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Abstract

A closed form for the reduced Green's function of ntasslcss 

fermions in the interior of a spherical bag is obtained. In 

terms of this Green's function, the corresponding zero-point or 

Casimir energy is computed. It is proposed that a resulting 

quadratic divergence can be absorbed by renormalizing a suitable 

parameter in the bag model (that is, absorbed by a contact term). 

The residual Casimir stress is attractive, but smaller than the 

repulaive Casimir stress of gluons in the model. The result for 

the total zero-point energy is in substantial disagreement with 

bag model phenomenological values.

* On leave from the Department of Physics, University of California, 
Los Angeles, CA 9Q024.
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It is widely accepted today that hadrons consist of confined fermion and 

vector fields, the fields of quarks and gluons. The precise mechanism by which 

this occurs remains unknown. However, the mere existence of confinement gives 

rise to an interesting quantum phenomenon which can be calculated in principle, 

and which has significant bearing on the confinement issue itself. This 

phenomenon is the zero-point, or Casimir energy, due to quantum fluctuations 

in the fields.̂ *

The simplest way of approaching an understanding of the role of zero-point
2 3energy in the internal structure of hadrons is in the bag model, ' which may 

be a crude approximation to the true situation existing in QCD. In that model 

the quarks and gluons are free (or weakly coupled) inside the bag, but arc 

absolutely confined to the interior of the bag. (This is a rough representation of 

asymptotic freedom.) For such a simple situation it would seem to be a straight­

forward matter to compute the Casimir energy. Unfortunately, it is well-known

that there are difficulties associated with quantum field fluctuations in the
4-6presence of curved boundaries. There is one known conspicuous exception: 

that of a perfectly conducting spherical shell in electrodynamics, where be­

cause of delicate cancellations between TE and TM modes, and between interior
7-9and exterior modes, a finite repulsive Casimir energy results. Since there

are no exterior modes in the bag model, it is immediately apparent that divergences

may be expected there. Indeed, Bender and Hays^ explicitly computed the zcro-

point energy due to fermion and massless vector fields confined by a spherical
4 5shell, and found the divergences expected from general considerations. '

2 3As a consequence, model builders ' have treated the zero-point energy term 

as a phenomenological parameter, of the form -Z/a, a being the bag radius, where

I. Introduction



Z is determined from mass fits to be ^ 1 . ^  However, it is recognized that

this is a stop-gap procedure since the underlying theory (QCD) should determine

Z. In fact, recently Johnson has returned to the fundamental picture in his

model of the vacuum^ by adopting as thr gluonic zero-point energy of an

"empty" bag surrounded by other such bags eight times the QED value. This

is incorrect, however, since there are no QCD modes exterior to an ideal bag:

the Casimir energy of a world filled with contiguous empty bags in simply the

sum of the energies due to the modes within each bag.
12 13Elsewhere ' I have recomputed the zero-point energy due to fluctuations of 

free gluon fields confined by a spherical bag. I have suggested that the quadratic 

divergence should be absorbed by a suitable renormalization of a phenomenologically 

determined parameter, leaving a finite, calculable result. The latter is found 

to be, approximately,

= +0.51/a, (1.1)

which includes the effects of eight gluons. It is worth noting: (a) this zero-

point energy is of opposite sign to, and of about half the magnitude of, that
2 3used in bag model fits, * and (b) is substantially greater than eight times

the QED value, which Johnson^ used. However, what remains to be included is

the fermionic contribution. Could that change the result significantly?

Bender and Hays^ did compute the zero-point energy of confined vector and

fermion fields some years ago. But a reconsideration seems worthwhile because

there are some errors in their paper, and more significantly because they did

not proceed beyond isolating the divergent terms. The calculations which I
12 13have presented elsewhere, ' and which I will present here,are mor<i complete, 

since I retain the finite terms that remain if the divergent terms are absorbed 

by a suitable renormalization. Of course, the latter procedure remains arguable, 

but at least it forms a hypothesis for extracting physics from what is ultimately 

a poorly understood phenomenon.



The fermion (quark) Green's function satisfies

provided the quark masses are negligible, a good approximation, perhaps, for

u, d, and s quarks. Equation (2.1) is to be solved subject to the linear boundary
2condition

(l+in-y)Q(x,x')j^=0, (2.2)

where n is the outward normal to the static bag. (The bag model also possesses 

a non-linear boundary condition, which we will ignore for the present.) To 

solve (2.1) we introduce a time Fourier transform:

Q(x,x') = (2.3)

where, since

II. Greon's Function

= 6(x-x ' )  (2.1)

G satisfies

y = iy y^o, (2.4)

(-(D + Y$C'"s7)C(r,r') = y°5(r-r'). (2.5)

We adopt a representation in which y^ Is diagonal

1 0 \ / 0 -i 

- J '  t o/'

so that (2.5) reads

(-tud:i{j*7)G (r,r') = 0, (2.7a)*r -F

(-w^i^.^G^^dr,?') = ±i6(r-r'), (2.7b)

where the subscripts denote the eigenvalues of iy^.

To proceed, we make an angular momentum decomposition. The eigenstates of
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* ( i A + r * ) \ M - *  ! + >

(Z.S)

which itave the property

^  " xjy'^(0>- (2.9)

Tiscn, in the two-dimensional spin space spanned by the operator in

(2,7) be conics

-U) I ^ " J * S' '
r i. o r

(-fj)J.io*?)  ̂  ̂ . (2.10)

Expanding C^^(r,r') ia,b = &-(iY^)'] in terms of these angular momentum eigenstates

4 , ^ ( r , ? * ) : y - ' o a }  , (2.H)
JM

and using the orthonormality property

^dQ Z^(Q)Z^^,(Q) - (2.12)

ve find the following component equations

(J + ̂ ))g^=T-^&(r-r')z^^^(Q')'\ (2.13a)

(2.13b)



and

-0)f (2.14a)

T ^ ^ + J + ^ ) f j ^ - c o g ^ = 0 .  (2.14b)

The system (2.13) can be solved in terms of scalar Green's functions 

satisfying

^  A -  r - ^ ^ <-H +t^)A^(r,r') = . -L $(r-r'), (2.15)
dr^ r

which have the form, for r,r^<a, of

(2.16)

The scalar Green's functions corresponding to f and g in (2.11) will be denoted 

by and G^, respectively. Then

JM

+ ̂ 7(5^ 7 ?' - J - ̂  _ i(r,r')Z^ ' +^(Q')*

^ _^(r,r')Z^ " ^(Q)Z^ " ̂ ' ) * j  , (2.17)

where G. and F are related by % /6

Cj.^(x.r') " "1 ^  ^ + J + ^ ( ^ 7  r'+j + ̂ ^ ^ ( r , r ' ) ,  (2.18)j  i/a . ..i\ 1 / a

which means that, in the notation of (2.16),

since
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Jdr j^^.^(kr). (2.20)

The homogeneous system (2.14) is subject to a further constraint, that of the 

antisymmetry of the Green's function: ^2.17) manifestly satisfies this requirement]

[Y°Q(x,x')]1 ^ -Y°^(x',x), 

which implies the form

JM

+ - *< *'" = 5 ?  * * *<"!)*

(2.21)

*(Q)ZJM

(2.22)

where we have anticipated that a^, b^ are even functions of u), while is odd.

Now we are ready to impose the boundary condition (2.2). In my basis it

roads

1 -a

-C'P
+ + + -

G
0 .

r *= a

The implications are

(2.23)

. k*i ** ccu J
1/a2

and

(2.24a)

(2.24b)



In simplifying (2.24a) we used the identity

Equations (2.17), (2.22), and (2.24) supply a closed form for the reduced Green's

function. It differs from the free Dirac Green's function G ^  by

G =  G ^  + G  (2.26)

where, using a matrix notation for the two-dimensional spin space spanned by

_ V  "j J * "j -
4-?*" ' ? 2
* Y  -[jt i(^)Jj  ̂+ g J s

T j J + ̂ ( ^ ') kj , + ̂,(kr) ĵ  _ ̂ (kr ')

and

2 2y  ... ...1/k a

h ^ ( x ) j ^ , ( x )  i ( * )  = <2.25)

(2.27a)

G, , = **ik / - 2

(2.27b)

We will verify in Appendix A t'hat this Green's function implies the usual bag 

wavefunctions for the quarks. Here we directly proceed to compute the corresponding 

zero-point energy.
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There are quite a number of equivalent approaches to calculating the zero-
5-9 14-17point energy* ' PetHaps the most direct means is to compute the stress

on the surface due to the fluctuating fields. The fermionic stress tensor is

III. Casimir Stress

(3.1)

JC being the fermionic Lagrange function. The contribution to arising from

quantum fluctuations is obtained by making the replacement

i^(x)ijr(x')y° - fi(x,x'), 

which implies for the radial stress

(3.2)

x - x (3.3)

Here we ignored a 6-function contribution coming from the Lagrange function, 

since we adopt the point-splitting attitude in which x'-x only at the end of 

the calculation. Using the representation (2.6) we find (v = t-t')

'frr 2 t̂ c - ' - ; S L t t 5 . r (C. + +6+_)

JM

(3.4)

waking use of (2.17) and (2.9). The completeness relation for the Z's reads

JM JM 4n (3.5)
M=-J

so vhen the points are allowed to approach each other through a temporal direc­

tion, we have



It is now necessary to remove from this expression the "vacuum" or volume energy 

which this formalism would supply even if no bag were present (that is, if a-*co). 

That means we must subtract from each Green's function in (3.6) its vacuum part,

4°^* (3.7)

which means we use G,-,. defined by (2.27a), leaving us with

rr
dtD -i(MT, 3 -r- e k 2?r

X { j ^ . ^ ^ ) j j . ^ a ) - j j ^ ( k a ) j ^ ^ ( k a ) }  . (3.8)

This gives the force/area on the surface; to obtain the free energy we multiply
3 9by 4fra . If in addition we make a Euclidean rotation

u),k — i(M,ik,

T - if,
we have (6--0), with x = ka, y = u)a,

(3.9)
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which coincides with the formula given by Bender and Hays. We prefer, 

instead, to introduce the functions

in which case the Casimir energy expression takes the form ($-0)

o
- "d 2 , 2dx X COS X6 ! "T* H , , l. + 8 ̂ 1dx \ JW-g

(3.11)

(3.12)

We now turn to the evaluation of this expression.



IV. Numerical Evaluation

A. Contribution.

As mentioned in Sec. II, in addition to the linear boundary condition (2.2), 

the bag model is usually subjected to an additional non-linear boundary condition,

where the sum ranges over the various quarks, and B is the bag constant. This 

restricts valence quark states to only those characterized by J = However, 

it imposes no condition on Q (how could it, since is already uniquely deter­

mined?) but rather expresses the xero-point, quantum fluctuation contribution 

to the bag constant. This is discussed in Appendix B.

Nevertheless, it is interesting to compute the contribution to (3.12),

since the lowest mode might be thought to be the most important, and because 

it provides a check on the accuracy of the approximations to be made subsequently. 

Since

(4.1)
i a

(4.2)

we have for the J = ̂  contribution to the zero-point energy

00
E dx xf(x), (4.3)

wi th

f(x) =3 fl+— r?)coth2x— --r csch2x-- - - - e * (l+-4-)slnhx +coshx . (4.4) 
n  2x^/ 2x^ ^  ^  ^

Numerical integration yields
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Notre that thin contribution is attractive. It is instructive to compare this

wich the lowest mode contribution of a confined vector field. The latter is13

E B* -.V 2na

01
— dx x 
a J

-+-^7 + 2(e^s^ - e^sp

3
2r?a

! 7-9where E,, , is result of interior and exterior mode contributions,V,shell '

4,.hsn - - i

and the integral cancels off the exterior modes. Explicitly 

f(x) =* '
'+M) ('+4)(̂

*r
i+i

^ 2 + —  - -L-+ -̂ L + JL+ 2+ ^ + e -$+"5) ,
X X  \ X X

and numerical integration yields

(4.6)

(4.7)

(4.8)

dxxf(x) = -0.28 . (4.9)

As a result, the lowest mode vector contribution is

E^=--j(0.18) (4.10)

which is also attractive, but more than 3 times larger than the lowest mode 

Rpinor contribution, (4.5),

H. Sum Over All Modes.

Mhat is meat remarkable about the classic spherical shell calculation is 

that although the low mode contributions are all attractive, when the sum over 

all modes is preformed, the sign of the zero-point energy reverses. A similar



phenomenon happens here. The simplest: way to see this is to use the
12asymptotic expansions for the Bessel functions:

<33
Sjg(x) ^ e^[l V ^  I

k=l

e^(x) ^  e
k=l

s^(x) ^
k=l  ̂

k=l

as ^,-w. Here

2 - 3 -

V*= %+^-, X =  VZ, c- (1+2 ) 2 

11 = t"̂ 4-%,-.:(2/[i + t:'*̂ )

and

" %  (3t-3t^

" %  (3t + 7t3> 

u^(t) " Y B 2  (81t^-462t^+385t^)

v^(t) =: Y'̂ 2  (-63t^+474t^- 435t^) .

Using these it is ctraightforward to approximate (3.12) by (6-^0)

14

uniform

(4.11)

(4.12)

(4.13)
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2 5dz cosvz6 z t , (4.14)
J=2

where v=J-f 1. [Note that the J = ̂  contribution is approximated by

1 1  1
na 6 (.053)

nearly the correct value given in Eq.(4.5). The similar approximation to
12 13the 1 contribution for the vector field is '

E?, ^ ^ -T - ^ (.159)V fra 2 a  ̂ ^

not far from the corrcct value given in Eq.(4.12). Including the next-to<-leading

approximation here changes this to

which yields nearly perfect agreement,] The z integral in (4.14) is

;61^(v6) - ̂ (v6) K^(v6) (4.15)

making it simple to evaluate the J sum using

n-1 ^ / n + m + l ^ t n - m  + l (',.16)

The result is

na
1 _L J_
3 .2 " 48o

(4.17)

Compare this to the corresponding result for the confined vector field

"V na
4 _1_ 1
3 ,2 ̂ *8o

(4.18a)

Here we have included only the leading asymptotic approximation; inclusion of the

next to leading term yields13



a roughly 50% modification of the finite term. Presumably a similar modifica 

tion of the finite term would occur in (4.17) if next to leading terms were 

included.
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Since at this stage in our understanding numerical precision is not the 

issue we confine our remarks to the leading approximations (4.17) and (4.18a). 

Restating these results, for 8 gluons and N quarks,

0

0

we first must address again the question, how to deal with the quadratically 

divergent terms, as $-0. Now, since (5.1) and (5.2) are of opposite sign, the 

possibility is opened that the divergence could cancel between the quark and 

gluon contributions, which would occur provided

N = 32. (5.3)

This is impossible, however, in a colored theory, where N must be a multiple 

of 3.

The solution to this problem appears to be that in the bag model we should 

introduce phenomenological terms in the energy as follows

H' - BV + oA + Fa (5.4)

where B is the bag constant, o a constant surface tension, and F a constant

force. Here V is the volume, A the area, and a the radius of a spherical bag.
2 3The necessity of introducing B and a has been previously recognized; ' however,

equally well there is no reason to exclude F. In fact, all such terms may be 

thought of as contact terms, since they are polynomials in the bag radius. Since 

5== if/a, we appreciate that the divergent parts of (5.1) and (5.2) are of the 

form of Fa, and so merely renormalize that phenomenological parameter. (Note

V. Conclusions
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that the volume energy subtraction can be thought of as a renormalization of B,
4but no term of the form oA occurs in zero-point calculations. ) Equation (5.4) 

would appear to be the correct phenomenology, not the usual

H"= BV + oA- Z/a. (5.4')

Let us therefore suppose that this conception is correct, and only the 

finite parts of (5.1) and (5.2) remain after renormalization. The corresponding 

zero-point energy is

 ̂ -.ren , ^ren 1 N\ ^E--*= E + ---------tl"7**o - (5.5)ZP g q tra \ 48/

The quarks most nearly massless are u, d, and s, so N ^ 3 x 3 = 9 ,  and

E ^ - - -  (1-0.19) = — . (5.6)ZP na ' a

It is of interest to contrast this with Johnson's recent speculation,^ that

0.37 0.28  ̂ 0.65 ^  ^
E g ^ - V  ' E z p = —  i 'S'?'

tenbefore drawing conclusions in this comparison, however, note that E^ and

are subject to perhaps 50% corrections from higher order asymptotic terms.

But it is undoubtedly impossible to reconcile (5.6) with the value found in bag 
10model fits,

E^p^-l/a. (5.8)

This problem must be squarely faced by the model builders.
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Here my purpose is uo show that: the Green's function (2.27) yields the cor­

rect bag wavefunctions. Since the latter are subject to the boundary condition 

(4.1), we will extract only the J = ̂  wavefunctions. For this purpose it is 

most convenient to change to the basis where

Appendix A

1 0 0 i

-i 0
(Al)

which is cffectcd by the unitary transformation

U = /2 \-i 1 (A2)

The Green's func t ion  becomes

+ i (G, " ̂  )*T "T **** +  - - -r

G-UGU" = %
_ + C _ i(C. C . . + C  -i(G, -G ,),+ - * -f ̂  - -r

G . (A3)

Using (2.27), we identify the vavofunction from the residue of the poles: 

example, the positive frequency poles of G^^ are

for

+ +
1

1 1
+ )( + ! + )")<" (A4)

where ? i s  a roo t  of th<̂  equation

(AS)

that is

tan §

and

^  ^  -

(A6)

(A7)



[In (A4) the sum over the different roots of (A5) is implicit.] In this way 

we find

= ̂  --i—  ̂ / ^ (r)^^(?')\° (A8)
± *

where, with x arbitrary Pauli spinor,

/ ^ ( k j r ) ^ x

<*> * -H.,' /

20

- F -  , „ ^\j^(k_r)a-r x/

N^=2a^j^(^)(^^±l). (A10)

These wavefunctions are equivalent to the usual ones and evidently satisfy 

the boundary condition (2.2) since they are, by (A5), annihilated by

' (All)
-c*r

on the surface.
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Appendix B

When we make the replacement (3.2) in the non-linear boundary condition (4.1), 

we find

i^trQ(x,x)

where N is the number of quarks. From (2.27b) we see this is

(Bl)

2B
N

JM

CO
f dm -imi'V" 2j+l / l'\ t).r.2 2 **

or

p 2 4 8n a

J="3

(2J+1) xdxcosx6 dx' 2x

(B2)

(B3)

This formula, which is very similar to (3.12), is an expression of the quantum 

field fluctuation component of the bag constant. It opens up a possibility of 

computing B from first principles.
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