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Abgtxract

A lattice gauge model with the phase transition corres-
ponding to spontaneous breakdown of the group center symmetry
is considered, It is shown that the phase diagram, obtained
in multicolor cese, separates phases with confined and non-
confined quarks. The possible continuum limit in the phase
#ith the permenently confined quarks is discussed,
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A promising appronach to:the problem of quark confinsment
in Q.C.Ds 18 based on the symmetry of the gauge group cen-
ter 1:2 « An ndequate tool in ettacking this problem are Wil-
gon lattice gauge theories 3. Although static quarks are oon-
fined in the framework of strong coupling expansions, there
remaine a serious question - Do confinement and asymptotic
freedom, observed in perturbation theory, coexist in the same

phase of the theory?

1e Recently, there were sﬁggeated 445 models with a phase
transition corresponding to spontaneous breakdown of the sym-
metry or the gauge group center., In the present paper, we
study a model with the same propefty. The lattice action of

our model consists of two terms *)

: I { 2
ﬂction(“):ZP: 7TrU(?P)+2—5lTrU(3P)I AD

The firast one is a standard *race of the product over four
elements, ufe] , of SU(N) along the boundary 2P of the pla-
quette p . The sum over p runs over all plaquettes on
the lattice, The wecond term is invariant under the trax;afor-
mation of ule] - z e} U[L] » wnere Z[¢] takes values
in the group 2, .

Many propertiea of the model (1) can be understood fl.n
the 1limit of large N, 1.6 N 9o for fixed I and A ., In
the present peper, we found the phase diagram in the P A
plane, The obtained phase transition corresponds to sponta-

*) In the naive local limit ( the lattice specing 7+ 0 at
fixed p,A ), this action reduces to ugual oontinuum Yen;-

Mills act:l.on' Action(u)=p ( pnenfA)/2 < Sd% Tri}.. )




neous breekdown of the symmetry of the gauge group center,
The p.aase diagram Beparateé phases with confined and non-

coniined quaerks,

2+ Let us first find the phase diagram advertised ebove,
Our method is based on the cohsider&tidn of equation of mo-~
tion for the Wilson loop average, In the case of the standard
léttice riodel o corresponding equation was suggested in
paper.s. i2re we derive an analogous equation taking intc
account large fluctuations of variables of the group center,
.This is a necessary step in considering ocur model (1), ‘

;t is convenient to represent the loop average as fol-

lows

wle] =JJ,~M § LTrule)2(c)

 Action (2u)
€

) ez e

where the total averaging is divided into the averaging over

Ackion(2u) » (2]

Z, end SU(K)/2, , Jf(u) being corresponding Hear meusure on
SU(N)/Z2y . 2(¢) is the product of 2[6] over e C , and
U(C) stands for the ordered product of U[&J .

In order to derive the equations of motion for W(c], we
use a standard trick of shkifting variaebles in the functional
integral (2). The derivation of the equation resulting from
the infinitesimal variation of U is quite similar to that in
the standard model 6. The derivatiocn of the equetion resul-
ting from the variation of *the diacreste veriable, Z, is some-
what more cumbersome, However, in the case of-large I, one
can substitute the integrel over U(1) for the sum over Z& in
Ey.(2). Now, a stendard trick may be used. The obteined infi-

nite set of equations possess to order O(N-‘) a factorized




. solution

wicl =rlel- wlcl,

| where w[CJ satisfied the following equation

L..(u)w[ci o ]Zt.(e)a’ «D[c,,]w[c,.]«a(,,)m
. ({14

- The equation Lor P [ C] coincides with the equation for the
1oop a‘rerage in the compact Abelian gauge theory

L;;{,).ptc]gezz Tu(e) by ] + o( ”%) ,

 whexz 1/e* -/3 m[')fj o The operator Ly(x) in the L.H.S. of
' Eqs.(4) {5) acts .as follows

z;_(ém L | =‘-Z.‘ 0

o ‘!.(8) sta.nds for the unit vector of the link £ € C. The point
Y in the R.H.S. of Eqs.(4),(5) is defined es follows, If the

) g:.v'an 1ink - e has a positive direction, then Y is the begin-
ning of - Z o For the éase of & negative one, Y is the end ofl.

Jls was noted :m paper 6, the equations of motion do not

eonp].etly determine W[c] , and should be accompenied by the
-”B:Lanchi 1dentity. In the lattice theory, it takes such a

- a:t.mple Lorm

¢

(7




Eq.(7) :ror '[c] is satisfied, 1if both I'lc] and wlec) satisf.y
Eq.(?u separstely.

The factorized ansats (3) for Wle] of Eq.(2) is & con-
sequence, at amall R , from the factorization in the pertur-
bativn theory, valid for large N 7. However, ou.;r method gives
‘the possibility to extend the factorizaiion at any A .

A remarksble fact is that Eq.(l}) Tor« [c] depends on the
Sa:ra action in a very simple form, One should only redefine
the coupling _conata.nt keeping the equation forminvariant,
Thus, w[c] and I'lc] in Eq.(3) coincide, after the redefini~
tion of the coupling constanis, with the loop averages in the
standard Z,, and SU(N) gauge theories, respectively, 1
| This repult makes it possible to conclude that there
exists a phase transition over p o the critical value being

pe(2) = po fio]2p] (8

where p, is a criticel point of the Z, (o U(1)) gauge mo-
del 8. A dependence of w l')r] on A 1is governed by Bq.(4).
| Unfortunately. above consideration is not a rigorous

pronf af ‘the phase transition becauss the asymptotio behavior
of wlq ‘48 unimown, Bomer, we were convinced that, for
small - A , the asymptotice of the disorder parameter, cor-

_ re,spowhg-' fo fluctuations of the veriebles of the gauge
group cmtu-. is ohengid at p=p. . Consequently, Eq.(8)
does ditdl’l_ie- the phase diagram.. - ' '

- 3 m, ‘_;-Ief-'us _6ansider a nature of the phase transition
described & the previous Sect., aud establish ite cormection
with theqm gdhfihdmgnt. In dealing with this problem, we
use a new crl!&ﬂon (B-.B,K_hoﬁblachév. ‘unpublished) for the |



quark cénfinement generalizing the well~-known Wilson crite-
rion in the case of thé lattice.Q.CeD. with iight quarks,

Our criterion is based on the fact that. quark fieilds
!f(c x) are nontrivial representation of the gauge group-ceénter,
Under such trensformation ¥ (x)-» 2(x) -¢¥(x) , where
Z2(x)e 2 oo For this reason one can define an amplitude,
Klc), of a.ny quark quantum numbers travelling over the
closed loop, Ce¢ To define K[c_] mathematically, one can do
the following. Let us consider the funciional

Q(#161) = [iptr2yF expf Action () shckion(2,¥),
where Action(U) is given by Eq.(1), end

Action (2,¥) = X ¥(x) p(e)ule]2[€] ¥(x+€) f% P(x)M $(x) (10)
¢

X i the beginning of the link £ , and X+ € is its end.
Z runs over all links and their orientations. Z runs
over all sites on the lettice, Projector P(e)- Jg » With
Je the Dirac matrices, gusrantees the leck of spare quark
exitations, Generaliy speeking, gquark fields ![(x ) carrj' a
flavor index. v
We see, from Eq.(9,10), that querk travelling is per-
formed by means of subsequent.‘jumps from one site to another
neighboring to it. If a quark passed over the conlour C,
there appears a trace in the form of Z(C) « States which are
singlet representations of the'group center, Z, , produce no
- traces, Theierore, the amplitude for a quark passed over C
. is given'by |

Klel = > R2(zle1) 1 2 "], (1)

( )a[_t] éec




As in the case of the Wilson criterion, the asymptotics of
Klc] v exp (-Aree/r! ) corresponds to the confinement phase,
but Kl v exp (-Longitude/r. ) implies that quaks are non-
confined. |

For our model (1), K [C] can be found in the multicolor
liwit. Nemely, we show that

Klc] =1]c], (12)

where ['[¢] is defined in Sect.2., To prove Eq.(12), we will
use the equation of motion, For this purpose, chenge the
variable U/]/l] es sbove. After that the variation of dls-
crete variable, 2[¢] , yields an equation for K [C] which is
just Eq.(5) for '[c] , and the Bianchi identity follows
immediately from the definiticn of K[C) . In deriving this
equation, we used the fact that quark loops are negligible
for large N 7.

The following conclusion cen be drawn on the basis of
Eq.(12): the high ( A< Pc(2)) ond low- (S2Pc(2) ) temperaw
ture: ghﬁses of our mcdel are those with confined and non-

confined quarks, respectively,

4; Our above results were based on the lattice gauge
model, It i3 interesting to discuss the possibility of the
continuum 1limit in the confinement phase., A usual way of con-
structing the local limit of lattice theories is the following.
Approach the latt:l.ce.apacing @ to zero and bare charges
to their critical values, keeping fixed correlation lengths.
If this is the case then the obtained continuum theory will
be Lorentz-invariant.

| In order to discuss the possibility of such a limiting




procedure, let us consider the phase diagram in A , p”

plane, The phase diagrem iy determined by Eq.(8). The

functioﬁ

X(2) = [3] (13)

in the R.H.S, of Efq.(8) can be found from the self-consi-

stency condition

A
2 ( ) % ) } = X (14)
whioh 18 a consequence of Eg.(4). We gave explicitly a

dependence of the coupling constant in Eq.(14).

Eq.(14) has for srall A & solution in the form of
peiturba.tibn theory expansion, Por large A , stromg
ooupling expansion yields

o(c;2)] = ZEio(£)

c=9
for the function in the L.H.S. of Eq.(14). In this case,
the self-consistency condition (14) has a unique solution,
x=0, and consequently jsg '{1)'0. We expect this solution
to be valid up to scme velve A2 { , as the parameter
of the atrong coupling expansion is X /A ., Thus, the
phase ddagram in A , _p plane has a shape shown in Fig.l.
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113.1. Phaae diagramm corresponding to mpontaneous
. breakdown of the center of SU(N) for large N,



All the above resvlts were obtained iy the limit N
at fixed . f , A . One cen show that the correlation
length depends on N, at finite N, for 2> A, and venishes
as N—+00 , This implies that there exist only such field
configurations when a quark and its antipartner reside in
the same alte on the latt.:lca, which‘we call the absence of
quarks,

’ it is interesting tov trace how the phase tranaitior,;
discovered for the model (1) in the present paper agrees
with tuat of Yoneya % for his model. When A<« { , a~{ ,
our results are in feir agreement. An important coansequence
for the model (1) at >4, ,}3~N2 *), when our approach
cannot be usged, follows from compa.ring with the Yoneya
model, It is quite naturel to expect the critical tempera-
ture to be different from zero (p;‘-: const. /N fora>dc),

The obtained phase diagram of Fig., 1 allows us to come
to some conclusions about a possibility of Loremtz-invariant
continuum 1limit in the confinement phase. One should tend

A to zero which is required by asymptotic freedom over
the factor group, and /5 to its criticel value p,~0 ,
keeping fixed the correlation lengths in F[C] and uJ[CJ when
>0 . The local theory obtained in this way has two coz-
relation lengths, their relation being a free parameter,

.In principle, another way to obtaine a local thecry
with asymptotic freedom might have been to tend fs.d'vO when
I>3-c «» However, such & theory has no relativistic limit,
since as mentioned above the correlation length vanishes
for A>4¢, p‘\'f « The correlation length will become

)
*). The limit‘)-»"'ﬁ ~{ is of interest because this is a
way arriving at the standerd Wilson model.




Tinite for N‘/"‘-l , but as pointed out above we erpect
that taking the 1imit N‘}s"-’ 0 , required oy asymptotio
freedom, one arrives at the phase with non-confined quarks,
This question will be consldered in more decail in tha full
ﬁublication.

| Our local theory with corfined quarks guarantees
asymptotic freedom over A . A problem concerning the
properties of Z, gauge theory when A f=~0 has not deen
ptudied &t present., It is evident that both this problem
and the properties of Q.C.D., with two correlation lengthe

-are of great intereat and deserve the future inveatigation,

' We would like %0 acknowisige helpful discussion
with A.AMigdal, V.L.Pokrovskii, A.M.Polyakov, K.A,Ter-
la.rt:lro_sye.h, S.N.Vdigeles, and A.B.Zamolodchikov.
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