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Abs tract

I propose a new perturbation theory for solution of
the k ~dimengional Schrodinger equation wich arbitrury
potentisl. It does not require the knowledge of the entire .
spectrum of the unperturbed prceblem and gilves cloesed exp- .
ressions for the energy shifts, The procedure is a genera-
lization of the varistional method and permits to find its
accursey. Two dimensional nonsymmetric anheraonic oscilla~

tor is considered sa en example.
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The eigenvalue problem .s ore of the basic subjects of
Quantum mechanics! In pumerous applicationa one often needs
to £ind the bound state energies and wave functions, snd
usually this is done with the help of a por:t;u.:.'ln‘-':l.on~ theorye.
The standard perturbation theory expresses snergy ard weve~
~func¥ion correotions in terms of sums over intermediate sta-
tes or in terms of integrals conteining Green's functions.
In other words the knowledge of the spectrum sand wave funo-
tions of the unperturbed problem is presupposed. Such sn ap-
proach besides purely technical difficulties possesvs a
principie drawbacks the resulting series is as & rule diver—
gont. The reapson is simple, In most of the physically inte-
resting ceses the perturbation is more singular than the un~
perturbed potential. Thus, the most interesting strong coup-
ling regime is completely out of the scope of the method.
Another widely used spprosch - nrutiond‘- is pot iters-
tional in nsbure, and hence the question of its accuracy
in each particular cué requires a special investigation,.

Here I would like to propose & new iterstional teohni-
que which permits to determine the stationary states nf the
‘multidimensional Schr'édinger. equation with arbitrary poten-
tlale It i3 important that no informatioa about. the entire
. speotrum of Ehe unperturbed problom 1s nesded., The enargy
shifts to any order are given in quadrature, The compute~
‘tion of the corrections Uo the wave functions is equiva-
lens to solution of multidimensional electrostatice with
Mabh_ vdioloctrio pormeability. In some particular ca-

' ses ocorresponding equations csn be solved snalytically.




P r instapce, this is juert what haprens when the unpersurbed
rave functlon is spherieslly symmetrie, In other ceres the
equatinone ~an be rerdily integrated mmerically, It 18 worth
montionirg that the scheme proposed generalizes in a senge
develnps the rell-knowm variational method. In fact each gi-~
ven trial finc'ion within the lstter csn be cernsidered as a
wave functisn of the zeroth approximation in my scheme,
Furthe» iterations yleld consequent corrections to the vari-
atjonal-mathod-haeed results,

The central point is the freedom in choosing the unper-
turted potentisl, One cam always choose 1% 1ir such a way as
to make the procodure convergent., Below the general deserip-
tion of the technique is presented and its appiication to
the two-2iwensional nonsyametric anharmonic oscillator is
consfdered, Other arplications «nd rigorous results concer-
ning the convergence of the method are discussel elsewhere.

The starting point 1s 8 cortain traneformation 2 of

the k ~dimencional linear Schradinger equation,
AY +(E-V)Y¥ =0 2}

intc a nonlinear zquation of a lower order with a right-
-hand side, (I will nce the term “ponlinesrization” for
this transforration). To integrate the latter a pew pertur-
bation theory is developed. After this 1s done the prcblem
converts again into a linear one, In more detsil, the abo-

be~menbion2d transformation is of the forms

3 = - ‘6",'/:// )

where A and §7 denate the standerd k -dimensio-




nal Laplace and gradient operators. In terms of the nex

vector field Y the Schrodinger equation (1) reduces to
-l -—Z - ’
Vg -9 = (E-V) )

Eqs (3) 18 equivalent to eq. (1) if the following additional
condition holds -

9' = -V‘(senlar function) (4)

or, in other words, a’ is a vector field of the potential
type,

Y <~V y: 20

L't el

As to the boundary conditions for eq. (3) they will be dis-
cussed a bit later,

One can always represent the potential V as a sui
of two terms, V =V, + AV , where Vo is chosen
in such & way that the squation

AV, + [E,~Vs)¥, =0 (5)

can be solved exactly. Here A 1is a formal parameter int-
roduced for conveniéncej V° will be referred to as the
unperturbed potential. There is no difficulty in decompo-
sing V=V, +1V $ actually one simply fixes ¢,
sccording to certain rules to be explained below and then
' conatructs \(, by means of ege (5). Given ¢, one
fixes the zeroth order approximation for eq. (3), 9’0 -
- ~-T% /% « Higher order appro.:int.tons 7,, 9'1’
de"ine the following serlies:




~ —» - 1.y ’ L
Y=Yo Ry, +2 7, « . =2 A y"(x) ®

The bound stste ensrgy is also represented in the form of 8

gserien

E"‘Ea +)E' -f,]"EJ'—;“_ =;~ A"Eﬁ “

let us discues first the ground state. Then ¥, has no
seros and sll the expressions given below have a preciao_ ne-
aning. In case of excited states romplications emerge due bto
zeros in % +» This case will be considered later,
Substituting (6), (7) iuto eq, (3) and expanding 1t in

A we arrive at the following set of linear equationst

a(%lih) = (EH - Qn)%l ’ 9." = -V‘(Itabt founction) (8)

Here Q‘=V’ snd forn > 1

n-!

Qh =~ Z f“. y”_'. , (9
(=1

and (8) coincides in fuct with he k -aimensiopal electro-
statics lew, 'f‘l and 9‘” playing the roles of die-
leactric permesbility and field stremgth respectively.

| et us discuss now the 5oundar: conditions relevant
eé eq. (8)s In this psper I conaidér only stationary sta -
tes. For such states invoking the definitions Yo and
'\i,, one immedistely finds:

Ig;' %1’ —~0 for [x]-» o= | (10)




Phig condlticn can be resdily converted into information
about [i, o« To this end ivtegrate eqe. (8) over the who-
le space and transform the volume inteprsl in the left-hand

slde into the surface one with tbe belp of the Gauss theoram;

then
/6’., W%

En = -
Jwiax

Thls expression represents the n-th correction to the unper-

(1)

turbed energy level. Notice, that the first correction (9 »
= 1) coincides identicelly with bthat in ordinuary Schrodinger
perturbation theory 1 « To obtain further corrections it

1a necessary 40 solve the electrostatica problem (8), which L
is egquivalent, in general, to integration of the following

general elliptic equations

AY, ‘"1.(%"—7’%):5""9" (12)

with the boundary condition (10). Recall that in eq. (12)
-~ D4 .
Yon = v, » and F, 18 given by eq. (11). It is im~

portant that the integration of eqe. (12) is not an eigen-
valus problem since it is assumed that 6?” is already
known from previous iterations (see eq. (9)) and hence [f”
is known also. This messns that (at least numerically) it is
such simpler to solve eq. (12) than the original equation,
{(1).

Now let us turn to determination of corrections 7; ‘o
In general case the solution of egs. (8), (10), (4,4') is

of the form

n



. - - [] 2 y=~!

v2g. - JCE-RE a)gtar o
where G (k- ¥') is the relevant Green's function. In
the specisl case of the spherically symmetric zeroth approxi-

mation, vgl s this Grgen's function 1s known explici-
tely |
- —
G-k(7=-'—~~:x'z w
% 1% |

where 6 =27 /() s the square of the K -ai-

mensional unit sphere. Then the solution of eq. (8) iss

)2 _ o —x 1
Whee Jisr E-lwtae P
Notice that the gener&l solution of arbitrary 1 -di-
mensional pfoblei is al;o,given by eq. (15},
A few more remarks abott the situation in the { =di-
' mensionsl problem {eand also in sphefically ay-etric aulti-
diwensional problem which reduces trivially to the { -ai-
mensicnal one), In this case the transformation (2) is well
knownt it converts the Schrodinger equation into the Ricce-
't1 equation. After the pioneering paper due to Zeldovich
3 many authors emphasized 47 ithat it is extremely im-
portant and convenient to proce;d from the Schrodinger
equation to the Riccatl one-the trick allowed to construct
easily various v ‘sicne of the perturbation theory for dis-
crete spectrume. In particular, one of the versions as ap-
piiod to the problem of 1 -dimensional anharmonic oscil-

lstor was developed in Ref.df e fBereral formulas for ar-
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bitrary potentiale Vo and Vj weve proposed independent-
1y 4in Refs. 6 and 7. Besides that Ref, 6 contains slso an
- exheustive linvestigat;ion of excited states. -

Let us sketch the dasic points of the procedure proposed
as applied to excited states (peéan that the previous con-
sideration refers directly to the ground state only). The
main complification which enefges for excit~d states is the
pi-es'once of zeroes in the wave function. Assume that the po=
sitions of these zeroes form a manifold ,S'  For simplicity
let us assume S to be a simply comnected, non-self- intere
secting au.r.fat.:e'. Then the wave fu.nctiqn can be represented

in the to;n
V(%) = (%) "‘P{“ f{ﬂ] (16)

where 7‘ (% ) and L (R)  are nonsingular for finite
- X end f (%X) grows at [X[— o= not faster tuan a
power of /x| . Besides that [(%) = 0 ena VH®) £o0

when X g 'S' o With these definitions vector 9' (see
6qd) takes the forms
- o ¥f
Yy=19 f ' 7

where 9' =V L(X) .« (in analogous notation was introdu-
ced in Ref, 6 for { -dimensional case). Substituting eQe
(17) into (3) and wultiplying the resulting relation by £

we arrive at

](65.‘}[5'2‘4/*15'?/: E-VIf s

Let V=V, +AV, and Y, denote the solution of




P

ag. (1) with some /."o end V,, » Develop 1now a pertur-
bation theory for K aend 9’ -7) s @xpanding in A the

fourekion { 3

fetordfadthe. =ZR"/,, (19)

To the first order in A y after some simple algebra one

tinds

g, + T (4T -ATA) (B

where the subscript " 0 " lebels the gercth spproximation.
Integrating eq. (20) over the ahole space and taking into
account the boundary condition (10) one obtains an expres-*
sion for E1, which coincides with eq. (1) 8t n=1, The solu-
tion (20) has the form

¥'g, * R4, -4 ¥4) = f(;': [(F-F)E v dE @n

.
where G-‘_ x ( Xx-x ') is the Green's function for equation
(20) (fixed by eq. (10) and the requlrement that y., and
g"‘ satisfy eq. (4 )), One more constraint on the Green's

functions it is necessary that the right~hand-side of eq'.
(21) would be a vector directed along Vfo when 5("6,5‘0
Then some information concerning the deformation of the sur-~

face ,S'o can be extracted from the condition
A SR ERE i
](; - bE ¢ 2 y X€ So
[/ -l
e (Th)

A more detailed consideration of the excited states is out

(22)




of the ecope of vhe present peper and will be given elsewhe~
re,

Sumwarizing, 1t turned poseible to construct a perturba-
tion theory which does not require the knowledge of the enti-
re spectrum of tﬁe unperturbed problem. An interesting issue
is the possibility to make the perturbation theory convargontbﬂ!z
To realize such a possibility one can rely op the freedom in
choosing the zeroth approximation, Yo - In other words we
can decompose the potential V into a sum Vo + \(, al-
most erbitrary, It natural 50 choose 9 and the correspon—
ding potential V, (V= E, + 41"0/%) in a such a way
as to incorporate in Vo and the gross features of V .

Just in the same way ope would act if one decides to solve
the Schrodinger equation using the well-known variational
method, This similarity is not accidentel, Really, denote
by EVM. the energy, which one would obtain within the
variational method (with the ¥, as the trial functiom). .
Phen it is easy to show that this energy is reproduced by
the first two iterations of the procedure deacribed above,

Evar = E, +E, ' o (23)

Whet is more important is that the procedure proposed goes
beyond the variationsal neth&d. Further iterations (higher
order term in the series (7)) give corrections to the vari-
ational results. Thus 1t becsawe possible to find the eccu-
racy of any variational calculation.

Raturally, if one fixes Y/o in such a wsy that

Vo=E, +AY /Y raproduc:s all the singulari-
ties and asymptotic behaviour (at [ X I —> o> ) of
the difference V-V, =V can be considered ae a




rood small perturbatione Daveloping the perturbation theory
"a1nh respect ‘lvg opne doea not encounter singularities

in the A plane, at least for a certain domain of A . Whe-
re bpe boundary for this dowain lies becomes clear from the
physi‘eal aréunenl:s which relate the emergence of the eingu-~-
larities with a drestic rearrangement of the srectrum: for
some "critical” values of A a level elther becomes gua-
sletationary or goes into continuum.

As example let um consider the ground state of 2-dimen~

" sional anharmonic oscillator with potential

V= m{xls*y’) +3(X"03#41cx‘3‘) (24)

Then,c;he of the s”iiplest triel wave functions has the form
- VY 1

¥, = exp{— %(x2 f,") _3! (xu,‘) } (25)

Function (25) 1.3_ the ground ateate wave function in the po-
tential (F; =2a)

V= 3G g 2a (g e g (e 1y 20T) 29
and hence the perturbation is the following

f W sttt 2
szfj'(x'},’) —atrley )-Iowl:(x +3) +M(x‘+f’+,[(c-4)zx j‘] @7

Obviously, the ground state ;nergy heas a singulari-
ty at C = -1. Therefore we will chpnge the parsmster C
from -1 to 1. Besides from that, we will liniiin the ex-
preesion (€, 451) on peramster Q and will cal-
culete the energy shift Ez « Table confronts my re -

10




sults with numerical calculations a o Discussions of d8 =~
tails of our calculations will be published elsewhere,

It is pleasure to thank X.G.Borsskov, B.L.Xofie, A.B.Kai~-
dalov, K.A.Ter-Martirosyan and V.d,Feteyev for useful discus~
sions end I an greatly indebted to Yu.A.Bimonov for valuable
comments., I want to thank M.A.Shifsan for resding of the ma-

nuscript end critical remarks,
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at

Ground state energy of the anharmonic oscillator (24) at
of (B,+Ey), E, &ives the first correcticn to the variavioml result (Eg+E;)g qe E

Definition of energy as Ref.8 (at L =%, ses p.319).

exac

Iable

=2, Parameter 8.4 Tealizes the minimm
" from Ref.8.

j a =0

c -1  =0,8 =0.6 -0.4 -0.2 0 0.2 0.4 0.5 0.8 T
smin  O0.II  0.I8 0.24 0.30 0.35 Q.41 0.46 0.50 0.55 0.59 0.64
EgtBy 1195 1,231 1.264 I.296 I.326 I.255 I1.383 I.410 1,436 1.46I 1.485
B, 0.039 0.029 0.®I 0.0I8§ 0.0I2 0.009 0.007 0.005 0.004 G.003 0.003
EgBp+By 1156 1,202 1.243 1.280 1.314 I1.348 1.376 1.405 1.432 T1.4%8 T.482
Eexsot I.I08 I.I72 I,22I 1.264 1I.302 1.336 1,388 I.3% I1.425 1.452 I1.477

s —

c -I 0.8 =0.6 -04 -0.2 9 0.2 0.4 0.6 0.8 I
Spin 0.43 0.4 0,53 0.5 0.63 0.7 0.72 0.76 0.80 0.83 (.87
BBy 1,498 1626 I.562 1.5 1.502 I.525 I.648 I.670 1I1.692 1I.7I2 1I.733
By 0.024 0,019 0.0I5 O0.CI2 0.009 0,007 0.006 0.005 0.004 0.003 0.005
m I.47¢ 1.50" 1,837 1.566 1.593 I.518 I.542 1.565 I.688 1,709 1.730
Boyact I.444 I.484 I.5019 1I.551 1.580 1.508 1I1.633 1I1.658 I.681 1,703 1I1.724
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