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INTRODUCTION

EREeSsoeERESEOey

The importance of classical action in quantum mecchanics

emerges the clearest way from Fevnman's path integral approach
[I]. To a path g in spacctime between x and x' is associated

the_amplitude
M(_i S(ﬂ]

where S(y) is the classical action along y 3 - the propagator

)

is expressed as .

Vi ) - .‘“_ <

k()= Jese[isw] Dy ®

@

(P being the "infinite dimensional manifold" of paths joining
x to x'.

¥e are not concerned here with the tremendous problem
of defining and compuiiug this integral ; we shall accept its
intuitive meaning and focus our attention to the amplitude (1),

The point is that in some interesting situations, as
in the Bohm-Aharonov_experiment [2] [3] the expression of classical
action may be ambiguous [4], in other cases, as for the motion
of a charged particle in the ficld of a Dirac_monopole [6], it
may be even ill-defined [5].

Motivated by ordinary gauge transformation, we introduce
the notion of guantummechanically well-defined action (Q.M.W.D.A.)

and the idca of equivalent (Q.M.E.) actions.

The requirement of having a Q.M.W.D.A. leads to guantum
conditions (like quantization of the monopole's strength) ; the
equivalence of actions provides us with a clagsification scheme
and with a simple proof of the C. DeWitt-Laidlaw theorem [7]
[8] [9] oh propagators.
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These results can be reexpressed in a rather clegant
geametric form : a Q.M.W.D.A. exists iff the system is prequantizable
in the Kostant-Sourian (K-S} sense [10] [l I] [IJJ. The classification
scheme turns out to be just that of ineguivalent prequantum bundles.

Our approach shows some similarities to that of Wu and
Yang r153 who describe gauge fields in terms of a “"won integrable
phase factor®. The relatior ix explained in the U(1) (electromagne-
tic) case. ’
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(M LocAL VARIATIONAL Systins [15][16)

Let Q be the manifold of al)l possible configurations
of a classical system. If we are given a Lagrangian function
‘T x R — R , the variational problem can be translated to
syaplectic terms [ll] N [243 N [25] :+ from L we can derive
a t-form (S such, that the Euler-Lagrange equations have the
geometric form

% ¢ 'Ker dO
(3)

The curves ¥ satisfying (3) - the lifts to TQxR of the classical
motions— are the extremals of the variational problem.
6=d8 is a presymplectic form on the manifold E = TQxR ("evolution
space").

Souriau proposed [ll] to enlarge classical mechanics
by describing systems with such a pair i_E.O') » without bothering
about Lagrangians. The existence of a Llagrangian fuenction is,
however, a basic requirement in mechanics [23]. Also, as it
will appear from the discussion which follows, (Sections 3, 4,5)
in order to have a meaningful quantization procedure, we need
some additional condition which rulcs out the velocity-dependence
of potentials.

The exact relations between symplectic and varjational
description are the best established using the homogeneous :'ormalism

073, [11], [15], [16] which ve review here briefly.

Write X = QxR for (configuration) space~time, denote
TTX>E (g .= TOxR) the projection given locally as
ﬂ(x.i):(ﬂ.-?,k) , where x = (q,t) , X = (§,t) ; suppose
T > 0 . The homogenized Iagrangian reads L (%,%)= tLere
-We have then a unique 1-form A\ on TX such that for any curve Yy C TX

( Loyt dT = [/\ )

.\,
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where T — YT y= (Y‘I'(\l X‘I?)l y_im'xi ('n) is any parametrization
with dy, /dT >0 .
Explicitely, /A is the fiber derivative of £ [18],

A= dJl

(s)

(recall the definition of (i : ..
" For a function {:TXx-sR d} '-'Oi/a;("y)d‘“j the extension
to forms is made by the requirements

d{dx*) s ‘d(dk~) = O
. . g L H
d(wap)s dWap s -0 3 wadp

this A is

- semibasic,

A Q (%, %) dx™

e, %) (6a)
- homogeneous of order 0 in %y for Oz ¢ € R
Qo (X, %)= QA ix,cx) (6b)
~ of the form
A = 1O (6¢c)

with a i-form © on E (this is just the usual Cartan form
[_ll], used in (3) ).

Conversely, if we are given a A with these properties
(6), we can always reconstruct a Lagrangian func:ion

~
ot
L(ct,v,t)-ZV O (q,vi) ~ Q.. n
xad
Thus it is justifsed to call 1-forms on 1X  satisfying
{6) plobal variational j-forms s (TX ,A) _ is a global variational
system. ’

80/P.1182
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Denote 3. = LA 5 them L is regular (i.c. © L/ )Vr'.
is a regular nxn matrix) iff

diwa Ker 3 =2 (8)

If (8) holds then the smooth distribution 1x,%)—> Ke;Z,,,,;, is
integrable : the characteristic leaves [13] , [IGJ (which are
in 1-1 correspondence with the curves in E  satisfying (3)) are
2-dimensional submanifolds in ™ . They project to the world
1ines 3in X , and thus it is justified to consider these leaves
as the generalized solutions of the variational prablem.

Z satisfies [14]

d",z =0 . (9a)
Z = T'C* & , o, presymplectique form on E  (9b)
T =0 (9¢)

In our case O = dO .

This is just this condition (9¢) which singles out variatio-

nal system among (pre)symplectic ones.

Unfortunately, global variational systems do not exhaust all

the physically interesting situations : for a chargedparticle moving in
the field of a Dirac monopole (see example [l] below) for instance,
no glotal N exists. Conditions (9) are however satisfied.

On the other hand, Klein has shown [l?] that {9) assures
the existence of a local variational description at least,

Theorem, Definition 1.1

Let 2. be a 2-form on TX satisfying (9). Then, in a neighbourhood
of any point at least, the 2quations

80/P.1182



.

2= dA or 6= &0 (10)
admit solutions such that A (or ©® ) satisfy (6). Such 1-forms
~will be called local variational or action forms.(T)l'.Z]or (E. o—)

being a local variationmal system.

"It is well-known (e.g. [191) that the possibility of

extending a local solution depends on the topology : if W (TX,R)=0

every local solution of (10) extends to the ejsire TX (or E).

Proposition_ 1.2

Let /A and /N (or®,®’ ) be local variational solutions of
(310), then in the intersection of their domain

K= A=A = O-0.: Aqiidg + Viquide ),

is a_closed 1-formon X, da =0,

If this intersection is simply connected then &X' is

exact.

Proof o is obviously closed ; a closed semibasic J-form can
not depend on X .

Theoren 1.3 [15], [16]

i (E,6) is a regular local variational system, Ke«TUG defines
a foliation of TX by '2-dimensional leaves, These leaves-considered
as generalized solutions of the "variational problem-project onto
curves in X .

Thus, at a purely classical level, these systems admit

a completely satisfactory variational description.

Remark 1.4

If we replace (8) by dimkerZ-2K |, ¥ > 1, the whole formalism
keeps on working ; this allows for including spin [lsJ. We study
here, however, only spinless systems.

8o/P.1182




In what follows, we shall use the (E,G‘) setting, ()
and (9) supposed being satisfied.

Congider first a global system with action form
© . For ycE set

{
Sn= |0 (129
T

and call it claysical action along y . (If y< X is a curve, lift

it to E : call the lift again ¥y to save characters) ; by (4),
(12) reduces then to the usual expression).

Note however, that his definition is ambiguous : we
are always allowed to change O to @' which alse satisfies d®'= G
the requirements (6) imply (Prop. 1.2) that ®@'=@» X with a 1-form
& on X . This has the effect of changing (12) by an additional
term So( .

[4

If the configuration space is simply connected, then
ol is exactiok= 4 with §: X —= R ; thus the additional term
is just a comstant {{n')- £m§ , which changes the amplitude (1)
and thus the propagator (2) only by an overall phase factor

€ 'y = 2ep ;‘;-\H"'“?“‘k (13)

which is physically unobservable,

However, if the underlying space is_multiply connected
(as in the Bohm-Aiaronov experiment, see example 2 belaw), this

§0/P.1182
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term will depend on y oand will chanee essentially  the physies

oxsential’y
at the_quantum_level.

For local systems the situation is even worse : an
action from (').,( exists only locally, over an apen set (L,( .
Consequently, the corresponding classical action S_L( 3)y= \ (.
will be meaningful only for paths .1 contained c‘:'ntire]y in

Ua -

But cven for such paths, we have an essential ambiguity:
if we change \U.JIG),_)\‘(\ \Uq, UiY with yo Upn, then the new ‘:),.(;)' S\-)(\

will be, generally, completely different from S.tyy (see Example

1 below). This is due again to topology: U, nl, may be non-

simply connected, and thus G)‘ -t)ﬁ may be not exact, and so
C - (3
Satn = St SK(% Cp) (14)
{ .
will be path dependent. Consequently, for Jlocal systems, it is

generally meaningless to speak of classical actions,

8o/r.1182 .
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A QUANTUMMECHANICALLY HhLb—DhFINLI) ACTION

Fortunately, as it is clear from (2) it is the amplitude
{1) vather than the action itself, wsiich is important for quantum ¥

mechanics.
Consider a local system (E,G) .

Definition 3.1

The eclassical action is guantummechanically well-defined (Q.M.¥W.D.)
if to any choice (U.A RC) _‘) , and any path ¥ whose «nd points
X, %' belong to L, , we can associate an expression

v N »
“‘P[_E 34‘“] (15)
such that

a) a change (u‘,e‘)-)(up'q‘)introduces merely a phase factor

'uf[t S..(x)]: (_,‘P(x'.x). .u.(:[‘l_‘ Sp(x)] ’ (16)

where l(.q\‘k‘.x)l—‘-i ,C,‘p(k'.x) depends only on
X;%' and not the particular path 4 bztween them.

b)  for ¥y W, (15) reduces to M"[ ‘l”] vith S_(y)= \@_‘ .

If a Q.M.W.D.A. exists, then a change (L‘« .G-) ——)(u{;,@n)
will introduce only a phase factor in the propagator (2),

Study first paths in U_,.nup - It is easier to use
loopss

Proposition 3.2
If a Q.M.W.D.A. exists, thes for a loop Yo U.',.nup , we have

Jw‘;[{ S,«xs] = uf:[i‘ S(,w)] (17)

80/pP.1182
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Proof : Jn fact, split uwp ¥ 0 Y, Y. 3 apply (16) to
-1 . s . . -
Yo 204 ¥;' 1 divade, noting that n,‘fu‘ 5(5,] . Q‘FL'& Sty 1)] )

In other form :

Prngositioh. 3.3

A mecessary condition for the existence of a Q.M.W.D.A. is that
for a loop \(cU‘nh{‘we have

U-e[i" @;((3,-@(,)1 = 1 (18)

It may happen, that it is possible to pull ‘"cans"
4, and %o over Y in U_k resp. u{v. , each cap being diffcomorphic
to RY; 2= A, vAp  is then diffeomorphic to S* 3 let's apply
Stokes' theorem to 4, resp. 4p ) we get @

Proposition_ 3.4

(17) 1is equivalent to

L (e ez
4

274, (19)

In Section 5, we shall show that these conditions are
in fact sufficient.
Remark 3.5
As O,(-G,, is in fact a 1-form over X ,(Prop. 1.2) (18) amd
(19) hold if they hold for loops, resp. 2-surfuces in X ,

EXAMPLE 1 (Chargal particle moving in the field of Dirac's monopole)

Suppose we have a magnetic monopole of strength P3
fixed in the origin , an electron moving in its field has the

symplectic description [12] Q= R~ {03 ,E= TQ«x & o e;r“q e By, Ce.

6 = d{mvdq - wat di)- g (l%,-”“t‘.‘*‘i) (20) -

80/r.1182
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1t is ecasy to sec that no global C] with G‘;C,L@ (and
thus no global vector potential), exists : if 6 was 40O ,
\6' would be O by Stokes' theorem § however one computes at

once that S(T= (lﬁtz .
Y
Nevertheless, local solutions of (10) can be found on

any chart corresponding to U-Mz R \{a “"string " in the direction
of «:\k c.g. -

@4:_\ = {”“"d“i}“‘%“u‘g « e ATq ) da (21)

with thelocal vector potential [_12]

ir) t] ' $
A = ~3 — (22)
C\ * “” <'.‘.‘:‘1‘>
The ambiguity in the classical action can be tested on W ~ u(o 0,1y !
[t }

U(fu(o,u,-n , Yo ={eesg e 0) with O¢ <27
(the equator)

J& = GTTey (23)

(RS

S-S e hA N
¥

Thus a Q.M.W.D.A. exists iff the monopole is quantized asg

2.3%_ = Jf’\k Ke Z (24)

More generally, one shows that a Q.M.W.D.A. exists iff

u{a{_‘b—\‘ @A,‘] (25)

has the same value for all ¢ (with b—l=d9.¢ ). (25) is just
the phase factor of Wu and Yang [14} V,

Bo/P.1182



A CLASSIFICATION SCHEME. THE PROPAGATOR
IN MULTIPLY CONNECTED SPACES [4)

Let's consider a global system with multiply connected

cenfiguraéion space. The general solutien of (10) among variaticnal
1-forms is by Prop. 1.2 '

0- 0,

(26)

with 90 a particular solution j as a consequence of (6a), {(Ob),
o is a l-form on X

K = A(%“Aﬂ(-. \((%H(U: (27)

Definition 4.1
Let Qfe,)nlL and G’f‘ﬂ:"& two actions forms for a global system. Two

expressions S, ()= S'G‘ and $,tr)= Sr(.)‘- are told
to be quantummechanically equivalent (Q.M.E.), ({(denoted also

Gt~ O‘_ ) iff

uF[_éSﬁx)} = c (u'.x).u{;[és‘w)l . (28)

with a phase factor C(x),x) depending only on (the projection
outo X of the) end points of y; Vv ool=4

Proposition 4.2
Gt“'ez_ iff for any loop y

ut?[; @(9,-9‘{‘: u_p{-\é %xu.-om] ) 29
4
or

A 1 .
vl (b(G,—G‘) * &(o(,-oh) 4
¥ ¥ (30)

80/P.1182



(As the space is not simply connccted, Stokes' theorem does not
apply, and thus we cannot transform this to integrals over 2-cycles).
Again, by Prop. 1.2, we can limit oursclves to path in X .

¢) /\] is studied the ecasiest way if we climb to
the umvers‘l covering LX ™ ,?) of X : ¥ = QxR, where
is ~he uriversal covering of Q@ ; TU is the (first) homotopy
group 3f Q{and X) 5 P : X 3 (§,t) = (q,t) € X projection.

Set o = T”'o( . As ¥ is already simpiy conmnected,
'5(=d-’f , with -{_;—" R
Let y< X be any path,x ¢ ¥ , TeTPYw y bas a un:que
lift fro ¥ through ¥ . Evidently, S A - &;4
3 3
In particular, if % is a closed loop ? will end
at gX , where <l=[\'] is the hom.topy class of { Consequently

‘-

@O( = (%x)— LS (31)
Note that (3!) depends only on g . Thus
Proposition 4.3

is well-defined, and is in fact, a character of the homotopy group

TT. In this vay we get the following classification theoresm:

Theorem 4.4
@t-\.@,_ iff for any locp ¥y

e o[ 1) o[t 5]

where ok = LB]’

80/p.1182
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The different situations zre thus labelled by the characters
of the homotopy group.

Now we camn prove an interesting theorem,\_‘:]first stated
explicitely by C. de Witt and Laidlaw [7J {see also [8),[9]).
Consider x,x'¢ X , let @ be the set of paths between them
y choose any @¢ ® y any Y & %  can be written m %o homotopy-
as Y= @+ ., vhere {3 is a loop through x . ¥ and a/‘ are
homotopic if (! and (9 are. The classical action is

S e Sey) + Sd o) &_(ol (30
e I

vhere  5,(3) = S (—)o
1

Rete that
- \d is independent of p denote
[} \
""'P{i'\ S"] =: ¢ . (35)
H .

- &.P[t (s)o(] = )u%) , with 9 =\_l;] , is constant on a homotopy
1S

class,
- define the partial amblitude

\(}( k) = é)up[t Soq’)] Dy (36)

vwhere ?% [N (9 is the class of paths in (S) labelled by the same

gs asP:=y (P} , the additivity of the path integral gives
qe TT

Theorem 4.5

K(K'.¥)= LZ x[%) K‘i(x‘,x) (37)
qeTT

(a different choice in @ , the map Y- (\ , or in @° introducgs
only an unobservab’e phase factor.)

80/pP.1182
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CXAMPLE 2 ° (Bohm~Aharencv Experiment) [2][3] [4] [14]

As the electron is classically excluded from the interior

2
of the solenoid, the configuration space is R~ {a disk}; the
presymplectic form is just that of & free particle restricted

to TR : Q= 62 . It is of course exact, 6 =d@, wath
yeg
TOIIR

t
3 = - ~ wa ¥ dk
OO O s\“ itad (L'L 2z

But, as we have pointed out, we can add any l-form

K= e (Alrhg)d.cP * \/(%‘t)pu. )

with At =0 . However, as Q is not simply connected

~3df-

Now, as far as we take seriously geometry and do not
look into the solenoid, there is no reason to call A, resp. V,
vector, resp. scalar, poteantial ; in order to identify them, we
have to consider our systemr o be the part of a larger one, consisting
of the electron and the solenocid and the magnetie field.[]],[&l

The homotepy group is here Z , thus th2 characters
(32) are written as

sy« (uelE4A1 Y+ (ool2] )

Yo being a loop going once around the solencid ; Cp is the
enclosed magnetic flux.

Here we recognize again the n-th power of the _non-integrabie
phase factor of Wu and Yang [14].

Theorem_ 4.6

Two expressions of the classical action aze Q.M.E. iff the correspon-

80/P.1182




-16-

ding Wu-Yang factors are the same : G);— L‘))_ iff X, (4)- Xz( 1)

iff
! i : ‘{L ] .
q)‘ q,)L —= K , ke 2 (38)

[

confirming the conclusions of Bohm and Aharemov. { 4. = 2tk )

80/P.1182
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2 PREGUANTIZATIO

The fact that conditions (18), (19) are sufficient to
the existence of a Q.M.W.D.A., will follow fromwoting the :-elation

to prequantization.

Theorem 5.1 [2 1 ]

A Q.M.W.D.A. exists iff the system is prequantizable in the
K-S (Kostant~Souriau) sense [10],[1 1],[]3].

Proofl H By Weil's theorem, the system is prequratizable iff
(18) or (19) holds. They consure the possibility of constructing
a U(1) principal bundle Y over E with connection form (> whose

curvature form is (TC* 6 ,TU: Y- E being the projection.

On the other hand, if the srstem is prequantizable,
then, for any path y in E , and Y;g eTl"“é) with 9 ¢ ¥ ve have
a unique horizontal lif« ?through T .

v

If rcu_‘, where Y has the local trivialization TC-,(U‘)'*U“x Uis)
% is written here as ? = (Y, z") s furthermore, [12] [13]

Z = (o) H S

T ay “‘Ptt\ "‘"’] (39)

{ y being parametrized by t €{0,1]; % ‘(“é. ZJ“’))‘ ).

Thus, the classical aczion can be recovered by dividing

the “heights“above a U, of the horizontal lift of y .

Now if we change our local trivialization, the new expression
will be related to the ¢ld one as

z® 0 - zdptﬁ)- 7%(0)
271y Z., () Z%(a) (40)

wvith \j’: Y (4); the Z‘p's are here the transition functions of the U(1)

bundle Y .

80/P.1182
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For local variational systems the transition functions

depend only of x , the projection of y onto X  this is the
consequence of fact, that in (18) we could restrict ourselves

to paths in X - by (11). Thus
g (¥x) e Zap ) )
24\(‘1')

will be a phase factor required in Definition 3.1.

On the other band, as the horizontal lift of curve is
well-defined independently of any local trivialization,

24(1) and Z"(i) will have a meaning as soon as y and

? are contained in U 4 ¢ even if ¥ gigzags out and back from

U" Let's define " &W{i S‘“,] 1t,hen Jjust by (39) 5 this will
give a Q.M.W.D.A., as required {cf. [SJ).

Q.E.D.

Consider a global system (E.G) . It is always prequanti-
wable: Define Y= ExUl4), 7T Y 3(\3.2)—qu; if @ is a 1=
form on E with d©-G", then

Q

z.

W= Tt*6 4+ 'h'[

N

(42)
is a connection form, and any solution is written like this.

Two such comstructions are told to be equivalent, if
there 2xists a diffeomorphic map F: Y->Y projecting onto E as
identiiy, intertwinning the actions of u(1) and carrying one
connection form to the cthers. (’l-: is then necessarily of the

form F l\i,l)= (ka, Figrz) with 1Fle 1),

As it is well-known, if the underlying space is not
=imply connecied, we may have different inequivalent prequantizations
for the same classical system. We propose to rederive this theorem

(0], [11], (13D by establishing

80/P.1182
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Theores 5.2 [4:]

Let O, O, be action forms for a global variational system(E,q) .
Then G;and G, are Q.M.E. (Def. 4.1) iff the corresponding prequanti-
zations are equivaleat in the priguantum bundle sense.

Proof : If F Y, w, 'ﬁ\-itf‘w‘;ﬁ):namap establishing the equivalence
. between the prequanth.ations,then?'w‘_x w, implies that 91-@2_~ kﬁ—f
and thus, for any loop y, we have ¢

el § g@L] = acp[t 6;0} Jie. ©,~0,
L)
On the other hand, write c’.'f*-@'- 51. (notation of Section
4) 3 then Q‘x(;j‘_inpl:les that rl‘)-_ .,.‘?[;‘ f“’a’ is well-

defined ( ;3 € Pt ) ’E“l\z"': (‘1 s P z) e tablishes the
equivalence.

§0/p.1182
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8% RELATION TO THE WU-YANG APPROACH TO CAUCE THEORY

weeszzco=a =szrecsc-ccTaseEasEagss==SsR ==

Primarily interested in describing the quantized motion
of a system, we investigated the conditions under which the ampl § tude
(1) is well-defined and is unique. In geometric terms these properties
could be expriysed using the prequantum bundle LY\N,TI) .

On the other hand, in their approach to gzauge theory,
Wu and Yang [14] proposed to study an expression slightly similar
to the amplitude (1), namely (in U{1) case)

“‘P[\f é{A“dx*‘l : (a3)

In our examples (monopole and Bohm-Aharonov experiment)
also our conditions turned out to depend on this expression. It
is not difficult to understand that this happens quite generally,
at least for electromagnetic interactions.

Electromagnetism can, in fact, be conceived as constructing
a U(1) principal bundle P with connection form £ above space-
time [21], [22]. The curvature form of this bundle is just then
the electromagnetic 2-form F .f has the local expression

dz
E‘ = o 4 & iz . (44)
where the local i-form of is written as

A= eAdx® (ceAjdqia V"“) ‘ 45)

The existence and uniqueness of this construction depends
on the "non integrable phase factor® (43).

Now, to see the connection between these two theories,

imagine that a particle with charge e and mass w moves ir the
electromagnetic field. In describing the interacting gquantum

On/n 1100



system  electron + field the latter can be studied by “hd W.K.B.
approximation. Then, the electron wave equation factors out from
that of the composite system ; the offect of the field is retained
by an interaction term ("minimal coupling®) in the Schrédiger equation

(33

Mirimal coupling has the following geometric expression
[_21], [22]: Let G, denote the symplectif form of a frec particle.
Then the prequantum bundle for the clectron + (passive) field
is constructed as

Y= ¢, 7 (46)

vhere ©Vy * TQx R 2(q,v,t)— (g, t):x¢ X ; the connection
form itself is written (with a slight ambiguity) as

dz
U=@0*E =Q;:>LC~U‘.\=L®°1 oL - t‘r‘z (47)
vhere C‘J‘, is the global action form (w\vd»:'r- M-‘-;:l at ) for 6,

Yow, as we have shown, the properties of the prequantum
bundle depend un the amplitude

2| L (0 +.x)]

[,, S, ® {48)
( Y C TQ+R ) ’

but S_{@o exists always and is unigque. Thus all the problems

of existence and uniqueness come from the factor upl-_%_ Sf‘l .
Finally, as ot projects to X .by construction, we can always
use curves ¥ lyimg in X . Thus, we can exg_ain the role of
the Wu-Yang factar , it is just the factor which determines whether
a test particle moving in the exterior classical field has a meaning-
ful quantum description.
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