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I propose a new perturbation theory for solution of

the k -dimensional Sshrodinger equation wlfcj» arbitrary

potential* It doe* not require the knowledge of the entire

spectrum of the unperturbed pr&blen and girea closed exp-

ressions for the energy shifts. The procedure is a genera-

lisation of the varlational method and permits to find ita

accuracy. Two dimensional nonsymmetrie enharmonic oscilla-

tor is considered as an example*
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Xbe eigenvalue problem I» oce of the bade subjects ef

Quantum Mechanics* In numerous application* one often need*

to find the bound atate energies and wave functions, and

usually this la done with the help of a perturbation theory*

She standard perturbation theory expresses energy and wave-

-function corrections in terms of sums over intermediate sta-

tes or in terms of integrals containing Green's functions»

In other words the knowledge of the spectrum and wave fuao-

tions of the unperturbed problem is presupposed* Such an ap-

proach besides purely technical difficulties posseses a

principle drawbackt the resulting series is as a rule diver-

gent* Che reason is simple* In most of the physically inte-

resting cases the perturbation is more singular than the un-

perturbed potential* Thus» the most interesting strong coup-

ling regime is completely out of .the scope of the method*

Another widely used approaoh - variational - is not itera-

tional in nature, and hence the question of its accuracy

In each particular caee requires a special investigation*

Sere I would like to propose a new iterations! techni-

que which permits to determine the stationary states of tbe

multidimensional Sohrodingei equation with arbitrary poten-

tial* It ia important that no information about, the entire

epeotrum of the unperturbed problem le needed* The energy

shifts to any order are given in quadrature* the computa-

tion of the corrections to the wave functions is equiva-

lent to solution of multidimensional electrostatics with

variable dielectrio permeability. In some particular ea-

ses corresponding equations can be solved analytically*



Р г «nsfcanc*, this is japb what happens whrm the unperturbed

wave function is spherically symmetric. In other canes the

«qtiahionr чп be really integrated numerically. It: is worth

mentioning fchafc the яс.Ь°ия proposed general 1 nee in а sense

develops the mil-known variational method. In fact each g*-

ren ferial function within fch<? Isfcter сэп be considered a? a

wave functd/m of the zerofch approximation in my scheme.

Further ifcera<?ionfl yield consequent corrections to the Tari-

atJonal-n'tthod-baeed. results*

The central point is the freedom in choosing the unper-

turbed potential. One can always епооье 1Ъ in such a way aa

to make the procedure convergent. Below the general descrip~

tion of the technique is presented and its application to

the two—Jiwerirlo'ial nonsyjimetrin anharmonic oscillator ie

»id rigorous results coneer-

nivtr, fcbe conrergcnce of fche m««tb:>d are diecussei elsewhere.

The startins; point is a certain transformation of

the к -dlmeneional linear Schrodlnger equation,

into a nonlinear equetlon of a lower order with a right-

-hand side, (I will иге the term "nonlinearixation" for

this transformation). To integrate the latter ft new pertur-

bation theory is developed. After this is done the prcblee

ooETerte again into a linear one. In more Ляtell, the abo-

be~nention-?3 transformation is of the formt

7»b°re A and V denote the standard К -dimensio~



nal Laplace and gradient operators. In terms of the ner

rector field 4 the Schrodinger equation (1) reduces to

y* = (E~V) (3)

Щ» (3) ie equivalent to eq. (1) if the following additional

condition holds

7* -•

У — V (scalar function) (4)

or, in other worde, <j ie a rector field of the potential

type,

As to the boundary conditions for eq* (?) they will be dis-

cussed a bit later*

One can always represent the potential у as а вив

of two terms, V ~V
0
+XVi » "bare V

o
 1> uhosen

in euoh a way that the equation

A*,

can be solved exactly* Here Я ie a formal parameter int-

roduced for convenience! V
o
 will be referred to as the

unperturbed potential* There is no difficulty in decompo-

sing V s V
o
 + Л Vi t actually one simply fixes y/

according to certain rules to be explained below and then

сопя tracts V
&
 by means of eq* (5). Given fa on*

fixes the seroth order approximation for eq* (5), U
Q
 •

• — V*И» /u/ » Higher order approximations u
f
 ui ...

define the following series I



The bound etste energy is also represent?! in the form of 8

=2 (7)

bet ue discuss first the ground state. Then Yo
 h a e n o

•его» «nd all the exprnealons given below have я precise

suing. In севе of excited etafcee oonplicatione emerge due to

хегов I D U' • This case «ill be considered later.

Substituting (6), (7) into eq. (3) and expanding it in

Д we arrive at the following net of linear equatlonat

Here Q.a\A «nd for n > 1

and (8) coincides In fact with the К -dlaenelonal electro-

statics law» у and Ч
и
 playing the roles of die-

lectric pereeability and field strength respectively.

bob us discuss now the boundary conditions relevant

to eq. (8)* In this paper I consider only stationary eta -

tes. For such states invoking the definitions y
o
 and

one Immediately findsi

*o
 tor

 1*1-



This condition can be readily converted Into Information

about /r
17
 • Го fchisi «ml integrate eq. (8) over the who-

le ярясе and transform bin* volume Integral in the left-hund

eld» into the surface one with toe help of the Gauss theorem»

then

This expression represents the n-th correction to the unper-

turbed energy level. Notice, that the first correction ( f} m

m 1) coincides identically with that in ordinary Schrodinger

perturbation theory • To obtain further corrections it

is necessary -to solve the electrostatics problea (6), which

ie equivalent, in general, to integration of the following

general elliptic equations

with the boundary condition (10). Recall that in eq. (13)

jjLi"^Yw »
 aod

 Е-и
 lB giTen bj eq

*
 (11
^
1 Jt 1в

portant that the integration of eq. (Yd) is not an eigen-

yalue problem since It is aseuaed that Q^ is already

known froe prerious iterations (see eq. (9)) and hence Я

ia known also* This mans that (at least numerically) it is

•uch simpler to solve eq. (12) than the* original equation,

(D-
Mow let ua turn to determination of correctlone <7 '«

In general case the solution of eq«. (8), (10), (4,4*) la

of the form



where G (X- Sf ) is the relevant Green*e function* ID

the specie! case of tbe spherically symmetric xeroth approxi-

mation, ŷ , , this Green*s function is known explici-

tly .

where 6ĵ  = 2Ж™ / Г(
к
/г)

 ie tne
 square of the к -di-

•eneional unite sphere. Then the solution of eq* (8) iet

(15)

Rotlce that the general solution of arbitrary / -di-

mensional problem is also giren by eq. (15).

A few more remarks about the situation in the / -di-

mensional problem (and also in spherically symmetric multi-

dimensional problem which reduces trivially to the f -di-

mensional one). In this case the transformation (2) is well

known< it converts the Schrodinger equation into the Bicca-

ti equation. After the pioneering paper due to Zeldovich

' many authors emphasised ' ithat it is extremely im-

portant and convenient to proceed from the Schrodinger

equation to tbe Riccatl one-the trick allowed to construct

easily various »' eicns of the perturbation theory for dis-

crete spectrum. In particular, one of the versions as ap-

plied to the problem of 4 -dimensional enharmonic oscil-

lator was developed in Ref. 5 • Qeneral formulas for ar-



' bitrary potentials V
o
 and Vf «ere proposed independent-

ly in Refe* 6 and 7* Besides that Ref. 6 contains also an

exhaustive inrestigation of excited states.

Let us sketch the basic points of the procedure proposed

as applied to excited states (recall that the previous con-

sideration refers directly to the ground state only). The

sain complification which energee for excited states is the

presence of zeroes in the wave function. Assume that the po-

sitions of these zeroes forn a manifold /S • Por simplicity

let us assume Д to be a simply connected, non-self- inter-

secting surface. Then the wave function can be represented

in the fora

-X(*)}

where / (x) and X (%) are noneingular for finite

X and f (x) grows at /*/-* &** not faster than a

power of /*/ . Besides that /fx) a 0 and 7 /ft) £ 0

when Х*6 Л* *
 №
**Ь these definitions vector $ (see

takes the forms

У 1 У (17)
where q =. у J- (к) • (An analogous notation was introdu-

ced in Ref. 6 for 1 -disensional case). Substituting eq.

(17) into (?) and multiplying the resulting relation by yf

we arrive at

Let VsV^y-ЛК and % denote the solution of



«rj» ( ' # ) wtfcb ясная r Q <?л<1 Vo . D e v e l o p now a perfcur-

Iwii.ion t h e o r y for H илД а <•»•/ f expand ing l a A t h e

( 1 9 )

To the first order in A , after eome einple algebra one

finds

< г о )

where the subscript " о " lebele the eercth approxLaation.

Integrating eq. (20) over the arbole space and taking into

account the boundary condition (10) one obtains an expree-
4

6ioo for £j, which coincides with eq. (11) at nsi. The eolu-

tion (20) has the fora

where \т^
%
 (х-•*') !• the Green'e function for equation

(20) (fixed by eq. (10) and the requirement that <Ji and

q eatisfjr eq. (4 )). One «ore constraint on the Green*в

function! it is Deceesarjr that the right-hsnd-eide of eq.

(21) would be a vector directed along V /
o
 when Xe

r
V

o

Then eoite infornation concerning the deformation of the sur-

face p
0
 can be extracted fro» the condition

(22)

к шоге detailed consideration of the excited states ie out



of bhe scope of vhe present; paper впЛ will be given eleewhe~

re.

Summarizing, it turned possible to construct; * perturba-

tion theory which does not require the knowledge of the enti-

re spectram of the unperturbed problem* An interesting Issue

le. the possibility to make the perturbation theory convergent •

To realise such a possibility one can rely on the freedom In

choosing the «eroth approximation, % . In other words we

can decompose the potential V into a sum \/
0
 + Ц al-

most arbitrary* It natural to choose % and the correspon-

ding potential. V
o
 (V

o
 - B

o
 + A fo/% ) la a such a way

as to incorporate In V
o
 and the gross features of V' •

Just in the same way one would act If one decides to solre

the Schrodlnger equation using the well-known rariational

method* ТЫв eimllority is not accidental. Really, denote

by £1/. the energy, which one would obtain within the

Tariational method (with the % as the trial function)*

Then it is easy to show that this energy is reproduced b/

the first two iterations of the procedure described аЬоте,

What is more important is that the procedure proposed goes

beyond the variations! method. Further Iterations (higher

order term in the series (?)) give corrections to the vari-

ational results. Thus it became possible to find the accu-

racy of any variatlonal calculation*

Naturally, if one fixes % in such a w»y that

V = f -+ДУ{,/л reproduces all the singulari-

ties and asymptotic behaviour (at (Xf —*• o*=» ) of

the difference V - Vo - Vf. с*
0
 be considered ae a



rood snail pt?rfcurbafc1on» Developing the perturbation theory

with respect Д Ц one rtoee not; encounter singularities

in the / plane, at leant for a certain domain of Л . Whe-

re the boundary for fehie domain lies becomes clear fro» the

physical arguments which relate the emergence of the singu-

larities with a drastic rearrangement of the яреоtrue» for

some "critical" valuee of Я a level either Ь«*сотев qua-

eistationary or goes into continuum.

As example let ив consider the ground state of 2-dimen-

eional enharmonic oscillator with potential

Then
>
one of the simplest; trial wave functions has the fora

Function (25) Is the ground state wave function in the po-

tential

^
 ( 2 6 )

and hence the perturbation is the following

Obviously, the ground state energy has a singulari-

ty at С a -1. Therefore we will change th* parameter С

from -1 to 1. Besides from that, we will minimise th* ex-

pression (С
9
+€

л
) on parameter a and will cal-

culate the energy shift В% . Table confronts my re -

10



ц

suit* with numerical calculation* « Discussion* of de -

tails of our calculations will be published eleewhere.
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sions tnd I an greatlj indebted to Tu.A.BisonoT for Taluable

cowmmnbu. I want to thank M.A.Shifvan for reading of tbe aa-

nuecript впЛ critical remarks.



Ground atatt energy of the anharaonic oscillator (24) at f «2. Parameter вд^д r u l l i e e the alnimuB
of (IQ+S.,), B^~gi™» *be flret correction to the wriatlozBl result ( B Q + E , ) , ^ . E e x a c t from Hef.8.
Definition of energy aa Hef.8 (at «Д, •'. ••• P-319).

с
•rnin

E 0 + E I

~h
E Q + B J + E

Eexaot

С

*atft

"h

*«xaot

0.21

I.I95

0.039

2 1.156

1.106

-I

0.43

1.498

0.024

2 I * 4 7 4

1.444

-0,8

0.18

1.231

0.029

1.202

1.172

-0.8

0.48

1.526

0.019

1.507

1.484

-0.6

0.24

1.264

0.021

1.243

I.22I

-0.6

0.53

1.552

0.015

1.537

1.519

-0.4

0.30

1.296

0.016

1.280

1.264

-04

0.58

1.578

0.012

1.566

I.55I

a *

-0.2

0.35

1.326

0.012

1.314

1.302

a *•'

-0.2

0.63

1.602

0.009

1.593

1.580

0

0

0.41

1.355

0.009

I.34S

1.336

I

0

0.67

1.525

0.007

i.eie
1.608

0.2

0.46

1.363

0.007

1.376

1.368

0.2

0.72

1.648

0.006

1.642

1.633

0.4

0.50

1.410

0.005

1.405

1.396

0.4

0.76

1.670

0.005

1.365

1.658

0.5

0.55

1.436

0.004

1.432

I.42S

0.6

0.80

1.692

0.004

1.688

I.68I

0.8

0.59

I.46I

C.003

1.458

1.452

0.8

0.83

I.7I2

0.003

1.709

1.703

I

0.64

1.485

0.003

1.482

1.477

I

0.87

1.733

0.003

1.730

1.724
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