
KEK-79-8 
May 1979 
A 

ACCELERATION OF POLARIZED PROTONS 

IN THE KEK 500 MeV BOOSTER SYNCHROTRON 

Masaaki KOBAYASHI 

NATIONAL LABORATORY FOR 
HIGH ENERGY PHYSICS 

OHO-MACHI, TSUKUBA-GUN 
IBARAKI, JAPAN 



KEK Reports are available from 

Technical Information Office 
National Laboratory for High Energy Physics 
Oho-machi, Tsukuba-gun 
Ibaraki-ken, 300-32 
JAPAN 

Phone: 0298-64-1171 
Telex: 3652-534 (Domestic) 

(0)3652-534 (International) 
•Cable: KEKOHO 
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National Laboratory for High Energy Physics 

Oho-machi, Tsukuba-gun, I b a r a k i , Japan 

Abst rac t 

Accelerat ion of p o l a r i z e d proton beam i s s tudied by computing the spin 

as w e l l as o rb i t motion s t e p by s tep throughout the whole a c c e l e r a t i o n 

p e r i o d . Accelerat ion i s f ea s ib l e without o r wi th a v -jump t echn ique . 

Without a v -jump technique , t h e v e r t i c a l po l a r i za t i on w i l l change 

t h e s ign with a small l o s s (2 %) a t 239 MeV, t h e only one i n t r i n s i c 

resonance , i f t he v e r t i c a l beam radius i s 10 mm at the resonance. Though 

synchrotron o s c i l l a t i o n may cause an a d d i t i o n a l po l a r i z a t i on l o s s , i t 

w i l l be much l e s s than 10 %. 

I f a v - jump technique i s employed, t h e i n i t i a l p o l a r i z a t i o n i s 

maintained including t h e s ign . The depo la r i za t i on w i l l be as small as 

6 % by puls ing 10 cm t h i c k quadrupole magnets added on both ends of each 

s t r a i g h t sec t ion up t o 0 . 1 kGauss/cm w i t h i n 3 usee. In t h i s case the 

in f luence of synchrotron o s c i l l a t i o n i s n e g l i g i b l y small . 



1. Introduction 

In strong focusing proton synchrotrons (PS), the intrinsic depolari­

zing resonances are sometimes so strong that the initial polarization 
2) of the beam is easily lost unless a technique of fast crossing is 

employed at the resonance. 

The KEK 500 MeV booster PS has only one resonance at 239 MeV correspond­

ing to a condition 

YG = v z . (1) 

2 —1/2 Here y is the conventional Lorentz factor of particles (y = (l - g ) ; 

B = the particle velocity in units of the light velocity), G = g/2 - 1 = 

1.7928 the anomalous magnetic moment of protons in nuclear magnetons, and 

v =2.25 the vertical betatron wave number, z 
1) 3) 

Khoe and Sasaki examined depolarization problems in the KEK 
booster PS and gave the following predictions based on an approximate 
analytical estimate: 

(i) Complete depolarization occurs. 
(ii) In order to reduce the depolarization to AP/Pn = 0.1, v has 

u z 
to be quickly changed by 0.21 within 1 usee, 

(iii) The depolarization resonance can be avoided by 

(a) changing \> from 2.25 to 1-75, 

(b) transfering the booster beam into the 12 GeV main PS at 

200 MeV or (c) injecting the linac beam directly into the 12 

GeV PS by skipping the booster PS. 

Methods avoiding the resonance require significant mechanical changes in 

the machine construction and therefore we will not consider them here. 

It has been predicted ' ' that without a v -jump technique the 
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initial polarization only changes the sign without reducing much the 

magnitude if the resonance is strong and/or crossed slowly. This 

prediction has heen recently studied in more detail. 

In order to study the above possibility, we have traced the spin as 

well as the orbit motion step by step throughout the whole acceleration 

period. As analytical solutions are used for the spin equation of motion, 

no serious accumulation of errors in the length of spin vector occurs 

such as was experienced ' before if numerical integration was employed. 

The result of computation verifies the above possibility if synchro­

tron oscillation is neglected. Though the synchrotron oscillation may 

sometimes have a damaging effect on the complete spin flip, the effect 

is much smaller than 10 %. 

If a v -jump technique is employed by quickly pulsing additional 

quadrupole magnets at the resonance, the depolarization will be as small 

as 6 %, showing that this is another possibility of accelerating polarized 

beams at the present PS. 

2. Equation of Spin Motion 

Let us employ a turing rest frame of particles, which is moving with 

particles and has its one of the axis (y) always on the equilibrium orbit. 

The z-axis is always vertical if we assume the equilibrium orbit in a 

horizontal plane by neglecting the distortion. The x-axis is always 

radial (see Pig. l). 

The present reference frame resembles in bending magrets to the 

rotating rest frame of particle except the fixed z axis and in the 

straight sections to the inertial rest frame respectively. Let us call 
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it simply the turning rest frame. We use mostly the time t' ' in the 

rest frame rather than the laboratory time t = yt . 

The'-equation of spin motion in the turning rest frame can he found 

by starting from the Froissart-Stora equation established in the 

laboratory frame: 

ds 
dt (L) 

-f-s" x{(l + G)fj L )
 + (1 + YG)(S ( L )

 + S [ L ) ) j 
*i*Y j x '£J * 

(2) 

where s i s the spin vector of unit length, m the proton rest mass and 

B the laboratory magnetic flux density. 
r(L) In moving to the turning rest frame, the coefficient for B has 

to be changed. For bending magnets, the coefficient is changed from 

1 + yG to yG by subtracting the angular velocity of e<B >/my 

which corresponds to the rotation of the present frame. Here <B > 
z 

denotes the guiding synchrotron field. 

3. Solution of Spin Equation in Each Element 

Solution of the spin equation becomes pretty simple in each element 

and is presented in Table 1 in a form of the transfer matrix I defined by 

y 

w out \ z / in 

where the suffices in and out indicate the entrance to and exit from each 

element respectively. In each element whose length is much smaller than 

the unit betatron wave-length, the transverse coordinates of particles are 

approximated to be constant in calculating E. We show below a derivation 

of the matrices Z for a few typical elements. 
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Bending:Magnets ' 

Subtract ing from (2) a term e<B >/my and neglect ing a small difference 
z 

B - <B > which is much smaller than YG B , we have the equation z z z 
of spin motion in the turning rest frame as 

As the fringing region is treated separately, the longitudinal field 
-KL) 
B is neglected here. 

The solution of (3) is as follows: 

s x(t ( R )) = (aQ/A){ coscx - cos(At(R) + a)} + ( s ^ , 

i s (t ( E )) = Q sin(At ( E ) + a), (U) 

s (t ( R )) = (hQ/A) {cos(At(R) + a) - cosa} + (s ) n , z z 0 

where , a = evG B /m „ f z * 

t = e(l + YG)B^ L )/m J 

\ A = (a + h ) , 

Q sina = (s ) Q , (5) 

^ Q cosa = {(hs - as )/A}Q • 

(•a) (T>) 

Putting u = At with t the transit time through the magnet, we have 

the transfer matrix E as shown in Tahle 1. 

Edge Effects of Bending Magnets 

Only an impulse of longitudinal field B is assumed here. Vertical 
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fieldsLean well he described hy hending magnets and are neglected here. 
The equation of spin motion hecomes from (2) 

a t(H) 2m S By ' <6> 

The solution is given hy 

.s x(t ( R )) = (s x) Q cos(at(R)) - (s z) Q sin(at ( R )), 

s (t ( R )) = (s ) n sin(at(R)) + (s ) n cos(at ( R )), z x (J z u 

where a = geB '/2m . 
y 

Taking an approximation of B fal l ing l inearly with the distance 

from the end plane of hending magnet, we have 

d B ( L ) 

B ( D = z _ ^ _ „ z ( B ( D ) / 6 ( 8 ) 
y dy z max 

where (B ) is the field inside the magnet, 6 the longitudinal length z max 
of fringing region and r) = +1 (or -l) for the entrance (or exit). Then, 
(R) (R) 

at (t : the transit time over the fringing region) no more depends 

on 6: 
*t ( R ) = n^T-(B ( L )) . (9) 

' 2mygc z 'max 
The fringing region can, therefore, he taken negligihly thin in consis­

tency with a thin lens approximation in the orbit calculation. 

Accelerating Gap 

-KR) 
In the particle rest system, a magnetic field B arises hy applying 

-KL) 
a Lorentz transformation to a lahoratory e lec t r ic field E : 



(B) _ v 8, F(L) (L) dz . 

B ^ R ) = 0 , (10) 

B ( R ) - Y B ( E ( L ) - E ( L ) ^ ). z '^v x y dy 

Here dz/dy and dx/dy are the small angles in the vertical and horizontal 

directions respectively which the particle trajectory makes with respect to 

the equilibrium orbit. One can take an effective laboratory field 

B„ = B „ H instead of the electric field. As the effect of an energy 

gain on the spin motion is small, the laboratory electric field is 

approximately equivalent to the laboratory magnetic field given 

above, as far as the spin motion is concerned. 

The equation of spin motion (2) then becomes 

-ffr - f (1 + yG) 1 x {-(E ( L ) - E ( L ) ^ )x 
dtlRJ m z y dy 

where x (or z) is the unit vector in the direction x (or z). The above 

equation is of a similar form as (3). The solution is given by (U) with 

a and b redefined as 

a = f(l + v G)( E^-f>g) 
, = ^ { 1 + 7 G ) ( E ( L ) _ E ( L ) M 

(12) 

k. Computation 

The accelerator ring consists of eight cells and has the following 
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numbers: injection (or maximum) kinetic energy = 20.8 (or 500) Mev, bending 

(or average) radius =3.3 (or 6) m, betatron wave number v = v =2.25, 
z x 

and n-value= 12.091. The repetition rate is 20 pulses per sec. The 

magnet excitation is sinusoidal with the accelerating time of about 18 msec. 

The structure of unit cell is -gOFDDFgO in the horizontal plane, 

where 0 indicates a straight section, F a focusing sector and D a defocus-

ing one. Magnetic field distribution on the equilibrium orbit is taken 

flat inside a magnet sector, falling to zero linearly with the distance 

from the edge. The magnetic sectors are treated in the sharp edged 

approximation. The longitudinal field in the fringing region is treated 

in the thin lens approximation at the edge. Edge effects between adjacent 

F and D sectors almost completely cancel out each other and are neglected. 

These simplifying approximations give a slightly different number of \> 

from the experimental one of 2.25. In order to obtain v =2.25, the 

lengths of magnetic sectors are slightly modified from the actual ones (see 

Fig. 2). 

The r.f. acceleration is made in one of the eight straight sections. 

Though two accelerating gaps exist in the same straight section, we 

approximate them by one gap placed in the centre of the straight section. 

The adiabatic damping for betatron oscillations is taken into account at 

the accelerating gap by a shrinkage in the orbit divergence in proportion 

to (momentum) 

Computational Results 

The final polarization at 500 MeV is presented in Fig. 3 as a 

function of -che vertical oscillation amplitude z of particle at the 
max 

resonance. The initial polarization at 20 MeV is +1.0 in the vertical 
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direction. Complete spin flip occurs if z is larger than 3 mm. The 

final polarization hardly changes, in agreement with a theoretical 

expectation, even if the radial oscillation amplitude is widely changed. 

Variations of the polarization in the course of acceleration are 

presented in Fig. k for three typical particles. Wo depolarization is 

seen except at the resonance. 

From Fig. 3 one can estimate the final team polarization hy assuming 

a uniform distribution of particles in the phase space. Fig. 5 gives 

the final beam polarization as a function of the maximum of the vertical 

heam radius at the resonance. For a team radius, of 10 mm, the finalis 

beam polarization is higher than -0.98. 

Comparison between Computation and Analytical Formula 
2) Let us compare the computed depolarization with an analytical formula 

P/P0 = 1 - exp(-X) 

X = [TT(1 + yG)r] /GAy 

where P (or P ) is the final (or initial) polarization, Ay the increment 

of y per revolution and r = z v /2R ( here H = average ring radius; 

z„ = the amplitude of cos(v 6) component of vertical betatron oscillation 0 z 
at the resonance). For the present case y = 1-255 and Ay = 8.7 x 10 . 

Fitting the betatron oscillation by 

z = z„cos(-o 9 + 6 ) {1 + f,z cos(8m8)} (l1*) 
0 z z m=l m 

we find- z„ = 0.71 z .We have then r = 0.30 * io~ z (in mm) and 0 max max 
2 z mi 

with the computed one. 

X = 0.60z (in mm). The final polarization given by {lk) agrees well max 



5. Influence of Synchrotron Oscillation 

Only the synchronous particles hare been treated throughout the 
f. -\_ 2 1^ ) above computation. The synchrotron, oscillation has two effects 7* * 

First, the synchrotron oscillation modulates the crossing speed 

across the resonance. By comparing the peak accelerating voltage of 16 kV 

with 8.5 kV for the synchronous particles, the maximum crossing speed 

is twice that for synchronous particles. This effect is roughly equiva­

lent to a decrease in the horizontal field (i.e. the vertical heam size) 

by a factor of 1//2 with the crossing speed as before, as seen in (13). 

If the maximum crossing speed is assumed for half amount of particles, 

the final polarization changes from -O.98 to -0.97 as seen from Fig. 5. 

Seeosd, the synchrotron oscillation may cause multiple crossing 

across the same resonance energy. The synchrotron oscillation at the 

resonance has the following paramatersr. the synchronous phase <v. 30°, 

the stability region ̂  -30°—+90° and the frequency •>. 10 kHz. From the 

shape of the longitudinal phase space three quarters of particles may 

experience decelerating fields. From the peak and average accelerating 

voltages, less than 2/7 of particles may cross the resonance three 

times, if they have the maximum amplitude of synchrotron oscillation. 

Combining the above two numbers, and reducing;the.result by half 

because the synchrotron oscillation amplitude is distributed between 

zero and the maximum, we find that less than 10 % of particles may cross 

the resonance three '-times.'." If we assume, a worst, case that the 

multiple crossing might destroy the polarization completely, the 

polarization loss is less than 10 #. 

Summing up the above two -effects, we may expect that an additional 

polarization loss due to synchrotron oscillation is actually much smaller 
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than 10$. 

6. Reducing the Depolarization by a v -Jump Technique 

Instead of the complete spin flip, we may employ a v -jump technique 

to maintain the initial polarization including the sign. A computed 

result is shown in Figs. 3 and 5 hy dotted lines for a case of pulsing 

10 cm thick (effective thickness) quadrupole magnets added on both ends 

of each straight section up to 0.1 kGauss/cm within 3 usee (see Fig. 7)-

The fall time of excitation pulse is take . — u. - , to which the result 

is not so sensitive. The change of v is 0.12. A typical variation of 

the polarization with respect to energy is shown in Fig. 8. If the 

beam radius is 10 mm at the resonance, the depolarization is as small 

as 6 '. Influence of synchrotron oscillation is negligibly small 

because the change in v is much faster than the oscillation in yG. 

7. Conclusions 

The beam polarization is expected to flip almost completely at 239 

MeV, the only intrinsic resonance in the KEK 500 MeV booster PS. For the 

initial beam polarization of +1.0* the final beam polarization is as high 

as -0.98 (or -O.92) if the beam radius is 10 mm (or 6 mm) at the resonance, 

and if synchrotron oscillation is neglected. Though synchrotron osci­

llation may cause an additional polarization loss, it is smaller than 

10 %. 

If a v -jump technique is employed the initial polarization may 

be maintained including the sign. The depolarization will be as small 

as 6 % by pulsing 10 cm thick quadrupole magnets added on both ends of 

- 10 -



each;, straight section up to 0.1 kGauss /cm -within 3jnisec. In this case 

the influence of synchrotron oscillation is negligibly small. 
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Figure Captions 

Fig. 1 The turning r e s t frame of pa r t i c l e s , (xyz). 

Fig, 2 Structure of the unit cel l . Lengths are in m. T shows transition 

sectors. In computations, the following lengths are used to 

give v = 2,250 by neglecting the transit ion sectors (see tex t ) : z 
0.65311 m for F and 0.61+279 m for D. These lengths give v = 

2.229 (the ft sign value * 2.25). 

Fig. 3 The final polarization of par t ic les as a function of the amplitude 

of ver t ical betatron osci l lat ion z at the resonance. The dotted 
max 

curve is obtained if an -jump technique is employed (see text). 

Fig. h Typical variations of polarization with respect to the kinetic 

energy of particles. The amplitude of vertical betatron 
oscillation z at the resonance is: (a) 1.1 mm, (b) 2.9 mm and max 
(c) 30 mm. 

Fig. 5 The final polarization of beam as a function of the maximum of 
the vertical beam radius at the resonance. The dotted curve is 

• obtained if a v -jump technique is employed (see text). 

Fig. 6 A scheme of v -jump technique employed in computation. 6y = z r 
0.000125 (3 ysec), ay- = 500 6Y = 0.0625 and 6v = 0.12. i r z 

Fig. 7 A typical variation of polarization with respect to the kinetic 

energy of particle when a v -jump technique (see Fig. 6) is 

employed. The amplitude of vertical betatron oscillation z 

at the resonance is 10 mm. 
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Table 1 Transformation matrix for spin vector 

Fringing Region of 
Bending Magnet 

Fringing Region of 
Q-Magnet 

. c o s u , 0 , - n s i n w N 

0 1 0 

\ns ino i 0 cosw 

n = + l ( - l ) f o r e n t r a n c e ( e x i t ) 

N o t e s 

gezB 0 
2mySc 

gexzG 
a 2my3c 

Bending Magnet . 

(Hor . F o c u s i n g S e c t o r ) 

Bending Magnet 

(Hor . D e f o c u s i n g S e c t o r ) 

2 2 
a costn+b asinni a b ( l - c o s u i ) 

A 2 ' A ' A 2 ' ^ 

bsinoi 
• A 

\ a b ( l -

, COSti) , 

2 2 
cosm) -bs in io a +b cosm j 

eyGB n e(l+yG)B nz 
' Or-, , n x v , 0 

a= (1-t ) , b= 
m p mp 

eyGB. - e ( l + y G ) B A n z 
= a < l - 5 i ) , b = - 2 — 

m p mp 

Q - Magnet 

A c c e l e r a t i n g Gap 

' A 

A = ( a 2 + b 2 ) l / 2 , 03=A)1/Y3C 

a = f ( l + Y G ) G n x , b = f ( 1 + Y G ) G _ Z m Q m y 

a = s S - ( l+yG) (E - E f 1 ) , mc ' x ydy 

b = = ^ ( l + Y G ) ( E - E § ^ ) 
mc ' z ydy 

£ = l o n g i t u d i n a l l e n g t h o f each r e g i o n 

c = c h a r g e ( p o s i t i v e f o r p r o t o n s ) 

B =. l a b o r a t o r y b e n d i n g f i e l d on t h e e q u i l i b r i u m o r b i t ( n e g a t i v e ) 

G = f l u x d e n s i t y g r a d i e n t o f quad rupo le m a g n e t s ( n e g a t i v e f o r h o r i z o n t a l l y 

f o c u s i n g q u a d r u p o l e s ) 

n = a b s o l u t e v a l u e o f t h e c o n v e n t i o n a l n v a l u e 

E = l a b o r a t o r y a c c e l e r a t i n g f i e l d (E : n e g a t i v e ) 
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Fig. 3 
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