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A SIMPLE MONOTONIC INTERPOLATION SCHEME

This paper presents an alternative procedure for presenting tabular data,

such as are contained in the ENDF/B files" , that is simpler, more general and

potentially much more compact than the present schemes used with ENDF/B.

It is well known that ENDF/B allows the form of a function to vary from

panel to panel, so as to take advantage of the fact that the local variation

of a function may be most efficiently represented by one of the four monotonic

interpolation schemes it provides. These schemes include linear x-linear y,

log x-linear y, linear x-log y and log x-log y variation. The monotonic nature

of the approach recognizes that the important details in a function should be

included in the data tabulation and sho;ld not be introduced by the interpola-

tional procedure, in order to avoid violating the intentions of the data evalu-

ator. In other words, the evaluator will supply all maxima, minima, and

inflection points that describe the shape of a cross section curve.

There are two ma.jor shortcomings with the ENDF/B approach. First, there

are only four allowed forms of variation, causing the use of excess points.

Secondly, the use of some of the forms gives rise to inconvenient analytic

expressions. For reasons of accuracy and efficiency, many computer codes

integrate ENDF/B data analytically; in some cases, even the products of two

functions in ENDF/B form are analytically integrated . For some of the combina-

tions, the resulting analytic expressions co not lend themselves to evaluation

on a digital computer, thereby forcing the use of numerical integration.

Consider the possible benefits of a scheme which could allow more generality

in the variation within a data panel than ENDF./B and which would be in a fn™

very convenient for the evaluation of its integrals by computer.

Consider any function such as a cross section. If one isolates the maxima,

minima and inflection points, the intervening regions are monotonic regions of

lil.e (concave, convex, or no) c-rvature. Each of these regions is a candidate



Figure l: Demonstration of Generality of Nev Scheme



as a res-ion of "p.ire" monotonic variation. In the event that a single "pure"

function cannot be found, the regions can be subdivided until the function is

represented to the desired accuracy, as is the practice now.

There are a variety of forms which will provide monotonic variation in a

simple manner, including expressions involving e^' and (log x) , but one of

the more attractive is a simple expression involving x . Consider the follow-

ing equation for interpolating a value for y at an x between the points (x ,y )

and (xb,yb):

— + a / \ f ] \
a T) "p b a
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When p=l, this expression defines ordinary linear interpolation. Figure 1

illustrates the degree of variation possible, if one allows p to take on values

ranging between -co and +«o. In this example, the end points are (l,l) and (2,2).

Obviously, the expression provides a very large number of monotonic paths for

traversing the panel, suggesting that the presentation of a function in triplets

of x, y and p would be very compact, provided, of course, that regions of "pure"

monotonic variation can be found.

Consider other advantages that this scheme offers for cross section

processing. Setting p=-0-5 accomodates a l/v variation, while a p=-1.0

would be used for a l/E flux variation. The integral of Eq. (l) involves nothing

more complicated than integrating x , in fact, the integral of the product of

two or more functions in the form involves terms of the x^ form.

A simple scheme for determining p illustrates why this method is efficient

in terms of the number of panels required to represent a function. Consider a

three point monotonic region consisting of three (x,y) pairs. If one uses

Eq. (l) to determine the interior point:

r9 - xp

2 1
yo

 = y-\ + ~ (y, - y-,) (2)

a value for p can be determined (using, for example, the Newton root-solving

technique). Given this T.., the interior point can be discarded, since i t is



readily determined by Eq. (l). This eliminates two points, while requiring

one additional point to store p. More elaborate schemes based on least-squares

would yield even greater storage savings.

The compact fit is many times better than the original, because the p is

determined by fitting the local variation of the function. This is illustrated

in Table 1, which is concerned with the resonance-like function, l/(l + x )•

Val.ies of :•: were determined such that the integral from assuming a linear

variation in tr.e panels was 5$ different from the analytic integral. In the

table, t-.e second and third points are included because there is an inflection

poirt at >; —\f\T5, and the second point is needed to determine a p for this

region of convex shape. As evidenced, the power function integrals are every-

where superior to t::e linear integrals, especially when p approaches its

asymptotic limit of 2.

This method aas been successfully used for Bondarenko factor interpolation

in a module of the AMPX system , called BQEAMI-2. In this case, it proved itself

vastly superior to the Lagrangian schemes used in BONAME-l, as will be noted in

the oral presentation.

In conclusion, the new scheme offers an attractive method for representing

tabular data which is compact, simple and general. The ability to retrofit and

improve existing files, as demonstrated in Table 1, is also important, as it

eliminates the requirement for a re-evaluation.



Table 1. Results of Applying Proposed Interpolation Scheme to Produce

Integrals for the l / ( l + x ) Function

No.

1

P
-rf

k
"ft"

5

*
7
3

9

l.OE-5

0.239

0-577

1.1+11+

2 - 2 0 3

3.155

4.436

6.230

3.597

y

1.000

0.932

o. ;50

0.333

0.1"l

0.0396

0.0473

0.0251

0.0136

P

1. .'00

—

-0.350

—

-1.613

—

-1.393

—

Integrals

Analytic

0.2309

0.2425

0.14-320

0.1393

0.1222

0.08kb

0.0602

O.OU3I1

between

Linear

0.2774

0.2414

0.1+536

0.1937

0.1283

0.0883

0.0632

0.0^55

points

Power

0.2803

0.21+33

0.1+189

0.1921+

0.1219

O.O8U8

0.0601

O.Ql+31*-

Error

Linear

-1.23

-0.1+1+

5-00

5.00

5.00

5-00

5-00

5.00

do)
Power

-0.P07

-0.361+

-3.03

1.64

-0.236

0.219

-0.059

O.O5I+

These points were retained in the f inal "power" f i t .
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