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INTRODUCTION 

The importance of classical action in quantum mechanics 
emerges the clearest way from Feynman's path integral approach 
M J . TO a path j( in spacctimc between x and x> is associated 
the amplitude 

where Stjf} is the classical action along Tj t the propagator 
is expressed as 

Kl»',»). W U ^ ] ̂  (2) 
5 being the "infinite dimensional manifold" of paths joining 
x to x*. 

Vc are not concerned here with the tremendous problem 
of defining and compui.—ig this integral g we shall accept its 
intuitive meaning and foius our attention to the amplitude (1). 

The point is that in some interesting situations, as 
in the Bohm-Aharonov experiment [YJ fjj the expression of classical 
action may be ambiguous pli i in other cases, as for the motion 
of a charged particle in the field of a Dirac monopole foi, it 
may be even ill-defined ("si. 

Motivated by ordinary gauge transformation, we introduce 
:he notion of quantummccha^ically well-defined action (Q.M.W.D.A.) 
and the idea of equivalent (Q.M.E.) actions. 

The requirement of having a Q.M.W.D.A. leads to quantum 
conditions (like quantization of the monopole's strength) j the 
equivalence of actions provides us with a classification scheme 
and with a simple proof of the C. DeWitt-Laidlaw theorem f7J 
[8J f 9j en propagators. 
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These results can be reexpresscd in a rather elegant 
geometric form : a Q.M.W.D.A. exists iff the system is prequantizable 
in the Kostant-Souriau (K-S) sense [lo] [iIJ |_I3J. The classification 
scheme turns out to be just that of inequivalent prequantum bundles. 

Our approach shows some similarities to that of Vfu and 
Yang |15J «bo describe gauge fields in terms of a "non integrable 
phase factor". The relation is explained in the U(l) (electromagne
tic) case. 
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LOCAL VARIATIONAL SYSTEMS [l5][l&] 

Let Q be the manifold of all possible configurations 

of a classical system. If we arc given a Lagrangian function 

LtTQ x R —>. R , the variational problem can be translated to 

symplectic terms |_IlJ , [j^j r £ Z5J ! from L we can derive 

a 1-form © such, that the Euler-Lagrange equations have the 

geometric form 

3 «T'Ker d & 
(3) 

The curves y satisfying (3) - the lifts to TCxR of the classical 

motions- are the extremals of the variational problem. 

6"'dS is a presymplectic form on the manifold E = TQxR ("evolution 

space"). 

Souriau proposed L'*j t o enlarge classical mechanics 

by describing systems with such a pair I.E., Û" J , without bothering 

about Lagrangians. The existence of a Lagrangian function is, 

however, a basic requirement in mechanics [23J . Also, as it 

will appear from the discussion which follows, (Sections 3, 4,5) 

in order to have a meaningful quantization procedure. we need 

some additional condition which rules out the velocity-dependence 

of potentials. 

The exact relations between symplectic and variational 

description are the best established using the homogeneous 'formalism 

[ , 73 » [ n ] ' C 1*] • f 1 6 ] «hie*» we review here brief 1). 

Write X = QxR for (configuration) space-time, denote 

' K"-TX-»£ (E = TQxR) the projection given locally as 

Ttl*.>)«= Q<J,S ,t) , where x = (q,t) , x = (q,t) i suppose 

t > 0 . The homogenized Lagrangian reads •£(".* ). =• I L ° J X 

•We have then a unique 1-form y\ on TX such that for any curve y O 

\ !•>? fT) dt = | A (4) 
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where T:-»y(-i)s(yilli^ ̂ iT^y-ixi^.tTl) is any parametriiation 
with &y,fi-t > o . 

Explieitcly, A is the fiber derivative of X fl8j, 

A- *L . ( s ) 

(recall the definition of Ct s 
For a function $'.Tx-»R d$ -̂ •f/ji-'J*1*"'j the extension 
to forms is made by the requirements 

d(d.y) • i (di'l » O 

this A is 

- semibasic, 

A » M > " CMx .x jdx " ( 6 a ) 

- homogeneous of order 0 in i ( for Q ̂  C * ft 

a„(x,i) = a^u.cx) ( 6 b ) 

- of the form 

(6c) 

with a 1-form © on E (this is just the usual Carcan form 
[ll], used in (3) )• 

Conversely, if we are given a A with these properties 
(6), we can always reconstruct a Lagrangian function 

U % lv,M - L Vo^.v.-i) - Q^, (7) 

Thus it is justified to call 1-forms on T X satisfying 
(6) global variational 1-forms t (TX , A) is a global variational 
system. 

80/P.1182 
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Dcnotc X . * d.A I then L is regular (i.e. "̂  L/^v"'îV1'' 

is a regular nxn matrix) iff 

dUw% kc-r- H = Z (8) 

If (8) holds then the smooth distribution ix,£ j—* Y.e>-2.lwii}ia 
integrable : the characteristic leaves £l3J > [l8J (which are 

in 1-1 correspondence with the curves in E satisfying (3)) are 

2-dimcnsional submanifolds in TX . Tbey project to the world 

lines in X , and thus it is justified to consider these leaves 

as the generalized solutions of the variational problem. 

y~ satisfies [}ij 

<*•* = o ( 9 a ) 

/ =• TC 6" ( cr, prcsynplectique forn on E (9o) 

d. 1 = o (9c) 

In our ease er* cLB 

This is just this condition (9c) which singles out variatio

nal system among (pre)symplectic ones. 

Unfortunately, global variational systems do not exhaust all 

the physically interesting situations : for g charged particle moving in 

the field of a Sirac monopole (see example [Yj below) for instance, 

no global J\ exists. Conditions (9) are however satisfied. 

On the other hand, Klein has shown f'7j that (9) assures 
the existence of a local variational description at least. 

Theorem, Definition 1.1 

Let 2ZL be a 2-form on TX satisfying (9) » Then, in a neighbourhood 

of any point at least, the equations 

SO/P.1182 
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%Z_ = d A <"• 0~= t*-G do) 

admit solutions such that A (or © ) satisfy (6). Such 1-forms 

will be called local variational or action forms,(TE ,X)or ^E,o~) 

being a local variational system. 

It is well-known (e.g. [)9J ) that the possibility of 

extending a local solution depends on the topology : if H (,TX,|R) = 

every local solution of (10) extends to the entire TX (or E). 

Proposition 1.2 

Let y\ and A ( o r © , © ) be local variational solutions of 

(10), thsn in the intersection of their domain 

(X = A1-A - 01-©.* A^tffy* VÂ .odt ( I 1 ) 

is a closed 1-form on X , (jL«< - O , 

If this intersection is simply connected then 04 ' is 

exact• 

Proof : e* is obviously closed i a closed semibasic 1-form can 

not depend on x . 

Theorem 1.3 [15], [lô] 

If \E jG") is a regular local variational system, lierlt'O" defines 

a foliation of IX by 2-dimensional leaves. These leaves-considered 

as generalised solutions of the variational problem-project onto 

curves in X . 

Thus, at a purely classical level, these systems admit 

a completely satisfactory variational description. 

Remark 1.4 

If we replace (8) by dimmer X • ̂ K , K > I , the whole formalism 

keeps on working , this allows for including spin [lsj. We study 

here, however, only spinless systems. 
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)n what follows, we shall use thc^E^cr) setting, (N) 

and (9) supposed being satisfied. 

Q S THE CLASSICAL ACTION 

Consider first a global system with action form 

© . For y c E set 

SCY)- J G <12) 
Ï 

and call it classical action along jf . (If j'C.X is a curve, lift 

it to E : call the lift again y to save characters) i by (4), 

(12) reduces then to the usual expression). 

Note however, that his definition is ambiguous : we 

are always allowed to change Q to 0 which also satisfies cl©'- <T j 

the requirements (6) imply (Prop. 1.2) tbst 0 = fc3-> ex. with a l-form 

oC on X . This has the effect of changing (12) by an additional 

term )<•* • 

Z 

If the configuration space is simply connected, then 

CÂ is exact*, ex =. (X Ç with $ : X —* 1R. • thus the additional term 

is just a constant J-?!»') - $""j , which changes the amplitude (1) 

and thus the propagator (2) only by an overall phase factor 

which is physically unobservable. 

However, if the underlying space is multiply connected 

(as in the Bohra-Ai'aronov experiment, see example 2 below), this 
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term will depend on y* . and wiJl chance essential 1y the physics 

at the quantum level. 

For lora 1 syst ems the situation is even worse : an 

act ion from \J^ exists only local ly, over an open set ti^ 

Consequently, the corresponding classical action S^Cj)"* 1 (.\ 

will be meaningful only for paths ^ contained entirely in 

u* • 
Mut even for such paths, we have an essen t ia l ambiguity: 

if we change VU-j,^*) to \U A | U[sl with y<_lJ f t t then the new S p ( j l ' J U_ 
I * 

wil 1 be, general ly , completely different from *_>, ( f i (sec Example 

1 below). This» i« due again to topology*. U ^ n"U f t m;iy be non-

simply connected, and thus 0 ^ - t ) ^ , may be not exact , and so 

^ » T f ) - S r ' ï 1 - J ^ - O f t » (14) 
i 

wil l be path dependent. Consequently, for loca l systems, i t i s 

generally meaningless to speak of c l a s s i ca l a c t i o n s . 

80/P.U82 . 



E 3 A QUANTUHMECHANICALLY WELL-DEFINED ACTION 

Fortunately, as it is clear from (2) it is the amplitude 
(1) rather than the action itself, xi.ich is important for quantum 
mechanics. 

Consider a local system ^E., <T ] . 

Definition 3.1 

The classical action is quantumrocchanically well-defined (Q.M.W.D.) 
if to any choice (]J^ ̂ © ^ , and any path tf whose uni points 
x, x' belong to M.^ , we can associate an expression 

"*•? L* s - w ] " (15) 

such that 

a) a change ̂ dO^-tjtl. (^introduces merely a phase factor 

where | C-c^ I x\ x) | = 1 ,C*p(*'iD depends only on 
x,x< and not the particular path Y between them. 

b) for jfc 11*05) reduces to -«f [£!.'*>] with S „ < Y ) = \ Q^ 

t 
IT a Q.M.K.D.A. exists, then a change (.̂  .0^ ) —>(U. (v )G / 4) 

will introduce only a phase factor in the propagator (2). 

Study first paths in U^ftUjv . It is easier to use 
loops: 

Proposition 3.2 

If a O.M.W.D.A. exists , then for a loop y c U^nUU , we have 

~f[4; S..C„i] - « f [ i %H)] (17) 
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Proof : Jn fact , spl.it up y to jf^» y t , apply (16) to t _ 

ïi a n d ôTx » d i v j d t ' ' n o t i n s t h a t -»<f[^ S( a i ] * ^ * p [ ^ s i j - ' ) l \ 

In other form : 

Proposition. 3.3 

A necessary condition for the existence of a Q.H.W.D.A. is that 

for a loop yeU^nlt.ve have 

«?(_£ $16--©(>>] - 1 (i8> 
9 

It nay happen, that it is possible to pull "cans" 

-4^ and *-p over y in [}^ resp. Uji , each cap being diffeomorphic 

to R > -i = -4 u "i » i s then diffeomorphic to S l t let ' s apply 

Stokes' theorem to 1^, resp. -Ĵ  i we get : 

Proposition 3.4 

(17) is equivalent to 

•"4 

In Section 5, w e shall show that these conditions are 

in fact sufficient• 

Remark 3.5 

As O^i-Oft is in fact a 1-form over X ,(Prop. 1.2) 0 8 ) and 

(19) hold if they hold for loops, resp. 2-sui'f.ces in X . 

EXAMPLE 1 (Charge]particle moving in the field of Dirac's monopole) 

Suppose we have a magnetic monopole of strength g 

fixed in the origin j an electron moving in its field has the 

symplectic description 

80/P.M82 
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It is easy to see tint no global © with <n. c\f'J (and 
thus no global vector potential), exists : if C" was d G , 
^ 6" would be 0 by Stokes' theorem j however one computes at 

once that \ S~- M K e q . 
& 

Nevertheless, local solutions of (10) can be found on 
any chart corresponding to VA^= (R v-ja "string " in the direction 
of r j e.g. 

0 ^ = {w<^--^\ul> - « A'S,(«^ d^ ( 2 1 ) 

with the local vector potential y 2J 

A = q - - — * (22) 

The ambiguity in the classical action can be tested o n ^ - d L ' * - ^ , ( i 1 < \ » 

(the equator) 

Thus a Q.M.W.D.A. exists iff the monopole is quantised as 

Zcc^ = -i, U Kt 2" ( 2 4 ) 

More generally, one shows that a Q.M.W.D.A. exists iff 

has the same value for all << (with C l ' d O * ). (25) is just 
the phase factor of Wu and Yang ri4"l. Vrf 
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A CLASSIFICATION SCHEME. THE PROPAGATOR 

IN MULTIPLY CONNECTED SPACES [4! 
ast»teïBtssss 

Let's consider a global system with multiply connected 

configuration space. The general solution of (10) among variational 

1-forms is by Prop. 1.2 

0 " e.* <* (26) 

with xya a particular solution 1 as a consequence of (6a) , (6b) , 

oC i s a 1-form on X 

C* = Al^^t)^ -, V l ^ - M ttt (27) 

Definition 4.I 

Let ©^©..«o/^cwd © ^ 0 1 ^ two actions forms for a global system. Two 

expressions S,(JO« ) 0 t and Siiir)=J>.(f)i are told 

to be nuantummechanicallv equivalent (Q.M.E.), (denoted also 

& t ~ ©«. ) iff 

•**f[i S * ( X > 1 = c c*'.x)-«f[i s^u)! (28) 

with a phase factor Cfci', x ) depending only on (the projection 

onto X of the) end points of Vj | C t »-',*)| = 1 

Proposition 4.2 

Ql-^Q2_ i f f f<»" any l o °P Jf 

or 

(30) 
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(As the space is not simply connected, Stokes' theorem does not 

apply, and thus we cannot transform this to integrals over Z-cycles). 

Again, by Prop. 1.2, we can limit ourselves to path in X . 

•«pl^ Q? X ] is studied the easiest way if we climb to 
the universal covering ̂ X ,T\ ,?) of X : X = QxR, where (T 
is -he universal covering of 0 i T"T is the (first) homotopy 
group jf Q (and X) j P : X 3 (5,t) « (q,t) e X projection. 

Set oC - y ci . As X is already simply connected, 

S> &l , with % •X—> "* . 
Let -y c. X be any path, x t y , £ é T ( H ) I y has a un: que 

lift Y t o ^ through x . Evidently, ( JL - \3( 

S ? 
In particular, if ^ is a closed loop y will end 

it ; x , where o. -Lvl is the hom topy class of y*. Consequently 

^ OC = J(<i*) - Ï «Si <3l> 

Note that (31) depends only on g . Thus 

Proposition 4.3 

is well-defined, and is in fact, a character of the homotopy group 

T I . In this way we get the following classification theoiam: 

Theorem 4.4 

© t ~ 0 j . iff for any loop y 

*1<*V= «f[J^,j« «f ̂ 4^a] 
where a = f_ »1. 
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The different situations zrc thus labelled by the characters 

of the homotopy group. 

Now we can prove an interesting theorem,\,Mfirst stated 

explicitely by C. de Witt and Laidlaw [7 J (see also ["J'E^* 

Consider .X^'i X , let 'J" be the set of paths between thun 

> choose any Jt 9 ; any £ t V can be written -1 to homotopy-

as # s ç » (i • , where (1 is a loop through x . y and y' arc 

nomotopic if fJ and fi are. The classical action is 

Sty) « S 0 l * ) + \ci - <̂> o( (34) 

e P. 

where S.lj)* \ ©„ • 

( 
Ne-te that 

\ (X is independent of •> denote 

(35) 

eX^l i- Cet] = 3£ l<0 ' w i t h c\ *L&3 ' i s c o n s t a n t °n a homotopy 

(* class, 

define the partial amplitude 

K <«•.«>.= { « f [ £ s 0 t v ) ] * > Y ( 3 6 ) 

where 7 C 9 is the class of paths in P labelled by the sane 

g ) a s ^ U Ç> , the additivity of the path integral gives 

yn % 
Theorem 4-5 

KCx',x)-c21 *i«fc) K,U',x> ( 3 7 ) 

(a different choice in g , the map y —* r> , or in 0 O introduces 

only an uoobservab'e phase factor.) 
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ÏXAHPLE 2 (Bohm-Aharonov Experiment) [2]^] [4][l4j 

As the electron is classically excluded from the interior 

of the solenoid, the configuration space is Ll-î — -̂ a diskl, the 

pvesyraplectic form is just that of û free particle restricted 

to TQxR : C'a 57 I . It is of course exact, 6~icl<£)„ with 
^ iTO.iR 

0 * Cf). - «~» <*N - >~ f àk 

But, as we have pointed out, we can add any 1-form 

o<. =• e f Ai^Oct^ 1- VAc^ooLA \ 

with cLo< = O . However, as Q is not simply connected 

CM A{-

Now, as far as ve take seriously geometry and do not 

look into the solenoid, there is no reason to call A, resp. V, 

vector, resp. scalar, potential t *-n order to identify them, we 

have to consider our systen J be the part of a larger one, consisting 

of the electron and the solenoid and the magnetic field.^3J,L§I* 

The homotopy group is here Z , thus tb? characters 

(32) are written as 

*{̂a being a loop going once around the solenoid j <t> is the 

enclosed magnetic flux. 

Here we recognize again the n-th power of the non-integrable 

phase factor of Wu and Yang fl4J-

Theorem 4.6 

Two expressions of the classical action aie Q.M.E. i f f the eorrespon-
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dine Wu-Yana fartors are the same : G) t ~ C?z i f f X l l l ) * X 2 < 1 ) 
i f f 

V ^ = 7 K , K » 2 e. ' (38) 

confirming the conclusions of Bohm and Aharonov. ( -U •- 2.TT *•» / • 

80/P.U82 
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K B PRBCiUANTIZATlON 

The fact that conditions (18), (19) are sufficient to 

the existence of a Q.M.W.D.A., will follow from noting the relation 

to prequantization. 

Theorem Jzl D>] 

A Q.M.W.D.A. exists iff the system is prequantizable in the 

K-S (Kostant-Souriau) sense L , 0J'L'U ' L'-'J • 

Proof : By Veil's theorem, the system is prequ-' ntizable iff 

O S ) or (19) holds. They ensure the possibility of constructing 

a U(l) principal bundle Y over E with connection form C" whose 

curvature form is C TT * <T* , TX *- Y—> E being the projection. 

On the other hand, if the system is prequantizable, 

then, for any path y in E , and Y > t fc-TiT'ivA with M È y* , we have 

a unique horizontal' lifr y through £ . 

If y o U , , where Y has the local trivialiaation TT" (O^ )^\)j X VJU) 

y is written here as y = (jf t H ** \ s furthermore, £l2j (13] 

2*(o) „ I" I c , ,1 

| ^ = ^ f L i , 5 - , ï 5 J (39) 

( y being parametrized by t e [0,1] -, ̂  * (M , "2 <°>)' )* 

Thus, the classical action can be recovered by dividing 

the "heights"above a U ^ of the horizontal lift of ^ . 

Now if we change our local trivialization, the new expression 

will be related to the eld one as 

(40) 

with H^^f'l)) the 2^.'s are here the transition functions of the U(l) 

bundle Y . 
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Fer local variational systems the transition functions 

depend only of x , the projection of y onto X t this is the 

consequence of fact, that in (18) we could restrict ourselves 

to paths in X ' by (11). Thus 

C<. I * ' , * ) * ?-ti2> (41) 
2-^') 

will be a phase factor required in Definition 3.1. 

On the other hand, as the horizontal lift of curve is 

well-defined independently of any local trivialization, 

J7 (-]) and 2"*(1\ will have a meaning as soon as M and 

v.» are contained in U ^ , even if y zigzags out and back from 

V) • Let's define " *<<pti S|»t*A l h î n J u s t D v C39) i this will 

ive a Q.M.W.D.A., as required (cf. [*Sj). 

Q.E.D. 

gxve 

Consider a global system . It is always prequanti-

«able: Befine Y = E » V J U ) J T C • Y 3 ^ , 2 ) — » M * E ; if 0 is a 1-

co = rc*<r •> * • £ ? • 

form on E with dO • <T , then 

I- • 
t 2 (42) 

is a connection form, and any solution is written like this. 

Two such constructions are told to be equivalent, if 
SI 

there exists a diffeomorphic map F : Y -» Y projecting onto E as 

identity, intertwinning the actions of 1)(1) and carrying one 

connection form to the ethers. (F is then necessarily of the 

form ?|w,z)= (M t F(^) a ) with iF'-jll'l). 

As it is well-known, if the underlying space is not 

simply connected, we may have different inequivalent prequantizations 

for the same classical system. We propose to rtderive this theorem 
( D ° 3 ' D O ' D O * ** establishing 

80/P.1182 
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Theorem 5-2 [4 J 

Let ô t ,Ôj_ bt action forms for a global variational systcm(E ,<5") . 

Then Q,and G,, are Q.H.E. (Dcf. 4.1) iff the corresponding prcquanti-

zations are equivalent in the pr<quantum bundle sense. 

Proof : If F'-VjlO» .TX̂ -l̂ ujî li&iiiap establishing the equivalence 

between the prequantization» ; then ? V>j_» u), implies that 0 , - 0 * kp* 

and thus, for any loop y , we have 

'-e[iïQ i] = * * P [ H ©*']."• 0 * ~ ° * 
On the other hand, write c* ̂ -0,-0; (notation of Section 

4) j then Q ^ Ê J ^ implies that Ti^)-- <L«MU ?««îî"\ i s well-

defined (^ t •p""iv) ' P < M , ? V = (vT"jV*) ' l a b U s h e s t h < r 

equivalence. ' ^* ' 

0O/P.I182 
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RfXATION TO THK VU-YANG APPROACH TO GAUGE THEORY 

Primarily interested in describing the quantized motion 
of a system, we investigated the conditions under which the amplitude 
(J) is well-defined and is unique. In geometric terms these properties 
could be expressed using the prequantum bundle ['*U},Tt ) . 

On the other hand, in their approach to ffKifle theory• 
Vu and Yang |_14J proposed to study an expression slightly similar 
to the amplitude (1), namely (in U(l) case) 

In our examples (monopole and Bohm-Aharonov experiment) 
also our conditions turned out to depend on this expression. It 
is not difficult to understand that this happens quite generally, 
at least for electromagnetic interactions. 

Electromagnetism can, in fact, be conceived as constructing 
a 0(1) principal bundle P with connection form £. above space-
time [21J , f22j. The curvature form of this bundle is just then 
the electromagnetic 2-forra F .£ has the local expression . 

£ ' « * * g • U4) 
where the local 1-for» ot is written as 

* . 4 A* «Ax* (.«'AjAc^* V ii) u s ) 

The existence and uniqueness of this construction depends 
on the "non integrable phase factor" (43). 

Now, to see the connection between these two theories, 
imagine that a particle with charge e. and mass m moves ir the 
electromagnetic field. In describing the interacting quantum 



system electron •* field the latter can be studied by h< W.K.B. 

approximation. Then, the electron wave equation factors out from 

that of the composite system » the effect of the field is retained 

by an interaction term ("minimal coupling") in the Schrâditçor equation 

[3]. 

Minimal coupling has the following geometric expression 

UlJ» L^ 2J* *** ®o d p n o t c t h c symplectif form of a free particle. 

Then the prcquantum bundle for the electron + (passive) field 

is constructed as 

Y = TV ? <46> 

where - f - x •• T O x R 5 ( t ) , v , 0 — » { ^ , D - x i X , the connection 

form itself is written (with a slight ambiguity) as 

< J = e o - £ -loc*^. l© 0i «O- t.K (47) 

where £)_, is the global action form (w»vcLa - >~y dJc ) for g-

(!ow, as we have shown, the properties of the prequantum 

bundle depend u& thc amplitude 

i y c. TQ-.tR) 
but j © 0 exists always and is unique. Thus all the problems 

of existence and uniqueness come from the factor cj«ip^_^ ^ l 

Finally, as GA- projects to 3 by construction,, we can always 

use curies Jf lying in X . Thus, we can ei.^.ain the role of 

the Vu-Yang factor 1 it is just the factor which determines whether 

a test particle moving in the exterior classical field has a meaning

ful quantum description. 
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