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A b s t r a c t

A new iteration procedure for solution of the Schro-

dinger equation with arbitrary potential ie proposed. Both

the eigenvalues and eigenfunctions are represented in the

fora of a series which i s well convergent under certain

conditions. The solution of the к - dimensional Schrodiager

equation within the proposed echeme reduces to r. problem

of the К - dimensional electrostatics. As an example we

consider potentials X ( и «2,5,^) and м ' х ' + О *
/ 1

in one-dleenaional space. (
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The Schrodinger equation i s the basis for eolation of

many physical problem» Various phenomena, both well-known

end discovered recently» are described by this equation with

this or that potential. Sometimes i t i s necessary to consider

тегу sophisticated potentials, and as a role the eigenvalue*

and eiganfunctions can not be found exactly. One has to torn

to approximate aethods. Two of then are oozmnonly needs the

numerical integration with the help of computers and the

Rayleigh-Bchrodlnger perturbation theory (see e.g. M J ) «

Both methods hare certain drawbacks, xhe forser i s applicable

actually to one diztensional problems only, and practically

does not work in two or sore dinensions. The latter as a rule

yields a divergent series which i s sensible only at small

values of the coupling constant. I t has nothing to say about

the stroHg coupling regime. Moreover, often i t i s necessary

to Investigate tbe analytical structure of the solution. lit

this case both aethods turn to be ineffective»

In this paper I construct a new iteration scheme which

permits to determine eigenvalues and eigenfunctions of tbs

j( - dimensional Sohrodlnger equation with arbitrary poten-

tial»

Unlike the ordinary perturbation theory, the series

emerging within the scheme proposed are expected to be con-

vergent. Physical arguments demonstrating the convergence

ore presented. As яп attempt of a more rigorous consideration

I formulate also a siaple theorem which gives a necessary

condition for the convergence of the procedure.
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Besides practical usefulness the appr^aeb possesses

certain elegance, Jfor example, constructing successive itera-

tions re loses actually to solution of к — dlasnaional

electrostatics with varying (coordinate-dependant) dielectric

permeability. In one-diaenalonal space the answer i s written

oat in a closed form.

The general consideration i s supplemented by a few

examples. We deal with one-dimensional potentials, which are

rather otvoa. encountered in various applicatlonb, namely

X {, Ц « 2 , 5 , 4) and quartic enharmonic oscillator.

Now le t us proceed to a systematic description of the

method. We start with a certain transfornation of Bchrodin-

ger equation, which converts the standard linear equation

into a nonlinear one. The дугДДд?frtg^Jft̂ O transfoPBation

men has the fora

which i s completely equivalent to the original Schrodinger

•«{nation provided that the additional condition

^ s 7(scalar functioia)

Is

who»» A and V are ordinary k - dimeneional Laplace [

and gradient operators. Using eqs.O) and (2) i t i s a trivial \

matter to obtain a new nonlinear relation i



The potential V can be always decomposed into two

pieceo V • Vo + Л V« each that the equation

can be solved exactly. Then Uo = - V Уо/Фо • W e delay

discussion of the question as to how to choose \/o in each

particular ase and now wi l l develop a perturbation theory

with respect to л . In a standard way write

7-
£•=•

Then tbe values of P_ and functions W*. are determined

by the following of linear equations»

(8)

(Besides, each of the functrffTi (j must satisfy eq . (4) . )

Here ,. .

(9)

Molt-plyicg both the right end left-hand eidee of eq.(8) by
Z.

we come to

The la t ter relation i s the usual < - dimensional electro-

s tat ics law, y£ and Чи playing the role of the dielect-

r ic permeability and the f ie ld strength respectively. -Po

specify i t coMpletely one needs a boundary condition.

Invoicing the definitionj of y0 and 4^ we get an

obvious relation!



1 ' и и / л / .

This re la t ion • >n he immediately converted i n t o i n f o r m a t i o n

fbout {• n . Keully in tegra t ing but.h sides of e q . ( i o ) over

the whole space and trflnsforming the -eoluroe i n t e g r a l in the

left-hand side in to the surfnee in tegra l (with the help of

the Gauss theorem) w» find

This expression gives the value of the M - th correction

to ttie energy level of theunperturbed potential. I t is worth

noting that the first correction ( и = 1) coincides with

that of conventional Rayleigh-Schrodinger perturbation

theory 111 . To determine other corrections h . i t is

necessary to solve the electroetaticel problem (10), with

•various right-hand-sides expressions, which is equivalent to

solution of the general elliptic equation

where 4**4 *Рм в п й £ n ie given byEq.(11). This is

»ot an eigenvalue problem, since £ is assumed to be

(mow £гои lower-order iterations (see eq.(11) ) . Thus, froa

the numerical point of view a computer integration of

eq.(12) Is a such simpler ргоЫви than that of eq.(1).

Now as to the convergence of the procedure proposed.

I t is a complicated and difficult question. I plan to

return to i t s detailed discussion elsewhere. However, a

remark which seems physically justified is in order hore.

I t is almost obvious that if the perturbing tern

*^I restrict myself in following consideration by rising
potentials only.



Л Vj is less singular then VQ end is small es compared.

to Vo at ///-"* <z-*=>

 t th«n the series (6) r (7) are

convergent. Keally, a true reason which lies behind diver-

gencies in ordinary perturbation theory is a singular nature

of the perturbation. Consider the analytic structure of, say

the ground level energy, c. t ая a function of the coupling

constant Л in the complex Л plane. If Д V{//0 -

et //(/ -*• o c i then changing the sigu of /{ , % -*• — Л

results in an instability, end in particular, in £" there

emerges an imaginary part dJtie to fcunnelings. This oignale tiha

divergence of A series ijx thia case. If the potential ly

were leas singular than V5 , then no reasons would exist;

for appearing of singularities. At least, such reasons are
of

not on the surface, xhus, one can expect chet thia situation

all the quantities are nonaingular in ^ In the whole

complex plane, which automatically means that A series

are factor ia l^ convergent. I did not manage to find a rigo-

rous proof of this statement. Howevco, in numerical examples

which, will be discussed below the convergence i s extrfcmsly

rapid. A.s to the rigorous result, let из mention the folio-

theorem for one—dimensional case:

If UQ grows at infinity, /x/ -*-с*э „ end 4^ (*)

are unbounded functions , then the series (6) - (7) are

divergent»

How let us discuss how to realize the idea concretely.

The central point i s an optimal choice of the zeroth-order

approximation which nust guarantee the most rapid convergence

'Рог excited states unboundness i s required for regular

parts of



of the procedure. I t i s clear that any function from L

serves in fact as the wave function of some level of some

potential . In other words, given any function Wo one can

fi t a potential

in such a way that the given function У' turns to be

Joat a bound level wave function in this potential» I t i s

obviously expedient to take tyo in such a way that Vo

would be close to the original potential V , and in parti-

cular, would contain all the singularities whish are present

in У • This is automatically achieved if one puts in %

the information concerning the asymptotic behavior and number

of zeroes of the genuine wave function '/^ . Such an informs- '

tion is easily available in each particular case at least in

cne-dimsnaional and radially symmetrical problems»

Since Vo {A/ almost follows V(fi) by construction j

and reproduces all i t s singularities, their difference. !

Vj- V ~-V0 » i s small as compared to Vo everywhere, j

and hence the perturbation theory in \V- Vo) uust be t

convergent. i

I«t us give a few examples. Consider the Schrodinger |

equation in one dimension . Thet eq,(4) represents in f»-i~

a well—know Eicatti equation, and eq.(C) can be readily

solved exactly,

К - dimensional radially symmetric equation reduces to

the one—dimensional one. In these cases a sinilar pertur-

bation theory was proposed for anharmonic oscillator prob-

lem Taj . General formulas were obtained in paper [?] «
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where Q^ are defined in eq.(iO) and the Л - th correc-

tion to the level energy E^ i s given in eq.(11).

*or the potentials V(x)= X ( tt « 2 , 3, 4) and

V(H)S щ ' Л * -*~JX » which are often encountered in

various applications, the zeroth order «rave function can be

chosen in the following form

» ths consiusrstica by the zeroth and first levels,

an extension to higher excitations being trivial. These wave

functions 8qs.(14a
t
b) satisfy the Schrodinger equation with

the follcwings potentialei

state (eq.d^a))

•f excited state (eq.(14b))

(15b)

(A). Potential W*/ ~ ^ In this case in eqs.(14a,b),

(15*,b) I pat Щ e 1 and 4 = 1. Then ty fxj x V/x) - Vo {*) *

« -.X1 +[иХИ^-ДХН И] (for ground state) and Ц(Х)»У(А)

m-K.% +[(**-2)*b>~'-lX**t] ( f 6 r *** f i r s t exttation), and

jost these expreseiona « i l l be treated as perturbations.

SubeUtating them as well as ^ ^ a « / > ! - X/^ - K / и + 4 i



and flU Xe//»f */i - * /„/„+4

(13) one finds the firet correction*» bo the energy levels.

The results are g,ver in T«ble 1. I t i s worth eo^haaiKlng

the rapid convergence of our method» already the second

correction contribution does net exceed a few percents.

(B). Quartic scohsrmonic oscillator V'= *f*Xl + J * ^ •

Only the groimd etete will be considered. Substituting the

perturbation %(х) = 2>tf X -^w^x'ae well as fffix)'

» eX/»/-1*1^ - ^f^3/sj Into eqs.(H), (15) one finds the

f iret corrections to the ground state energy. For example,

the first-order correction has a form

(V» reoall that Be • Ht .) A remark concerning the analytic

structure of £ . in the сопф1ех Q plane i s in order here

la fact i t reproduces well some of the main features of the

behaviour of the genuine energy £ , and. unfortunately,

fa i l s to reproduce others. Namely, £*̂  has a cutf-

end the q-» <"=> asyatptotiee i s ~> Q^3 as i t should be.

Moreover, the discontinuity across the cut as a - * — 0 i s

exponentially seall , however, i t does not coincide with the

1KB expression (see e.g. £ *»5 ] ) , which i s toown to be

oorrect at Q-* - 0. This deviation froa the WKB result i s

oertainly a drawback of the pethod, but» luckily enough, i t

does not invalidates i t as a whole. Bealls, i f one could важ

the ««izging series, the 1KB foraola would be restored* The

latter statement can be proven quite rigourously (at least

for exaoplea diecoseed in (A) and (B) ) .



Table 2 confronts my results containing two flret Ite-

rations with numerical calcolatione Гб / • -
M
 agreement

Is excellent in the whole rang? of q investigated.

It Is worth noting that the new perturbative procedure

proposed here is not only Interesting by itself, it yields

also an information about certain sons encountered in the

usual perturbation theory. In fact, there exists en inter-

relation between our method and that of the usual one* In the

latter the wave function is expanded in the following wak-

f * Z. ** V» (17)

where the И - th correction <fh i s determined by a earn

over a l l Intermediate states of unperturbed potential* Tor

exanple, for the f i r s t correction we have

си;

where the superscripts (и) , {€} label the number of the [

level. On the other hand» within the approaoh proposed the \

correction V. may be obtained from the definition (2) I

and eq.(1?). then, the following sum rule is obtained

igza 1?
Here the constant C* i e determined by requiring that the

firrb-order perturbed ware function i s normalised to uniigr

l a general case m&ke the interrelation explioit l e t ue

invoke the definition (2) and consider beries (6), (7) a*

formal ones. By comparing two alternative expressions for



coefficients of various powers / in the у ®nd С

pxpanaions mnnjr attractive sum rules can be found. These sum

rules give the information cbout the specUrum of unp«ptm?be&

potential.

To summarize, I managed to construct the iteratioaal

scheme, which does not require the knowledge of tfce ©atire

spectrum of an unperturbed problem. In one~&imonsslonal and

spherically symmetric cases closed analytical ©spreesion

for corrections at all orders can be wrlttea oute For arbit>-

rary multidimensional potentials the original eigenvalue

problem turns out to be equivalent to integration of electro-

statics equation (12). From the numerical point of view such

an integration is much more simple than the solution of the

eigenvalue problem*

A few points remained to be investigated yet, The rigoro-

us proof of ths convergence conditions i s s t i l l lacking in

general case. The orthogonality of the excited states as

given by subsequent Iterations i s questionable. If they are

not orthogonal, then «hat i s the optimal way to orthogonalize

them?

I conclude with a some remark on literature. In the paper

Zl a version of convergent perturbation theory to^ ground and

first states of anhan?onio oscillator to one dimension waa

proposed. With some effort one can show that the technique of

Ref. 2. is a particular case of the approaoh developed hare

to one dimension, when Ч
в
(к)-{у(

к
)] and unperturbed potential

V
o
 (*) = V(*) "

 v
' W Д *V(X) . Moreover, this recipe applicable di-

rectly to a narrow class of one-dimensional problems. One-di-

nensional SchrSdinger equation was considered also in a re-

cent paper [7] which I learnt about after the oompletion of
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present work. There i s a certain overlap between the r e s u l t s

of paper Г?} and the part of my work which t r e a t s one-

dimeneional potentials,

I t i s a pleasure to thank B.L.Ioffe and K»A.Ter-4Sarti-

roayaa for discussions and I am greatly indebted to Yu.A,Si-

monov for -valuable comments. I want to thank M.A.Shifman for

reading of the manuscript and cr i t i ca l remarks.
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Table 1. Ground-state and first excited energj levels in potentials X •
Values &E characterize the corresponding term of our perturuation t
In brackets the relative deviations from exact values are conrained. -£
Ref. 8.

~"4v. Poten-
Арргвч. t ia l
xLmatioxb

0

л

О

Я

4 ^

E
A£

£

&B

В

AE

£

ground level

1 .

1 .

1 .

0 .

1.

1

13359(6,9%)

0.13359

09519(2,3%)

0.04841

06976(0,9%)

01542

06036211

•X

f i r s t level

3-

3«

3.

3

3

94939(4%)

0.94939

84482(1,2%)

0.10458

-

.79967315

ground level

1

1.15341С1,2%)

0.15841

1,14747(0,2%)

0.01094

-

-

1.14480246

: X 6

f i r s t level

4 ,

4 ,

4,

3

X

35903(0,5%)

1.35903

33976(0,озя)

0.0192?

«я»

-

,33359882

VfX) s X^

ground level ; f irst; level

1.23476(0,73%) 4 .

0.23476

1.225595(0,02%)! 4.

3.009165

-

1.225820^0 4 .

7

X

37684^2,5%)

1.87684

7с>41Д<0,36%)

0.122696

-

-

75587451



Table 2. Ground-state energy 1ете1 ot enharmonic
oscil lator with quartic anhaxmonlcity
(two approximations). (Е'жЕ/2 » 9* • 9/2
see eq.(I5a) ) . E£ x a c t from Ref. 6

I1

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8
0.9
1
10
50
100
500
1000

£'

0.561658

0.604862

0.640163

0.670641

0.697772

0.722399

0.745055
0.766125
0.765861

0.804468

1.50463

2.4973*
3.12582

5.29675

6;65739

0.559146

0.602405

0.637992

0.663773
О.696176

0.721039

0.743904

0.765144

0.785032

0.803771

1.50497

2.49971

3.13138

5.31989

6.69422
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