being somewhat
contiguous regions with unusual D? values. Region I-A is an area with
very low concentrations in many elements. Region I-B consists of only
seven samples, but these samples are very unusual in that the D2 values
are extremely large. Both regions were identified using an alternate
set of variables (specific conductance, B, Ba, Li, Mg, Na, and total
alkalinity)} selected by another discriminant analysis variable selection
method. Large subpopulations may influence estimates of the main popu-
lation parameters that are used in the remaining analyses. Thus,
samples in'region I-A were deleted from the remaining Ogalalla analyses;

the remaining geographic area is called the modified Ogallala.
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Figure 7 is a geographic plot of samples having D2 > 12 in the modified
Permian units. No Tlarge contiguous group of samples 1is apparent.
Although several small unusual groups appear in the lower part of Figure

7. Also, many unusual samples appear along the Whitehorse Group, Blaine

Formation contact.
II. A TYPICAL URANIUM SUBPOPULATIGNS

Consider the wuranium related pathfinder variables U, As, Mo, and V as
characterizing sandstone uranium mineralization geochemistry. Hypothe-
tically, if there are areas having potential interest for uranium
exploration within a geographic area, there will be at least two uranium
populations (and two lines on the Q-Q plot). One population having the
smaller D2 values would represent the uranium geochemistry of the back-
ground population. A second subpopulation  with larger D? values
represents uranium-related values differing from the background popu-

lation; these samples may be of interest in exploration.

It is necessary to estimate the elements of X using the pairwise non-
censored data for the uranium-related variables since there is a large
amount of censoring due to the very low concentrations. One-half the
laboratory detection limit is used for censored values in order to

compute D? values. Both of these procedures may cause non-xZ variation

to be exhibited in the Q-Q plot.
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Figure 8(a) shows the Q-Q plot for the Ogallala Formation. The x2-
distribution sppears to fit well for 0 < D2 < 5, but at D2 of abput 5
there appears to be a break in the plot. The frequencies in Figure 8(b)
also exhibit a separate population of large D% values. Figure 9°'is a
geographic plot where the samples with D2 > 5 are noted. An "H"
indicates high wuranium samples (>80-th percentile), an "E" indicates
elevated uranium samples (50 to 80-th percentile), a small "o" indicates
moderate to low uranium. For the H and E samples the D% value is
displayed to the right of the plotted letter. Three contiguous regions
of unusual samples are indicated (II, A, B, C) the discussion of each

region follows the method III analyses.

The Q-Q frequency plots in Figures 8(c) and (d) show that the modified
Permian units exhibit unusual uranium geochemistry in that three popu-
lations appear to be present. Figure 10 displays sampies where D2 > 15
which is the most extreme of the three populations. The "M" indicétes
moderate uranium samples {20 to 50-th percentile) and an "L" indicates
low uranium samples (<20-th percentile). Two three sample areas having
Tow uranium are indicated (IID, E). In Figure 10, a third area (IIF)
having high uranium is indicated and was determined by plots of the

second population with 5 < D? < 15. Discussion of these regions follows

the method III analysis.
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Figure 10
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III. A PRIORI URANIUM POPULATIONS

In most exploration applications, it is of interest to analyze unknown
areas by making an analogy to known areas of mineralization. Analysis
by analogy is a common geologic tool, but it is often subjective in
nature. It would be desirable to use the interelement relationships in
2 from a known mineralized region and attempt to identify samples in the
unknown area that exhibit the same geochemical patterns. However, an

unknown area could be expected to have both different concentration
levels and variability in the parameters of interest. These differences
could be due to variation in the strength of the geochemical signal
which could depend upon the depth and size of the deposit in additi .- to
groundwater flow patterns. 0Only the interelement relationships in an
unknown area would hopefully remain similar to those in the known area.
Using generalized di;tance measures, an approach satisfing the above

criteria is given below and illustrated on the Plainview data.

Let ZA and 2 denote the covariance matrices for the anomalous and back-
ground populations. The estimate of the background covariance matrix is
EB = SB where SB = ( sij ), the sample covariance matrix of the back-
ground population. Now assume that the sample interelement correlation
matrix, RA‘ is available from a known anomalous area (or RA could be
from a hypothesized geochemical model).  Seperate geochemical studies in
known mineralized areas could be used to estimate RA' fo adapt RA to
the unknown area, let EA = QRAQ where Q = diagonal ( Sij~% ). Thus, EA

reflects the interelement correlations of the anomalous regien and the
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expected variation in the background region. The matrix ZA is our a
priori estimate of anomalous covariances in the background region.
It is possible to use = , = , and p where p = X , the sample mean in

the background region, to identify samples that have covariance patterns

more similar to ZA than ZB. Consider the difference

~ - ~ ~ ~ ~ ~

G2 (X; Kg» ZB’ ZA) = D2(X; Mg ZB) - D2(X; Mg ZA)

for an arbitrary sample X. If the distance from x to EB’ weighted by
%El is greater than the distance from X to EB’ weighted by 2;1, then X
is more 1likely to be from the anomalous population. Figure 11 illu-
strates an example where the U, As correlation is 0.2 in the background
population and 0.6 in the anomalous population. The shaded area repre-
sents vaJues of U and As which would yield G2 > 0. Notice that <n
Figure li there is a largé overlap of the two populations since the
correlations are somewhat similar. The overlap will be reduced if the

correlations are quite different or more variables having different

correlations in the two populations are used.

As an approximation to the sandsébne uranium correlations that may be
appropriate for the Plainview data, the sample correlations for samples
having uranium values above the median were computed from data in the
South Texas mineralized belt in the Fleming, Catahoula, and Jackson
Groups from lat. 28°-29° N., long. 97°30' to 98°30' W. The 84 samples
result in the correlations in Table 3(c); Table 3(a), and Table 3(b) are
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Figure 11



SAMPLE

TABLE 3

CORRELATIONS FOR URANIUM-RELATED VARIABLES

{a) Modified Ogallola

N As_ _Mo_ v
u 1.0
As .3 1.0
Mo 0 0 1.0
v .2 .6 .2 1.0
(b) Modified Permian
U As Mo v
] 1.0
As -.1 1.0
Mo -.1 -.2 1.0
v .1 .1 .5 1.0
{c) South Texas Anomalous Region
Ay As Mo a
U 1.0
As .2 1.0
Mo .5 .1 1.0
v .3 5 6 1.0
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the correlations in modified Ogallala and modified Permian Ynits in the
Plainview Quadrangle. There are obvious differences in the correlation

structures of the three regions.

Figure 12(a) and (b) shows the empirical probability and frequency
distribution of the G2 values in the modified Ogallala. It is apparent
that, as expected, the preponderance of sample have G2 < 0, i.e. the fit
for most samples to the modified Ogallala background population is
preferable to the anomalous population. A geographic plot of the sample
having G2 > 0 appears in Figure 13 which is coded in a similar manner to
Figure 9. The three contiguous regions (IIIA, B, C) indicated on the

plot are discussed in the next section.

The distribution of the G2 values for the modified Permian appear in
Figure 8(c) and {d). Samples having G® > 1 are geographically plotted
in Figure 14 which is coded in a similar manner to Figure 10. The

contiguous region IIID as well as other regions are discussed in the

next section.

INTERPRETATION OF RESULTS

A contiguous group of samples obtained in the method .II or III analysis
must be evaluated with respect to the actual concentration values and
percentiles of the samples. Recall from Figure 4 that extreme D? may be

obtained from any concentration level of uranium. Also, from Figure 11
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Figure 13
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Figure 14
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the shaded area where G2 > 0 encompasses a region within the central
portion of the background population. Additionally, extreme D2 or G2
values may result from samples having censored values which were assumed
one-half the censoring point. Only when a group of contiguous samples
display patterns of geochemical significance should areas pe considered
of interest. Table 4 gives the concentrations (ppb) of the pathfinder
element for the areas identified by methods II and III. Specific con-
ductance (upmhos/cm) is also given to evaluate the importance of dis~
solved solids. Region IIIC is a good example of an area that appears to
be of Tlittle interest. While the percentiles of V, Mo, and As generally
correspond fwhich matches the elevated correlations in Table 3(c)] the

pattern of concentrations is neither consistently high or Tow.

Figure 15 indicated regions II A-F and III A-D. Region IIA has elevated
vaiues in the pathfinder elements an& s supported by Region I1IIA. The
two areas exhibit very high D? and G2 values. Region IIB is south of
IIA and IIIA and also exhibits elevated D? values, but the concentration
pattern is somewhat less favorable than IIA. The above three areas may
result from leakage from the Dockum Formation into the DOgallala in Area
B (Figure 15) which was found to be favorable for uranium by Amaral
(1979). © Southeast of the three above regions is the IIC and IIIC
region. MNotice that IIIC encompasses IIC. The D? values are slightly
lower than IIA and IIB, but are elevated. Additionally, the pathfinder
concentrations in Table 4 are elevated. The above regions (IIA, B, C;
II1IA, C) are encompassed within the large area identified (Amaral, 1979)
as anomalous by factor analysis. The southern most area identified as

anomalous by factor analysis was not found atypical in these analyses.



Table 4

CONCENTRATION LEVELS AND POPULATIGN PERCENTILES FOR
SAMPLES HAVING ATYPICAL URANIUM GEOCHEMISTRY

Observed Value Percentile
Area Sample .
Designation No. p? u As Mo v Sp p? v As Mo
11A N, 12 . 7.0 a4 19 840 36 95 85 95
miz@ 9 gl o 23 73 109 g5 95 .95 .05
Mize 10 5.7 5.8 a4 12 g 50 & 80 <10
28, « 17 3. 6.0 19 50 86D 95 »95 80 95
sl 21 8.6 3.2 59 & 920 95 80 25 »35
18 9362 n 7.5 8. 4 2 1000 9% 50 9  <i0
9364 15 10, 1s. w4 20 970 30 85 35 <10
weool® 7 sl 9 21 a6 740 75 »95 95 »35
10902 28 20, 7.9 7 270 650 595 .05 90 20
15} 13 7.0 2.8 & 86D 9% 50 15 95
e 11159(33 8 19, 5.6 N 54 850 80 »95 75 85
llslsf°) g 13 5.9 28 32 100 80 >95 80  >35
neisfal g 33 ad 22 37 1000 0 B85 45 295
11620 8 11, s, 20 40 820 80 95 95 95
119 nms 23 2.4 <5 <4 <4 1900 >95 5 <20 <20
nrs 2% 1.8 <5 <4 <4 1500 >95 5 <20 <20
1785 22 2.8 <5 4 <4 2000 >95 5 <2 <20
11E Ns69 42 <2 <5 6 12 6000 595 <5 <20 35
1705 23 7 22 >4 5209 >95 5 25 90
1737 2 35 <5 31 37 7300 >95 5 <20 »95
11F 11738 9.2 22 -5 10 6 3700 55 90 <20 65
14 12 a0 <5 27 2 670D 80 »95 <z 95
11743 9.2 19 <5 2z M 5000 , 55 ., 85 <20 g0
1A 11109 1.7 N. 7.5 1 54 850 0 9 9 95
nnz 01 7.7 6.5 14 a4 930 8 65 8 95
M3y 18 120 4 14 3% 870 9% 95 5 95
114 2.3 1z, 1. 23 73 1040 595 95 95  >95
M2y, 0.9 95 30 1m 16 1200 90 8 25 ' 75
11156 2.3 8.6 3.2 59 64 920 >95 80 25  »95
1118 10751 1.3 2.9 1.5 5 10 700 5 8 5 15
1577 2.9 4. 1.4 7 14 770 >85 295 5 35
11585 a0 17, 2.2 13 1N 9o 595 »05 15 85
11586 0.2 0. 5.7 10 19 780 8 8 75 70
11589 04 7.1 2.3 7 19 840 8 60 15 35
11592 0.0 M. 4.8 9 2 750 85 90 60 65
11593 0.6 9.6 7.2 14 39 770 - 9 8 9 90
1Ig 10766, 0.5 2. 1.7 12 24 750 9 95 95 8BS
msoll 01 190 55 N s 850 8 »05. 75 85
nelse) 0@ 13 59 28 32 100 9 »35 B0 95
nelgipl 15 93 4n 22 37 1000 »05 85 45 05
11620 0.3 M. 4, 20 40 820 85 95 »95 85
1621 0.7 14, 5.7 22 49 900 9 -9 75 85
11633 222 1. 3.8 % 30 680 595 95 40 95

(2) Sample fs found similar ta uranium-related population from Method II1 analysis.

{b) Sampie is found to atypical from Method II analysis.
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The interpretation of the three possible uranium-related populations
exhibited in Figure 8(c) and (d) is unclear. When each group is plotted
there does not appear to be an overall spacial relationship separating
the three populations. However, several unusual characteristics appear
from the analyses. Region IID has extremely depressed concentrations of
the pathfinder elements. Region IIE ,exhibits elevated Mo and V where
IIF has elevated U, Mo and V (Table 4). These abrupt changes in
uranium-related elements over a small geographic avea may be of
interest. It should also be noted that a 10 sample selenium anomaly
encompass part of Regions IIE and-f, and extends to the south. In
contrast to the modified Ogallala method III analysis, the unusual G2
samples include very few high uranium samples (Figure 14). Many of the
samples with G2 > 0 have censored data, including those in ILID. The

censored values tend to artifically inflate the G values.

-

CONCLUSIONS

The methodology suggested here may prove useful in exploration for (a)
in identifying regionalized variables that distinguish between the
geologic units in a region, (b) assigning samples of unknown origin to a
.geologic unit or verifying preliminary assignments, (c) identifying
}egions of unusual geochemistry for pathfinder elements, and (d) assé—
ciating samples with either mineralization models or background popu-
lations. The analysis of the Plainview data suggests the fellowing

steps for accomplishing the above:
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Perform adequate preprocessing of the data to ensure reasonably
distinct geologic populations and approximate normality of the

variables.

Compute the Mahalanobis distance between all populations and
combine those that are close as judged by small distances (large

theoretical misclassification probabilities).

Use appropriate variable selection methods (e.g., McCabe, 1975) to
identify the variable sets that are candidates for- the regional
variables; select the regional variables from the candidate subsets

based on the geochemistry of the region.

Identify regional subpopulations for separate analysis from samples

having extreme D2 values for the regional variables.

Similarly, identify unusual regions, possibly important to explor-
ation, from samples having extreme D2 values for the mineralization

pathfinder elements.

Identify contiguous groups of samples that are associated with

known mineralized populations rather than the background population

(i.e., G2 > 0).

Evaluate concentration patterns of the pathfinder elements used in
(5) and (6) to determine which areas may be of interest to explor-

ation.
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Application of the above methodology to the Plainview Quadrangle ground-
water data indicated areas that were consistent with previous analyses

and other new areas of unusual uranium geochemistry.
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Table A-9

. SUMMARY FROM TESTS OF NORMALITY
U sp 8 3a Ca Na S0, TAK In pH As Mo v

n(a) 345 345 345 345 345 345 15(7) 345 365{14) 385 35(1)  245(51) 345(23)
Skewness () 2.649 3,383 7.394  2.882  11.204 3.902  15.316  0.063 4 -2.356 1,087  3.948 7,977

1.738 0.271 ~0.606 0.300 -2.079 ~0.026 0.444 2,872 0.008 =0,888 -0.207 -0.82"

T80 Yurtosis(b) 17.255 30.498 88.113 14.028 171.593 21.768 261.997 7.77% 26,550  26.57% 5.196 28.840 108.275
7.815. 5.608 5.840 4,095 21.097 5.44 11.445 6.047 5,486 25,491 2.394 4,755 3.083 3,841

Test for 2,292 2.417 3.840 3.780 4.599 3.932 1.605 4£.016 6.822 1.437 5,448 2.235 1.348 3.091 3.2¢7
Hormality(b,€) 3,157  1.547  3.005  1.466 3.067 2,756 3.63C  1.584  0.830  2.065 .M 1,297 2,088 2.470

n 118{1) 118 18 118 N8 118 ns 118 118 e 3h8{3) 118 118(64) 118{18) 118(32)
Skewness 2.943 0.912 3.286 5.695 ~1.038 2.563 1.869 4,741  -0,348 1.012 3.050  ~0.458 2.272 1.365 2.600
~1.058 «1.014 -0.280 1.737 -2.512 ~0,552  ~0.802 0.233  -3.147 -0.78 0.36Y 0.873  -0.483 Q.113

PGEZ  Kurtosis 16.183 4.960 18.367 41.954 5.320 13.655 8.377  29.306 4,249 5,825 2.654 5,726 8.565 5.721 7.936
5,089 5.492 3.258 8.787 9.415 4,005 5.334 3148 16.231 5,250 2,513 2.59% 2.337 1.656

Test for 2. 111 1.450 2.276 3,577 2.21 1.248 1.488 3.107 1.79 1.172 3.4%2 1.530 2.9N 1.461 2.308
Normality 1.453 1.388 0.607 2.062 3.320 0.912 1.205 0.458 3.233 1.09% 1.653 3,659 1.¢73 1.613

n 267(1) 267 267 267({4) 267 wmuﬁuv 267 267 267 257 28745 267 267(37) 267(89) 267(64)
Skewness 4,282 1.870 4.817 7.897 -0.350 2,557 2.098 3.125 -0.21% 0.934 3.892  -0.803 1.359 2.960 4,183
-0.592 -0.809 -0.001 1.437 ~4.054 ' -0.644 -Z.074 0.398 -2.660 -0.080 0.018 -0.501 0.178 -0.074

PGHC  Kurtosis 28.540 i1.654 36.792 71.798 3.815 10.768 8.977 13.405 3.637 3.312  20.463 4.624 5.116 18.628 33.558
5.419 5.640 4,650 10,250 30.374 9.590 15.707 3.093 10.745 2.264 2.697 2.533 2.044 2.103

Test for 3.058 2.697 4.205 5.887 3.196 . 3.367 2.891 4,267 1.969 1.81¢0 4.873 1.959 2.161 3.587 3,669
Normality 1.119 2.601 1,025 2.896 4.647 - 1.312 2.017 1,097 4,210 0.879 0.472 1.797 3.597 2.680

n 73 73 73 73 73 73 73 73 73 73 73(1) 73 73(2) 73(35) 73(19)
Skewness 3.264 1.140 4.189 2.715 -0.066 2.050 1.79 4,407 0.96) 0.614 4.288 -0.036 3.852 4.019 2.153

0.490 -71.044 0.513 0.503 ~0.824 -+ -0.515 -0.161 0,422 -0.835 .0,720 0.416 «0.147 Q0.778  -0.072

POQ Kurtosis 14.685 4.344  24.755 -dd.muu 1.407 9.413 6.045 26.858 4,173 2.889 23.80% 3.400 23.156 23.683 9.201
3.507 4.394 3.282 2.930 2.614 3871 2.656 3.276 2.752 3.312 2,284 3.514 2.767 1.976

Test for 2.199 1.189 2.318 2.085 1.530 1.155 1.355 2.751 1.223 0.610 2.844 0.9%0 1.899 2.541 1.686
Normality 0.744 1.9 0.645 1.044 1.92¢ 0.572 0.629 0.916 1.646 0.845 3.865 0.835 2.537 1.525
n 39 39 39 39 39 39 39 39 39 39 39 39 39(2) 38(15)  39(10) -
Skewness 2.483 1.388 3.129 2.916 -0.835 1.327 1.429 2.320 2.030 0.2 3.324 -0.250 3.445 3.308 1.687

0.62¢2 0.836 0.246 0.484 ~4.,432 ~0.417 0.242 0.335 0.8%0 -0.745% 0.669 -0.155 9.527 -0.332

POQE  Kurtosis 8,808 3.960 14,549 12,447 10.127 5.611 4.103 7.567 7.9 2,088 14.096 2.688 17.466 15.527 6.310
2.968 2.744 3.176 5.338 25.403 3.687 3.049 2.800 4,083 3.137 2.621 3.2Z8 2.536 1.992

Test for 0.651 0.809 0.642 0.674 0.859 - 0.9 0.813 0.650 0.812 0.964 0.459 0.971 0.653 0.614 0.830
Normality 0.960 0.900 0.994 0.926 0.553 0.982 0.962 0.970 0.949 0.945 0.936 0.981 0.871 0.887

n 33 . 34 34 34 34 34 34 34 33 34 34(1) 34 34 34(20)  34(9)
Skewness 2.536 1.154 1.149 1.187 0.875 2.468 1.192 3.863 0.628 0.261 1.448 0.187 2.513 1.751 1.335
-0.009 -0.891 -0.048 -0.248 -0.541 -0.149  -0.285 0,497 -0.649  -0.817 0.146 -0.11 0.951 -0.051

POQH  Kurtosis 11.395 4.094 3.694 6.199 2.811 10.338 §.229 18.748 2.375 2.472 3.696 3.852 12.076 5.100 5.112
3.046 4.249 2.360 3.462 3,039 3.325 2.364 3.62) 2.512 3.820 1.81 2.823 2.499 1.835

Test *@x 0.767 0,902 0.881 0.785 0.906 0.754 0.909 0.499 0.922 0.964 0.3 0.939 0.773 0.668 0.860
tlormatity 0.973 0.934 0.979 0.969 0.966 0.9%90 0.964 0.962 0.933 0.940 0.935 0.949 0.734 0.908

an<¢_=m in parentheses equals aumber of observations < detection.
First value corresponds tc untransformed data, second value ta log transformed data.
{clFor n < 50 Shapire-Wilk statistic is calculated, for n < 50 modified Kolmogorov-Smirnov D-statistic is calculated.




——— .

Table A-10

RESULTS FROM VARIABLE SELECTION PROCEDURES

. of
sariaplas
in el

1
2

3

¢ QISCRIM
(€3ua?! Covarisnce atrices Assymed)
T Tstivited

frob,
Varisbles of
Incluced(d)  misclyss, Witk x 1021
9 0.38% 2.7
9,10 0.388 10.3
5,3.10 0.331 8.3
5.6.9,10 0.329 1.3
2,5.6.9.10 0.332 6.4
1,2,5,6.9,10 0.288 5.7
1.2,5-7,9,10  0.267 5.4
1,2,5-10 0.264 3.2
1,2,4-20 0.250 33
1-10 0.266 4.9
i-10,12 0.259 4.8
.12 0.258 4.8

Modifled DiSCRIN

el {inequal Covirfance Matrices Assumed) Forward Scicction Prarerture Backward Selectios Procecure
Estirated T Lstimite Estirated Esuirated
Prab. Frob. Prob.
Vartables of Vertables of Fadiffed variables af vaiified Varrables [ ®odtfied
included visclass. Wilks x 19-°  jnrcluded Misclass. Hllke x 10°8 Included Misclans, Mitls x 10-8 ineluded Misglasy,  Wilks « 10-%
9 0.48% 1’ 9 0.488 4,06 S 0.452 t 8,500 2 0.512 £6.570
9.10 0.338 10.3 5,9 0.450 53.8 5.8 0.389 3.792 2.0 0.366 20,370
$,9-10 0.341 8.3 3.5 0.406 5.95 5.6.8 0.238 2,120 2,8.19 0,343 >2.585
5.6.9.10 0.329 7.3 3.5.6.9 0.333 376 5-8 0.303% 2259 2,3.6,90 9.323 »253
2,5,6,9,10 0.332 6.4 3.5-7.9 0.327 2.61 2,5-8 0.290 >3 2.3.6.8.10 0.258 »130
1.2,5,6,9.10 0.288 5.7 2,3,5-7,9 0.292 L2 2,5-8,10 0.253 »3.9 2-2,6,8,1 6.248 »3.5
1.2,5-7.9,10 0.267 5.4 1-3,5+7,9 0.293 1.09 1,2,5-8,10 0.232 »2.3 2-4,6-8,10 0.204 >e.3
1,2,5-10 0.263 5.2 1-7,8 0.250 . 0.86 1-3,5-8.10 0.234 s)1.g 2-4,6-8,10,12 0.195 »1.8
1-2,4-10 0.260 5.1 i-7,9,10 0.204 0.68 1-8,10 0.195 218 i-4,6-8,10,12 c.283 »1.8
110 0.266 4.9 1-7,7-11 0.134 0.60 1-8,10,12 v.173 12.7 1-€.,10,12 0.173 1.7
1-7.9-12 0.194 0.54 1-10,12 0.65 a.57 1-10,12 0.365 0.57
1-12 . a.163 0.50 1-12 0.163 0.89 1-12 0.7163 2.52

()12, 2e5p, 303, 4204, 5eCa, 6°L1, TsMg, Belta, 950, 10=TAK, VeZn, 12¢ph (A11 variotles L-ansforned cxcept Ca and o).

(blg42P stopped with 3Q-variable modet.




