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A closed form for the reduced Green's function of massless
fermions in the interior of a spherical bag is obtained. In
terms of this Green's function, the corresponding zero-point or
Casimir energy 1s computed. It is proposed that a resulting
quadratic divergerce can be absorbed by renormalizing a suitable
parameter in the bag model (that is, absorbed by a contact term).
The residual Casimir stress is attractive, but smaller than the
repulsive Casimir stress of gluons in the model. The result for
the total zero-point encrgy is in substantial disagreement with

bag model phenomenological values.
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I. Introduction

It is widely accepted today that hadrons consist of confined fermion and
vector filelds, the fields of quarks and gluons. 'The precise mechanism by which
this occurs remains unknown. However, the mere existence of confinenent gives
rise to an interesting quantum phenomenon which can be calculated in principle,
and which has significant bearing on the confinement issue itsell. This
phenomenon is the zero-point, or Casimir energy, due to quantum fluctuations
in the fields.1

The simplest way of approachiﬁg an understanding of the role of zero-point
energy in the internal structure of hadrons is in the bag model,z’3 which may
be a crude approximation to the true situation existing in QCD. In that model
the quarks and gluons are free (or weakly coupled) inside the bag, but arc
absolutely confined to the interior of the bag. (This is a rough representation of
asymptotic freedom.) For such a simple siltuation it would seem to be a straight-
forward matter to compute the Casimir energy. Unfortunately, it is well-known
that there are diffliculties associated with quantum fleld fluctuations in the
pregence of curved boundaries.4"6 There is one known conspicuous exception:
that of a perfectly conducting spherical shell 1n electrodynamics, where be-
caugse of delicate cancellations between TE and TM modes, and between interior
and exterior modes, a finite repulsive Casimir energy results.7-9 Since there
are no exterior modes in the bag madel, it is immediately apparent that divergences
may be expected there. Indeed, Bender and Hay36 explicitly computed the zero-
point energy due to fermion and massless vector filelds confined by a spherical

shell, and found the divergences expected from general considerations.4’5

2,3

As a consequence, model builders have treated the zero-point energy term

as a phenomenological parameter, of the form ~Z/a, a being the bag radius, where



7 is determined from mass filts to be hal.lo However, it 1s recognized that
this 18 a stop-gap procedure since the underlying theory (QCD) should determine

7. 1In fact, recently Johnson has returned to the fundamental picture in his

model of the vacnum11 by adopting as the gluonic zero-point energy of an
"empty! bag surrounded by other such bags eight times the QED value. This

is incorrect, however, since there are no QCD modes exterior to an ideal bag:
the Casimir energy of a world filled with contiguous empty bags in simply the

sum of the energles due to the modes within each bag.

Elscwher012’13

I have recomputed the zero-point energy due to fluctuations of
free gluon fields confined by a spherical bag. I have suggested that the quadratic
divergence should be absorbed by a sultable renormalization of a phenomenologically

determined parameter, leaving a finite, calculable result, The latter is found

to be, approximately,

B, = +0.51/a, (1.1)

’l

which includes the effects of eight gluons, It is worth aoting: (a) this zero-
point energy Is of opposite sign to, and of about half the magnitude of, that

used 1n bag model fits,z’3

and (b) Eg is substantlally greater than eight times
the QED value, which Johnson11 used. Howéver, what remalns to be included is
the fermlonic contribution. Could that change the result significantly?

Bender and Hays6 did compute the zero-point energy of confined vector and
fermion fields some years ago. But a reconsideration seems worﬁhwhile because
there are some errors in thelr paper, and more significantly because they did
not proceed beyond isolating the divergent terms. The calculations which T

have presented elsewhere,lz’13

and which I will present here,are more complete,
since T retain the finite terms that rerain 1f the divergent terms are absorbed
by a suitable renormalization. Of course, the latter procedure remains arguable,

but at least it forms a hypothesis for extracting physics from what is ultimately

a poorly understood phcnomenon,



II. Grecn's Function
The fermion (quark) Green's function satisfies

(Y%5>Q(X,X’) = §(x-x") (2.1)

provided the quark masses are negligible, a good approximation, perhtaps, for
u, d, and s quarks. Equation (2.1) is to be solved subject to the linear boundary

condition2

L+1TNGEx) | =0, (2.2)

where n is the outward normal to the static bag. (The bag model also possesses
a non-linear boundary condition, which we will ignore for the present.) To

sclve {(2.1) we introduce a time Fourier transform:

{dy -tw(t-t’) . -
Q(X’X,) = J '(é%) ¢ (.l)( )G(r;r,aU)) (2‘3)

where, since
5= ionSa, (2.4)
G satisfies
(0+yga NCE,E) = v o (-1, (2.5)

We adopt a representation in which Ys is diagonal

1 0 o 0 -1
i'Ys = ’ Yy = ’ (2'6>
0 -1 i 0
go that (2.5) reads
(~w 109G (F,¥") = 0, (2.7a)
(-wii‘é-”é)c,f_ i(?,?') = +1§(¢¥-%"), (2.7b)

where the subscripts denote the eigenvalues of iys.
To proceed, we make an angular momentum decomposition. The eigenstates of

F=T+40 are
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fr'Jj 51 f?/"J'T’ﬁ

2= & %

Then, in the two-dimensional spin space spanned by ZJM

, the operator in

(2.7 becomes

119 1)
v ISR
(- iR = . (2.10)
109 7
:i;r‘Lé-;r ¥J+2“§ -w

Expanding Gab(?,f’) [a,b==i==(iy5)’] in terms of these angular momentum eigenstates

@5 = ) {0,z
JM
and using the orthonormality property

”I+§«nﬁwfbw 2 hd 5«»}, (2.11)

ab JM

. 2 Xt * ' ,
Jdﬂ ZJM(Q)ZJ:M:(Q) = 6 ;6MM;62£ (2.12)

we find the followlng component equations

+¥_1i/9 +F 1 =3+ %
*w{} ~F;(§?r'-(J-+§)>gJ = ~§6(r r )? %(Q') s (2.13a)

179 4F g F Nﬁ zJ T
?;K§Fr+J+%>fJ - gy =Ty bl r)Z @n” , (2.13b)



and
+ +
-wa (5'—1 J - %)!;ZJ 0, (2. 14a)
i(9 1) ¥ T _
q= r(é? r+d 43055 wgtE = 0, (2.14b)
The system (2.13) can be solved in terms of scalar Green's functions
satlisfying
/1 d® | aa+l) L 2 1
(G5 - B ) = - S s, (2.15)
dr” . T / r

which have the form, for r,r’<a, of
AZ = 11432(kr<)[hz§kr>)- Azjz(kr>)]. (2.16)

The scalar Green's functions coxresponding to f and g in (2.11) will be denoted

by F, and Gz, respectively. Then

2

0, =G ED = ) [hlsmr g, e 28T TR R
JM ‘

\, - 1 o l‘_ ¢
GO R Ry N L i O Vhl (CON

AR nz%I B LI YEn

¥ Lu6y (e )AM %(mzf;‘] - %‘(Q’)*} , 2.17)

where Gz and Fﬂ are related by

oo L l(B ‘1< ) ; _ ;
GJ_%(r,r ) w2 \S¢ r+J+%)-r-7 Se7 O +%>FJ+%(r,r Y, (2.18)
which means that, in the notation of (2.16),

J % J+%’ (2.19)

gince



d Y.
(?1? r:i:,e,)Jz(kr) = ikrjﬂzl(kr)

(2,20)
The homogenecous system (2.14) is subject to a further constraint, that of the
antisymmetry of the Green's function

1(2.17) manifestly satisfies this requirement]

o T o
(v G(x,xN1" = -y alx’,x),
which implics the form

(2.21)
belied ,@-J‘i‘é IFJ'f-%
0,y ®E0 = ) {ayiy, o) ezl @l TR en
JM
iy gy e y2 253 " By B T B ®
JUJ -k J- % JM “IM ‘
£e ] (kr) 3 (krv,)zﬂm-%((z)zxzf-:J +%;(Q,)*
a3 J+} M IM
_ L = T - 3
ey G, 425 PRI T 2an ™ (2.22)
. .. ) G
where we have anticipated that 2y bJ are even functions of y, while <5 is odd.
Now we are ready to impose the boundary condition (2.2) In my basis it
reads
1 -Gt /G' G, .
X +t + =0 . (2.23)
~Cer 1 \\ G G
R (1
r|=a
The implications are
2
a_ = b = -iXe = 1/a (2.24a)
S S P ) LR S SV
J+'§ J= ]
and
AF . 1J_+%(ka)jj_+L(ka)~l1 %(ka)j __%(ka)
J+3 )
Uy 4y G- 115 ()

(2.24b)



In simplifying (2.24a) we used the identity

()3 ,(x) -h (03, L &) = =% | (2.25)

h
4-1 %

Equations (2.17), (2.22), and (2.24) supply a closed form for the reduced Green's

function., It differs from the free Dirac Green's function G(o) by

6 =06 4§ (2.26)

where, using a matrix notation for the two-dimensional spin space spanned by

ZFJi%
JM ’
o Y hygg()dy alka) -hy a(ka)y, p(ka)
T . 2 2
1 [JJ+%(ka)] ~[jJ_%(ke)]
i ; ‘
+iij+%(kr)j3+%(kr ) ki +%(kr)JJ ) %(kr')
X (2.27a)
. I aye 4
kg %(kr)JJ+%(kr ) Flejy gk k)
and
- 22
s - 1/k"a
G, , = -ik >

2.

2
FREMAFCID RN E ML)

kg gy () g ke SR KT PR CORPPAC
X . (2.27b)
Fody pUa)ip ke Lk Gy (e

We will verify in Appendix A that this Green's function implies the usual bag
wavefunctions for the quarks. Here we directly proceed to compute the corresponding

zero-polint energy.



I1T. Casimly Stress
There are quite a number of equivalent approaches to calculating the zero-
polnt emfaz‘gy.shg’14"17 Peritaps the most direct means 1s to compute the stress

on the surface due to the fluctuating flelds. The fermlonic stress tensor is

o 1 BN
™ = by B2V ey R )y + gMYs, (3.1)
£ being the fermionic Lagrange Ffunction. The contribution to ik arising from
quantum fluctuations 1s obtalned by making the replacement
Ly O DY - Glx,x 1), (3.2)

which implies for the radial stress

Trr = % g% tr ﬁ-f(}(x,x’) wfx (3.3)

Here we ignored a §~function contribution coming from the lLagrange function,
since we adopt the point-splitting attitude in which x’-.x only at the end of

the calculation, TUsing the representation (2.6) we find (v=t-t’)

o o % [dy -iwr g
Loy 3 J2n ¢ or trtj'r(c_4;+G+“)
g [dw  ~dwr a 179 Tk,  J- »*
=1 5% e S Ctr ?(Wr +J+%)E‘J+%(r ')z HOZY, 3ah
JM
L CE R EE Y MR DU C LI UM (3.4)

making use of (2.17) and (2.9). The completeness velation for the 2Z's reads

J
) trz“%(mz“%(n) - AL (3.5)

= -]
so when the points are allowed to approach each other through a temporal direc~

tion, we have
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ao'o“ do ~igr 2J+L7 1 /O 4 .
Trr= 15? >~. J—Z-‘r-r‘e v 4 {?(Br’r +J+%)F3‘+%(r’rl)
J=3

It 1s now necessary to remove from this expression the '"vacuum" or volume energy
which this formalism would supply even 1if no bag were present (that is, if a-w).

That means we must subtract from each Green's function in (3.6) its vacuum part,

(O 4 k1 (k
AZ = k_]z(kr<)hz(kr>) , (3.7)
which means we use 6&:4-' defined by (2.27a), leaving us with
(o]
" \" 2J+1 [dw -iwr, 3
Lyr a >.J G J o2 © k
J=3%

hy g(ka)dy aka) by 1(ka)y; g (ka)

Uy 4 3] - 13 Gea))?

X
J
X {j;4%(ka)jJ _%(ka) - j;_%(ka)jJ+%(ka)} . (3.8)

This glves the force/area on the surface; to obtain the free energy we multiply

by 41133. If in addition we make a Euclidean rot:at:ion9

Uhk - lw,lk,

T~ iT, (3.9)

we have (§~0), with x=ka, y=ya,

1y 2 Ip41G0Ky g () = T, G0R ()

~18

fee)
C@1+1) dee
-0

B o= e
e (1, ,, 6012410012

o

SRRSO} MCORS SCI) PIRECON I (3.10)
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which coincides with the formula given by Bender and Hays.6 We prefer,

instead, to Introduce the functions

s

X
sy = JB 1,400

2x
ez(x) = /?.Kz_*_%(x) (3.11)

in which case the Casimir energy expression takes the form (§-0)

© «w

. 1 0 I Sfd 2 2 )
o= g ) (2041) J dx X cos KE & g I{ 8 +%§+SJ - i
d 5 ;

J= %

b (3.12)

We now turn to the evaluation of this expression,



IV. Numerical Evaluation

A. J=3% Contribution.

As mentioned in Sec. TI, in addition to the linear boundary condition (2.2),
the bag model 1s usually subjected to an additional non-linear boundary condition,2

- é% L 40| = 2, .1
1 a

where the sum ranges over the various quarks, and B is the bag constant. This
restricts valence quark states to only those characterized by J=%. However,
it dmposes no condition on § (how could it, since G is already uniquely deter-
mined?) but rather expresses the zero-point, quantum fluctuation centributilon
to the bag constant, This is discussed in Appendix B.

Nevertheless, it is interesting to compute the J =% contribution to (3.12),
since the lowest mode might be thought to be the most important, and because
it provides a check on the accuracy of the approximations to be made subsequently.

Since

1
so(x) = ginh x, sl(x) a cosh x - ;sinh X,
- -x i
e (x) = e X el(x) = @ <1-+;), (4.2)

we have for the J=$ contribution to the zero-point energy

o
2
E% = e[clx xf(x), “%.3)
wi th
(141 1 17t 1 1 -

£(x) = 1 4~z Jcoth2x -~ csch2x ~ = “ g 1 4~%Jginh x +coshx | . (4.4)

\ 2 2 pY; % 2

2% 2x X

Numerical integration ylelds

% w - L - -k
E = (0.18) = - 7 (0.057) . %.5)
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Note that this contribution is attractive, Tt is instructive to compare this

wich the lowest mode ;ontribution of a confined vector field. The latter 1313
2] RVIPR B
1 3 | 1.5 i p
B’V'“Zna J dx x p +s +2(elsl—elsl)
) 1 1
[eo)
N1
® ma i dxxf(x)'+hv,shell’ (4.6)
where El , is result of interior and exterior mnde cont:ribut:iom;,,"9
V,shell
1 1
Ev,shell = - (.047), .7
and the integral cancels off the exterior modes., Explicitly
_1+~]4+-1,— 145142 }
X2 K\ ¥ 2 1, ~2xf 2 .1
.[(x) = o o - '}' +2+""T‘""“‘+e o "‘“"+”“ ’ (408)
1 1,1 2 4 3
LA L4z +—=5 X© X X~ X
X X 2
X
and numerical iIntegration ylelds
[es]
| dxxc(x) = -0.28 . (4.9)
o
Ag a result, the lowest mode vector contribution is
1.1
hv = - (0.18) (4.10)

which 1s also attractive, but more than 3 times larger than the lowest mode

epinor contrbdbution, (4.5).

B, Sum Over All Modes.
What is mcst remarkable about the classic spherical shell calculation is
that although the low mode contributions are all attractive, when the sum over-

all modes is preformed, the sign of the zero~point energy reverses, A similar
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phenomenon happens here. The simplest way to see this is to use the uniform

12
asymptotic expansions for the Bessel functions:
o
sﬂ(x) ~ % z%t% evn[l * u-kuk ’
~ k=1

L]
2 X aun 7 k ~k
o 2R g7V -
ez(x) E7ER e Ll +>J (-1)"v uk}
k=l

o>
y 4 B VI LY kT
sﬁ}(x)«»%‘,_t e 1) vy |
k=1
R N . A
2 3 ‘-2 \)'nl - k k
ez(x) ~z 2t 2 e L1+£>J1( Dy k}

as f--w., Here

-t
v= ptE, x= vz, b= {1+22) z

M= e R g /e
and
uy (£) = -512; (3t - 5t3)
v, (t) = 57 (3t +7t)
uy (£ = 7 (8167 - 462e" +385¢°)
vy(t) = yo55 (-6367 4474t - dsst®y |

Using these it is straightforward to approximaté (3.12) by (§-0)

(4.11)

(4.12)

(4.13)



15

0 ©
E~- Z%; >4(2J-+1) J dzcosvzézzts, (4.14)
0

J=%

where y=J+1., [Note that the J=3 contribution is approximated by

nearly the correct value given in Eq.(4.53). The simllar approximation to

the ¢=1 contribution for the vector field 1812’13
1 T |
By ~ " T t = s (.159)

not far from the correct value given in Eq.(4.12). Including the next-to-leading

approximation here changes this to

o5 ,i.(.z.._ LU
g ~ = o (Btg5g) = - 5 (.183)

which ylelds nearly perfect agreement.] The 2z integral in (4.14) is

V8K, (v8) = §(v6)°K, (v8) (4.15)

making it simple to evaluate the J sum using

[os]
dean (x) = 21 r(n~l-1:1£+-1)r(n--m+1) . h.16)
J m 2
The result is
14111 1
ENF‘; 3;2—-7;8'( . 4.17)

Compare this to the corresponding result for the confined vector fie1d13

1| 41 .1
By ~ Ta "3‘52““5{ : (4.18a)

Here we have included only the leading asymptotic approximation; inclusion of the

next to leading term yields13



;oL 4L 1, 30
By ~ma 1”3 3tstizsl| (4.18b)

a roughly 507 modification of the finite term, Presumably a similar modifica-
tion of the finite term would occur in (4.17) 1if next to leading terms were

included,
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V. Conclusions
Since at this stage in our understanding numerical precision is not the
iasue we confine our remarks to the leading approximations (4.17) and (4.18a).

Restating these results, for 8 gluons and N quarks,

Nl L
Eq ~nal3 62 48 (5.1

o if2 1
By ~ el 3 3 +1}, (5.2)

we first must address again the question, how to deal with the quadratically
divergent terms, as §-0. Now, since (5.1) and (5.2) are of opposite sign, the
possibility is opened that the divergence could cancel between the quark and

gluon contributions, which would occur provided
N o= 32, (5.3)

This is impossgible, however, in a colored theory, where N must be a multiple
of 3.
The solution to this problem appears to be that in the bag model we should

introduce phenomenological terms in the energy as follows

H' = BV + A + Fa (5.4)

where B 1s the bag constant, g a constant surface tension, and F a constant
force. Here V is the volume, A the area, and a the radius of a spherical bag.
The necessity of introducing B and g has been previously recognized;z’3 however,
equally well there is no reason to exclude F. In fact, all such terms may be
thought of as contact terms, since they are polynomials in the bag radius. Since
§=1r/a, we appreciate that the divergent parts of (5.1) and (5.2) are of the

form of Fa, and so merely renormalize that phenomenological parameter. (Note



that the volume energy subtraction can be thought of as a renormalization of B,
but no term of the form gA occurs in zero~point'calculations.a) Equation (5.4)

would appear to be the correct phenomenology, not the usgual
H” = BV + oA - 7Z/a. (5.4")

Let us therefore suppose that this conception 1s correct, and only the
finite parts of (5.1) and (5.2) remain after renormalization, The corresponding

zero-point energy is

. o pren ren 1 N
Eyp Eg + Eq ™~ na (1 48) ' (5.3)

The quarks most nearly massless are u, d, and s, so N3 x3=9, and

1 .26
Eyp ~ o (1-0.19) = <=2, (5.6)

It is of interest to contrast this with Johnson's recent speculation,ll that

0,37 . 0.28 _0.65
Eg - a ] Lq = a b EZP - a ’ (5’7)

before drawing conclusions in this comparison, however, note that E;en and

Eren are subject to perhaps 50% corrections from higher order asymptotic terms.

But 1t is undoubtedly impossible to reconcile (5.6) with the value found in bag

model fits, O

E,p = ~-1/a. (5.8)

This problem must be squarely faced by the model builders,
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Appendix A

Here my purpose is o show that the Green's function (2.27) ylelds the cor-
recﬁ bag wavefunctions. Since the latter are subject to the boundary condition
(4.1), we will extract oniy the J=34 wavefunctions. For this purpose it is

most convenient to change to the basis where

v = . ivg = (A1)

which is effected by the unitary transformation

1 {1 -1
U= 7 (-1 1) ‘ (42)
The Green's function becomes
Gy #CG _FE(C, -G ) G G =G -G )
—1 A
G" UGU = ’% = G * (A3)
G H+G _ 41O =6 0 6 +G__-1i(6, =G _ )

Using (2.27), we identify the wavefunction from the residue of the- poles: for

crample, the positive frequency poles of §++ are

é‘}m%z* 1 i ! 1
++ ka—£+2a232(§+>l+g+

31(k+r)‘5-£=[{ +3(+]+] -0 !}E-E’jl(k+r ")

. 1 1 1 ' ‘ A 1. ,
ka - £ _ 2323§(§_) T-F. jo(k~r)[l +3{+ | +] ¥ ‘]Jo(k-r } (A%

where P;+ is & root of the cquation

jo(ii) = $jl(§i): (AS)_
that 1s
g
tang, = 1*% , (46)
and

kya =g, 7)
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Y z

[In (A4) the sum over the different roots of (AS5) 1s implicit.]

we find

&= ) v @ @y P @
+

k- ki

where, with ¥ an arbitrary Pauli spinor,

IPECROLT N

WPy =
+ -jo(k+r)x
=) . I, )%
K‘In (r) = 'ﬁ—' 2

- jl(lc_r)a'fx

2

3,2
N, = 22730(5 ) (g, #1).

These wavefunctions are equivalent to the usual ones and evidently satisfy

the boundary condition (2.2) since they are, by (A5), annihilated by

on the surface.

Tn this way

(A8)

(A%a)

(A9b)

(AL0)

(All)



Appendix B

When we make the replacement (3.2) in the non-linear boundary condition (4.1),
we find
0 _ 2B
15z tr G(x,x) = q (B1)

where N is the number of quarks. From (2.27b) we see this is

28 ,"dg ~lor N . J+k, L T+E K
N e ).%5 5a {jJ w3k gy glkaer 2p S@2 5, =@
M

< 3yt ezl Fzds B

<

[o2]
L fdy rler 2041 14D .2 2 ]
=1 2 © >, 4t (" az) 5‘5@”[_% +%(ka) -jJ_%(ka) (82)
J=%
or
2 2
& r 87, 1(x) +87 _1(x)
B m > 23 +1) | x dx cos x6 o | L2 -2 (83)
8 2 4 - R dx 2
ma J:% [o] X

This formula, which is very similar to (3.12), is an expression of the quantum
field fluctuatlion component of the bag constant. 1t opens up a possibility of

computing B from first principles,
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