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ABSTRACT

A postmortem exsmination of u large fire-exposed rail-transported spent fuel
shipping conteiner has revealed the presence of two macrofissures in the outer cask
ghell. The first, a part-thru crack located within the sesm weld fusion zone of the
outer cask shell, was typical of hot cracks thet may be found in stainless steel

weldments. The second, located within the stainless steel bese metal, apparently

originated at microcracks formed during the welding of a copper-stainless steel

dissimilar metal Joint. The letter microcreck then propagated during the fire-test,

ultimately penetrating the outer shell of the cask.
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INTRGDUCTION

During January 1978, a €7 metric ton spent fuel ghipping container was exposed
t0 & JP-4 fueled fire. This test was intended to simulete a severe, but highly
improbable, fire-assoclated accident condition which might be encountered by a
shipping cask. The shipping container used in this test was originally constructed
in 1962, It was & double-walled, lead-shielded cylindrical vessel 3.96 m long and
1.9 m in diameter., The inner cesk liner had been fabricated from two pleces of
9.4 mm thick 304 stainless steel with one girth and one seam weld, The cuter chell
was manufactured from two pleces of 34.8 mm thick 30U4 steinless steel while the top
and bottom of the vessel were ACI type CFB stainless steel castings. Initially, the
cesk utilized an auxiliary water cooling system consisting of 3.05 mm thick copper
channels longitudinally welded to the cutside of the cask inner cavity wall, These
channels were subsecuently replaced by 304 steinless steel channels when it was
discovered that the original ccpper channels had been diseolved during the first
lead pour. Additionally, copper fins were longitudinally welded to the inside of the
outer shell to enhance the thermal path between the lead shielding end the outer shell.

Prior to the fire test, the cask/railcar system was subjected to a 131 ku/h
impact into a massive concrete barrier. As predicted by the analytical modelirg and
scale model testing performed prior to the full scale crash test, the cask survivad
the impact without feilure. The cask’s structural shell remained elastic during
impact, and only minor ccoling fin damege occurred. Post-crash test inspection
revealed that the cask outer shell had not been penetrated and that the cask had
retained its internzl cavity pressure.

After the crash test, the cisk and railcer were moved to the fiie site mnd placed
over a specially constructed fuel 21. The railcar was supported by concrete
pedestals located centrally in the pool, with wheel trucks under ome end of the car
to maintein its post impact orientation. This positioning subjected the cask to
ma~imum fleme temperatures.

Fleme temperatures during the fire test ranged from 1250 to 1475 K with the

container showing no signs of degradation for et least 90 minutes. At about 100
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minutes into the test, a white cloud of smoke, presumably lead oxide, was observed.
The fuel supply was stopped and the fire self-extinguished at about 125 minutes.
Because of the wemkened condition of the concrete and metal supports end the railcar
frame, the rallcar toppled on its side at this point--severing all instrumentetion
connections. Internal thermocouples on the cask indicated however that complete
lead melt had occurred prior to toppling.

This report presents the resulta of & postmortem examination of this fire-

exposed spent fuel shipping cask.




RESULTS AND DISCUSSION

Flgure 1 shows e side view of the shipping cask after the fire exposure.
Visual examination indicated thet Reglon A in Figure 1 contained two macrofissures.
Both cracks, shown in more detail in Figure 2, hed their msjor direction lying par-
allel to the longitudinel axis of the cask. Crack no. 1 was located within the seam
weld fusion zone region while crack no. 2 lay in the 304 stainless steel base metal.
The latter crack also showed indications of lead seepege and gross plastic deforme-

tion.

Crack No., 1

This crack was approximately 115 mm long end was located 12 mm from the centerline
of the stainless steel seam weld, Figure 3. Examination of the internal surface of
the outer shell indicated that the weldment had been fabricated using a backup strip,
Figure 4. Chemical anelysis of the base metal, fusion zone and backup strip, Table
1, showed that they all met the requirements of 304 gteinleos steel. The higher
chromium content of the weld fusion zane does suggest, however, that 308 filler wire
was used in its manufacture.

Observation of the crack surface, Figure 5, showed that crack no. 1 had initiated
on the external surface of the outer cask shell and had nol completely penetrated the
outer shell wall, Figure 5 also shows thet the origlnai seam weld hed not resulted
in full weld penetration. At this inspection point approximately 20 percent of the
outer shell thickness had not been joined by the seam welding procedure utilized for
the original cask fabrication.

Metellographic sections fakten normel to erack no. 1 illustrate the multipass
character of the weldment, Figure 6. Further higher megnification examination
revenled the presence of numerous internal microcracks. These cracks tended to lie
along the austenite-§ ferrite interface, changing direction when traversing from one
vweld puddle to the next, Figure 7.

Comparison with previous studies of weld cracking in austenitic stminless

steels(l) suggests that these internsl microcracks, end by implication crack no. 1,
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Figure 1.

Side view of spent fuel shipping container
following fire test.
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Figure 2. Enlarged view of Region A in Figure 1.
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Closeup of crack no. 1.
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Closeup of outer shell interior surface immediately
behind crack no. 1.
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Table 1

Chemical Composition of Spent Fuel Shipping Cask Materials

Element (Weight Percent)

Cr Ni C Mn
18.3 9.6 0.03 1.51

19.3 9.9 0.06 1.01

18.0 9.8 0.06 1.1

Si P
0.39  0.02
0.4k7  0.03

0.k9 0.024

0.01

0.01

0.01

Cu

0.24

0.14

0.2k



Figure S.

Macroview of crack no. 1.
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Figure 6.

weldment g

stpinless steel
base metal

Metallographic section normal to crack no, 1.
Magnification: 2X,.



Figure 7.

Optical micrograph showing internal cracking in
stainless steel weld fusion zone. Magnification:

25X.
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are hot cracks. Hot cracking of austenitic stainless steel weldments ie generzally
associated with tae presence of a low melting point 1liquid film st the eustenite-Z
ferrite interface. This liquid film reduces the local coheslve strength of the
stainless steel weldment., Concurrent stress application then results in crack forma=
tion.

Scanning electron microscope observations support the aforementioned hypothesis
that crack no. 1 was a hot crack formed in the weld fusion zone during “he fire test.
Elemental snalysis of droplets lying on the frecture surface, e.g., those shown in
Figure 8, indicated that they contain substantial amounts of sulfur, probebly in the
form of complex alloy sulfides., Comparing typical values for alloy sulfide melting
points (1250~1475 K)(l) with measured cask temperatures suggests that these sulfides
were molten under the present fire test conditions. The further requircment, en
applied stress. was apparently supplied by internal pressurization of the fire-exposed
spent fuel ~hipping cask. Indeed internal pressurization within the lead gamme shield
cavity was accentuated in the present instance by a manufactiring oversight whereby
passage holes from the shield cavity to appropriate expansion volumes originally

provided for in the cask design were omitted during cask fabrication.

Crack No. 2

This crack waes approximately 70 mm long and was located in the stairless steel base
metal, Figure 9. Optical metallography utilizing procedures outlined in ASTM A262-70,
Standard Recommended Practices for Detecting Susceptibility to Intergranular Attack in
Steinless Steels, Figure 10, end mechenical property evaluation, Table 2, showed tnat
the cask outer shell bsse metal, after the fire exposure, was in the solution ennealed
svate.

Visual observations of the inside surfece of the outer shell immediately behind
crack no. 2 confirmed that copper fins had been welded to the outer shell, Figure 11.
Further study indicsted that many of these copper/stainless steel weldments were
cracked. Figures 12 ard 13 present two views of such Joint cracks. Detailed examina-
tion of these cracks showed that they were predominately intergranular, following the
stainless steel, austenite, grain boundaries, Figure 1k, Microprobe examination,

Figure 15, also showed thet the cracks contained significant quantities of copper
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Figure 8. =) Scanning electron micrograph of crack no. 1 fracture surface.

b) Elemental analysis photograph of droplet shown in (a).
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stainless stecl
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Closeup of crack no. 2.



€2

Table 2

Room Temperature Tensile Properties ,
of 30b4 Stainless Steel Cask Outer Shell

Ultimate Zensile Percent
Yield Strength Strength Total Percent
Sample Orientation (MPa) {MPa) Elongation Reduction Area
Longitudinal 221 565 BO B3
Transverse 217 563 82 76

*Average of duplicate

tests, & = 5 x 1073 sec™®

un
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Figure 1C. Opticel micrograph of 304 stainless steel cask
outer shell. Magnification: 2$0X.
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Figure 11.

View of interior surface of outer shell showing copper cooling fins joined to

shell.
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Figure 12.

Cu/steinless steel
‘- fusion zone

Enlargement of inner surface of outer shell.
Arrows indicete copper/steinless steel joint
cracks.



Figure 13.
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Typical crack observed originating from copper-
stainless steel weldment.
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Figure 1h.

Optical micrograph illusirating intergranuler
charecter of cracks in stainless steel.
Megnificetion: 100X.
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Figure 15.

s}
[

Cu Pb Al

Identicel area elemental distrihution photomicrographs of crack in 304 steinless
steel, Magnification: 100X.

51



and lead and lesser amounts of aluminum and silicon. While the elemental enrichment
of copper and lead appeared to extend to the erack tip, the aluminum and silicon
enricliment appeared to be somewhat more restrictive.

f‘igure 16 shows a macroscopic view of crack no. 2. Elemental snalysis of this
fracture surface, Figure 17, showed that conper could be detected to a depth of
approximately L7 mm, i.e., ~ 50 percent of the outer cask shell wall thickness.

Numerous investigators(s'n heve shown that a combination of high heat input
and direct contact between molten copper and stuinless steel will lead to microcracking
of the stainless steel during weld fabrication. Generally, successful welding of
copper to stainless steel requires thai low heat inputs be cambined with the use of
a nickel filler wire.(a) Microprobe examination of the copper-stainless stzel fusion
zone indicated thet, in this instence, neither of these requirements hed been fulfilled.
The presence of a high concentration of copper and aluminum in the copper-stainless
steel weld fusion zome, Figure 18, suggests that a copper base filler wire had been
used to join the copper cooling fins to the cask outer shell, Further analysis of
the droplets shown in Figure 18 also indicated that they contained appreciable quan-
tities of iron end chromium. The form of these droplets and their chemistry suggest
that they were formed by e high heet input which caused locelized melting of the 30k
stainless steel during welding.

Consideration of the above observations suggests that crack no. 2 originated
from microcracks formed during welding of the copper cooling fins to the stainless
steel outer shell. It eppears that final crack propagetion thru the outer shell
wall occurred during the fire-test, the driving force for thie crack propagetion
being supplied by the internal pressurization within the lesd gemma shield alluded

to previously.



Figure 16. Macroview of crack no. 2.
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Figure 17.

(v)

a) Scanning electron micrograph of crack no. 2 fracture surface.

) Elemental enalysis photorsraph of Region B nesr mid-section of
crack no, 2.
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Figure 18.

Fu

(S
Identical area elemental distribution photomicrographs of copper-stainless steel weld fusion zone.
Magnification: 500 X.



SUMMARY AND CONCLUSIONS

Postmortem metallurgical examination of a large rail-transported spent fuel
shipping cask which had been exposed to a JP-Ii fuel fire revealed the presence of
two mecrofissures in the outer cask shell. The first, lying within a stainless steel
seam weld fusion zone, ig believed to be a hot crack which resulted from elevated
temperature stressing of the cask. The second crack, located within the stainless
steel base metal, eppears to originate at a copper-stainless steel dissimilaer metel
weld joint during manufacture, with final nropagation thru the outer cask shell
occurring during the fire-exposure. Finally, the present cbeerveations suggest that
neither macrofissure would have formed if (a) the fire test temperature had not been
excessive, that 1s exceeding the Nuclear Reguletory Commission (1075 K - 30 min.)
reguletion, (b) appropriate lead expansion volumes had been provided, and (c) eppro-
priate procedures, e.g., a Ni filler wire and low heat input, had been used during

welding of the copper fins to the stainless steel outer shell.
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