f R. TO O *HOO<]*

s.

CLASSICAL ACTION, THE WU-YANG PHASE FACTOR AND PREQUANTIZATION

Peter A. HORVATHV « Université d'Aix-Harseillc I e t Centre de Physique Théorique, CNRS Marseille

ABSTRACT For local variational systems (like a charged particle in the field of a Dirac monopole) a quantum mechanically vell-dsfiwd actio" (Q.M.W.II.A.) can be introduced if the system is prequantizable in the Kostant-Souriuu sense. If the configuration space is multiply connected (as in the Bohm-Aharonov experiment), different expressions for the classical action may emerge; they are quantum mechanically equivalent (Q.H.E.) *it* the corresponding prequantizations are equivalent. In both cases the situation depends on the behaviour of the non intcgrable phase factor of Uu and Yang.

 $PPT - 80/P - 1182$

 \sim .

On leave from Vesiprem University of Chemical Engineering Veszprém, (Hungary).

To be published in the Proceedings :

POSTAL ADDRESS : C.N.R.S. - LUMINY - CASE 907 Centre de Physique Théorique F-13Z8S MARSEILLE CED1SX 2 France

INTRODUCTION

The importance of classical action in quantum mechanics emerges the clearest way from Feynman's path integral approach $\lceil 1 \rceil$. To a path χ in spacetime between x and x' is associated **the amplitude**

$$
\exp\left[\frac{i}{\hbar}\mathsf{S}(\mathbf{x})\right]
$$
 (1)

i \mathbf{S}

> Ÿ p \mathbf{c}

where $S(y)$ is the classical action along y' *j* the propagator **is expressed as**

$$
K(x^1, x) = \int_{\Omega} \exp\left[\frac{x}{h} S(t)\right] \Delta \delta
$$
 (2)

5 **being the "infinite dimensional manifold" of paths joining x to x*.**

Vc are not concerned here with the tremendous problem of defining and compui.—ig this integral g we shall accept its intuitive meaning and foius our attention to the amplitude (1).

The point is that in some interesting situations, as in the **Bohm-Aharonov experiment** $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ the expression of classical action may be $\frac{ambiguous}{4}$, in other cases, as for the motion **of a charged particle in the field of a Dirac monopole foi, it** may be even ill-defined [5].

Motivated by ordinary gauge transformation, we introduce :he notion of quantummccha^ically well-defined action (Q.M.W.D.A.) and the idea of equivalent (Q.M.E.) actions.

The requirement of having a Q.M.W.D.A. leads to quantum conditions (like quantization of the monopole's strength) j the equivalence of actions provides us with a classification scheme and with a simple proof of the C. DeWitt-Laidlaw theorem f7J $|8|9$ on propagators.

 $-1-$

These results can be reexpresscd in a rather elegant geometric form : a Q.M.W.D.A. exists iff the system is prequantizable in the Kostant-Souriau (K-S) sense [10] [11] [13]. The classification scheme turns out to be just that of inequivalent prequantum bundles.

Our approach shows some similarities to that of Wu and Yang $\lceil 15 \rceil$ who describe gauge fields in terms of a "non integrable phase factor". The relation is explained in the U(l) (electromagnetic) **case.**

LOCAL VARIATIONAL SYSTEMS [l5][l&]

Let Q be the manifold of all possible configurations of a classical system. If we arc given a Lagrangian function LtTQ x R \longrightarrow R , the variational problem can be translated to $symplectic$ terms $\begin{bmatrix} 11 \end{bmatrix}$, $\begin{bmatrix} 24 \end{bmatrix}$, $\begin{bmatrix} 25 \end{bmatrix}$: from L we can derive **a 1-form © such, that the Euler-Lagrange equations have the geometric form**

-3-

$$
\mathbf{r} \in \mathsf{Ker} \, \mathsf{d} \Theta \tag{3}
$$

The curves χ satisfying (3) - the lifts to TQxR of the classical **motions- are the extremals of the variational problem. 6"'dS is a presymplectic form on the manifold E = TQxR ("evolution space").**

Souriau proposed L'*j ^t ^o enlarge classical mechanics by describing systems with such a pair (E, σ) , without bothering **about Lagrangians. The existence of a Lagrangian function is, however, a basic requirement in mechanics [23J . Also, as it will appear from the discussion which follows, (Sections 3, 4,5) in order to have a meaningful quantization procedure. we need some additional condition which rules out the velocity-dependence of potentials.**

The exact relations between symplectic and variational description are the best established using the homogeneous 'formalism [, 7 3 » [ⁿ] ' C ¹ *] • f 1 6] «hie*» we review here brief 1).

Write X = QxR for (configuration) space-time, denote ' ^K "-TX-ȣ (E = TQxR) the projection given locally as $\pi(x,\dot{x}) = (q,\dot{q},t)$, where $x = (q,t)$, $\dot{x} = (\dot{q},\dot{t})$, suppose $t > 0$. The homogenized Lagrangian reads $\mathcal{L}(x, \dot{x}) = \dot{t}$ L^o II We have then a unique 1-form Λ on TX such that for any curve $\gamma \subset TX$

$$
\int \int \int \phi \, \gamma \, (\tau) \, d\tau = \int \int \Lambda \tag{4}
$$

where $T \rightarrow \gamma(T) = (y_0(\tau), y_1(\tau), y_2(\tau), y_1(\tau))$ is any parametrization **with** $d\gamma$ *,* $d\tau$ > 0.

Explicitely, Λ is the fiber derivative of \mathcal{L} [18],

$$
\Lambda = d\mathcal{L} \tag{5}
$$

(recall the definition of Ct s For a function $f: Tx \rightarrow R$ $d \dot{f} = (3/\sqrt{v^2})dx^{\alpha}$; the extension **to forms is made by the requirements** d(dxx) • d(dxx) = O
d(wnp) = dwnp + (-1)^{d1}3⁰ wndp

this Λ is

- semibasic,

$$
\Lambda_{(x,\lambda)} = \Omega_x(x,\lambda) dx^4 \qquad (6a)
$$

 $-$ homogeneous of order 0 in \dot{x} , for $0 \neq 0 \in \mathbb{R}$

$$
Q_{\mathcal{A}}(x,\tilde{x}) = Q_{\mathcal{A}}(x,\tilde{c}\tilde{x}) \qquad (6b)
$$

- of the form

$$
\Lambda = \pi^* \Theta \tag{6c}
$$

with a 1-form © on E (this is just the usual Carcan form [ll], used in (3))•

Conversely, if we are given a Λ **with these properties (6), we can always reconstruct a Lagrangian function**

$$
L(q_1, v, t) = \sum_{\alpha=1}^{n} V^{\alpha} \alpha_{\alpha} (q_1, v, t) + \alpha_{n+1}
$$
 (7)

Thus it is justified to call 1-forms on TX satisfying (6) global variational 1-forms \mathbf{r} (TX, A) is a global variational **system.**

 $Denote \sum x dA$, then L is regular (i.e. $\partial^2 L/\partial v^2 \partial v^b$ **is a regular nxn matrix) iff**

$$
dim Ker \sum = Z
$$
 (8)

If (8) holds then the smooth distribution $(x, \dot{x}) \rightarrow \text{Ker} \sum_{i=1}^{n}$ is **integrable : the characteristic leaves £l3J > [l8J (which are in 1-1 correspondence with the curves in E satisfying (3)) are 2-dimcnsional submanifolds in TX . Tbey project to the world lines in X , and thus it is justified to consider these leaves as the generalized solutions of the variational problem.**

$$
\sum \text{ satisfies [14]}
$$
\n
$$
d\sum = \bigcup \qquad (9a)
$$
\n
$$
\sum = \text{TT}^{4} \sigma \qquad \sigma, \qquad \text{presynplectique form on E (9b)}
$$
\n
$$
\tilde{d}\sum = \bigcirc \qquad (9c)
$$

In our case $\sigma = d\Theta$.

This is just this condition (9c) which singles out variational system among (pre)symplectic ones.

Unfortunately, global variational systems do not exhaust all the physically interesting situations : for g charged particle moving in the field of a Sirac monopole (see example [Yj below) for instance, no global *J* **exists. Conditions (9) are however satisfied.**

On the other hand, Klein has shown f'7j that (9) assures the existence of a local variational description at least.

Theorem, Definition 1.1

Let Σ be a 2-form on TX satisfying (9). Then, in a neighbourhood **of any point at least, the equations**

$$
\sum = d \Lambda \qquad \text{or} \qquad \sigma = d \Theta \qquad (10)
$$

admit solutions such that Λ (or Θ) satisfy (6). Such 1-forms will be called local variational or action forms, $(T \times, \Sigma)$ or (E, σ) **being a local variational system.**

It is well-known (e.g. [19]) that the possibility of **extending a local solution depends on the topology : if** $H^1(TX,R) = Q$ every local solution of (10) extends to the e_{nf}ire TX (or E).

Proposition 1.2

Let Λ and Λ' (or Θ , Θ') be local variational solutions of **(10), thsn in the intersection of their domain**

$$
\alpha = \Lambda^2 - \Lambda = \Theta^2 - \Theta = A(q,t) dq + V(q,t) dt \qquad (11)
$$

is a closed 1-form on x , $dx = 0$.

If this intersection is simply connected then 04 ' is exact•

Proof : α is obviously closed , a closed semibasic 1-form can **not depend on x .**

Theorem 1.3 [15], [lô]

If (E, σ) is a regular local variational system, Ker^{TT} defines **a foliation of IX by 2-dimensional leaves. These leaves-considered as generalised solutions of the variational problem-project onto curves in X .**

Thus, at a purely classical level, these systems admit a completely satisfactory variational description.

Remark *1***.4**

If we replace (8) by $dim \text{Ker} \Sigma \cdot 2K$, $K > 1$, the whole formalism **keeps on working , this allows for including spin [lsj. We study here, however, only spinless systems.**

80/P.Ï182

Z

-7-

In what follows, we shall use the (E^{\dagger}, σ) setting, (8) **and (9) supposed being satisfied.**

Q THE CLASSICAL ACTION

Consider first a global system with action form © . For y c E set

> $S(\gamma) = \int \Theta$ (12) *Ï*

and call it classical action along γ . (If $\gamma \subset X$ is a curve, lift it to E : call the lift again γ to save characters) ; by (4), **(12) reduces then to the usual expression).**

Note however, that his definition is ambiguous : we are always allowed to change Θ to Θ' which also satisfies $d\Theta' = \sigma$, the requirements (6) imply (Prop. 1.2) that $\Theta^! \in \Theta^* \times \mathbb{R}$ with a 1-form **oC on X . This has the effect of changing (12) by an additional term)<•*** *•*

If the configuration space is simply connected, then ϕ *A* is exact: $\phi \in \mathcal{A}$ \downarrow with $\mathcal{L}: X \to \mathbb{R}$, thus the additional term is just a constant $\{\{\psi\} - \{\psi\}$, which changes the amplitude (1) **and thus the propagator (2) only by an overall phase factor**

$$
C^{(k)}(x^{k}) = \exp \frac{i}{h} \left\{ f(x^{k}) - f(x) \right\}
$$
 (13)

which is physically unobservable.

However, if the underlying space is multiply connected (as in the Bohra-Ai'aronov experiment, see example 2 below), this **term will depend on** χ' . and will change essentially the physics **at the quantum level.**

For lora 1 syst ems the situation *is* **even worse : an** action from Θ_{α} exists only locally, over an open set $\mathfrak{t}\mathfrak{l}_{\alpha}$. Consequently, the corresponding classical action $S_{\chi}(\gamma) = \int_{\gamma} (\gamma)$ $will be meaningful only for paths γ contained entirely in$ **u* •**

Mut even for such paths, we have an essential ambiguity: if we change $(U_{J_1}(i)_{\alpha})$ to $(U_{\alpha_1}U_{\beta})$ with $y \in U_{\alpha_2}$, then the new $S_{\alpha}(y) = \sum_{\alpha_1}$ will be, generally, completely different from $\mathcal{L}_{\star}(\gamma)$ (see Example 1 below). This is due again to topology: $\mathsf{U}_{\mathsf{st}} \cap \mathsf{U}_{\mathsf{D}}$ - may be nonsimply connected, and thus Θ_{κ} - Θ_{α} may be not exact, and so

$$
S_{\alpha}(\gamma) - S_{\beta}(\gamma) = \iint\limits_{\delta} (\Theta_{\alpha} - \Theta_{\beta})
$$
 (14)

will be path dependent. Consequently, for local systems, it is generally meaningless to speak of classical actions.

ESS A QUANTUMMECHANICALLY WELL-DEFINED ACTION

Fortunately, as it is clear from (2) it is the amplitude (1) rather than the action itself, which is important for quantum mechanics.

Consider a local system (E, σ) .

Definition 3.1

The classical action is quantummechanically well-defined (Q.M.W.D.) if to any choice (U_A,Θ_{α}) , and any path χ whose *und* points x , x' belong to u_x , we can associate an expression

$$
\int_0^b \exp\left[-\frac{1}{k} S_a(t)\right]^{1/2} \tag{15}
$$

such that

a) a change $(U_{\lambda}, \Theta_{\lambda}) \rightarrow U_{\lambda}$ (introduces merely a phase factor $\int_{0}^{1} \exp\left[\frac{1}{h} S_{\mu}(x)\right]^{h} C_{\mu\mu}(x',x) \cdot \int_{0}^{1} \exp\left[\frac{1}{h} S_{\mu}(x)\right]^{h}$ (16)

where $|C_{\leq p}(x^i, x)| = 1$, $C_{\leq p}(x^i, x)$ depends only on x_1x_1 and not the particular path γ between them.

b) for $\gamma \subset U_{\mathcal{A}}$ (15) reduces to $\text{exp}\left\{ \frac{i}{h} \xi(r) \right\}$ with $S_{\mathcal{A}}(\gamma) = \int \bigoplus_{\mathcal{A}}$. *t*

If a Q.M.W.D.A. exists, then a change $(U_{\mathcal{A}}, \Theta_{\mathcal{A}}) \longrightarrow (U_{\beta_1}, \Theta_{\beta_2})$ will introduce only a phase factor in the propagator (2).

Study first paths in $U_{\lambda} \cap U_{\beta}$. It is easier to use loops:

Proposition 3.2

If a Q.M.W.D.A. exists, then for a loop $\gamma \subset \mathcal{U}_{\mathcal{U}} \cap \mathcal{U}_{\beta}$, we have

$$
\exp\left[\frac{1}{k} S_{\mu}(s)\right] = \exp\left[\frac{1}{k} S_{\mu}(s)\right] \tag{17}
$$

80/P.1I82

Proof : In fact, p lit up γ to $\gamma_{\alpha} \circ \gamma_{\alpha}$, apply (16) to γ_{α} γ_{s} and γ_{s}^{s} , divide, noting that exp[i S(3)] = $\left(\mu_{p}\left(\frac{1}{k} S(\gamma^{s})\right)\right)$

In other form :

Proposition. 3.3

A necessary condition for the existence of a Q.H.W.D.A. is that for a loop $\gamma \subset U_{\mathcal{A}}$ old_s we have

$$
\exp\left[\frac{i}{t} \oint_{0}^{t} (\Theta_{x} - \Theta_{\rho})\right] = 1 \tag{18}
$$

It nay happen, that it is possible to pull "cans" -4^ and **-p* **over y in** *[}^* **resp. Uji , each cap being diffeomorphic** to R^2 , $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ is then diffeomorphic to S^2 , let's apply Stokes' theorem to $\lambda_{\mathbf{A}}$ resp. $\mathbf{A}_{\mathbf{A}}$, we get :

Proposition 3.4

(17) is equivalent to

$$
\frac{4}{2\pi t_1} \int\limits_{3}^{\infty} 6 \in \mathbb{Z}
$$
 (19)

In Section 5, ^w ^e shall show that these conditions are in fact sufficient.

Remark 3.5

As Θ_{α} - Θ_{β} is in fact a 1-form over X , (Prop. 1.2) (18) and (19) hold if they hold for loops, resp. 2-surfaces in X.

EXAMPLE 1 (Charge]particle moving in the field of Dirac's monopole)

Suppose we have a magnetic monopole of strength **fixed in the origin j an electron moving in its field has the** symplectic description $[12]$ $Q = R^2$ $[0, \frac{1}{2}]$ $\mathbb{E} = TQ \times R$, $\sigma = \sigma_{\text{free}}^2$ $e \cdot R$, ϕe .

$$
\sigma = d \left(m \vee dq - m \frac{v^2}{2} dt \right) + eq \left\langle \frac{q}{|q|} d q \times dq \right\rangle
$$
 (20) -

It is easy to see that no global Θ with σ ₂ Λ ^{[*·*}] (and thus no global vector potential), exists : if G was dG ^ 6" would be 0 by Stokes' theorem j however one computes at once that \int_{S^2} = MKeg.

Nevertheless, local solutions of (10) can be found on any chart corresponding to \cup_{Λ} = (K ` |a "string " in the direction of m \cdot e.g.

$$
\Theta_{\eta_2} = \left\{ m \circ d\tilde{\phi} - m \frac{\sigma^2}{2} dt \right\} + \epsilon A^{(2)}(\phi_1) d\phi_2
$$
 (21)

with the local vector potential $\begin{bmatrix} 12 \end{bmatrix}$

$$
A^{\prime\frac{r}{2}} = q \frac{\frac{r}{2} \times q}{q^2 + 1q(\zeta_2, q)}
$$
 (22)

The ambiguity in the classical action can be tested on $W_{d} \leftarrow W_{(0, 0, 1)}$, $V_{\rho^*}\mathfrak{U}_{\{\rho,\mathfrak{v}_i=1\}}$, $\gamma(\mathfrak{q})=(\cos\phi_1\wedge\cdots\phi_n\circ\phi)$ with $0\in\phi'\times\mathfrak{z}$ (the equator)

$$
S_{\alpha}(\gamma) - S_{\beta}(\gamma) = \oint_{\delta} (A^{(2)} - A^{(-2)}) d\gamma = 4 \pi \epsilon \gamma \tag{23}
$$

Thus a Q.M.W.D.A. exists iff the monopole is quantized as

$$
2eq = \frac{1}{2}k \quad \text{K} \in \mathbb{Z} \tag{24}
$$

More generally, one shows that a Q.M.W.D.A. exists iff

$$
\exp\left[\frac{ce}{\hbar}\oint A_{\alpha}\right]
$$
 (25)

has the same value for all α (with δ \sim $d\Theta$ α). (25) is just the phase factor of Wu and Yang $\lceil 14 \rceil$.

THE A CLASSIFICATION SCHEME. THE PROPAGATOR IN MULTIPLY CONNECTED SPACES [4]

Let's consider a global system with multiply connected configuration space. The general solution of (10) among variational 1-forms is by Prop. 1.2

$$
(\cdot) = \Theta_{\bullet} + \emptyset \tag{26}
$$

with Θ_o a particular solution, as a consequence of (ba) , (bb) , α is a 1-form on X

$$
\alpha = A(q,t) dq \rightarrow V(q,t) dt
$$
 (27)

Definition 4.1

Let $\Theta_i \cdot \Theta_i \cdot \alpha'_i$ and $\Theta_i \cdot \Theta_i \cdot \alpha'_i$, two actions forms for a global system. Two expressions $S_{\alpha}(3) = \int_{\alpha} \Theta_{\alpha}$ and $S_{\alpha}(r) = \int_{\alpha} \Theta_{\alpha}$ are told to be quantummechanically equivalent (Q.M.E.), (denoted also $G \sim Q$) iff

$$
exp\left[\frac{1}{k}S_{1}(y)\right] = C(x',x)exp\left[\frac{1}{k}S_{2}(y)\right]
$$
 (28)

with a phase factor $C(x^1, x)$ depending only on (the projection onto X of the) end points of γ , $|C(x^2, x)| = 1$

Proposition 4.2

$$
\Theta_1 \sim \Theta_2 \quad \text{if} \quad \text{for any loop } \gamma
$$
\n
$$
\exp\left[\frac{i}{h} \oint_{\gamma} \left(\Theta_1 - \Theta_2\right)\right] = \exp\left[\frac{i}{h} \oint_{\delta} \left(\alpha_1 - \alpha_2\right)\right] = 1 \quad (29)
$$

or

$$
\frac{1}{2\pi\tau_{h}} \oint_{\gamma} (\theta_{1} - \theta_{1}) = \frac{1}{2\pi\tau_{h}} \oint_{\gamma} (\alpha_{1} - \alpha_{2}) \in \mathbb{Z}
$$
 (30)

(As the space is not simply connected, Stokes' theorem does not apply, and thus we cannot transform this to integrals over 2-cycles). Again, by Prop. 1.2, we can limit ourselves to path in X.

 $\exp\left\{\frac{i}{\pi}\oint\limits_{\Omega}\chi\right\}$ is studied the easiest way if we climb to
the universal covering (X, Π, P) of $X : X = \tilde{X}$, where \tilde{Q} is the universal covering of Q ; TT is the (first) homotopy group of Q (and X) ; $P : \tilde{X} \ni (\tilde{q}, t) = (q, t) \in X$ projection.

Set $\widetilde{\alpha} = \mathbb{P}^{*}\alpha$. As \widetilde{x} is already simply connected, $\widetilde{\alpha} = d_{+}^{\widetilde{\alpha}}$, with $\widetilde{\ddagger} : \widetilde{\chi} \longrightarrow \widetilde{\chi}$. Let γ \subset X be any path, $x \in \gamma$, $\bar{x} \in \mathbb{P}^{1}$ (x) , γ has a unique lift $\widetilde{\gamma}$ to $\widetilde{\chi}$ through \widetilde{x} . Evidently, $\int_{\widetilde{\gamma}} x = \int_{\widetilde{\gamma}} x$

In particular, if γ is a closed loop $\tilde{\gamma}$ will end at $g\tilde{x}$, where $q = [y]$ is the hom topy class of y' . Consequently

$$
\oint_{\mathbf{Y}} \alpha = \tilde{f}(q\tilde{x}) - \tilde{f}(\tilde{x}) \qquad (31)
$$

Note that (31) depends only on g . Thus

Proposition 4.3

$$
\chi(q) = \exp\left[\frac{1}{\pi} \oint_{\delta} d\right]
$$
 (32)

is well-defined, and is in fact, a character of the homotopy group \Box . In this way we get the following classification theorem:

Theorem 4.4
\n
$$
\Theta_{1} \sim \Theta_{2} \quad \text{if f or any loop } \gamma
$$
\n
$$
\chi_{1}(q) := \exp\left[\frac{1}{h} \oint_{\gamma} \alpha_{1}\right] = \exp\left[\frac{1}{h} \oint_{\gamma} \alpha_{1}\right]
$$
\nwhere $q = [3]$.

The different situations are thus labelled by the characters of the homotopy group.

Now we can prove an interesting theorem, hifirst stated explicitely by C. de Witt and Laidlaw $[7]$ (see also $[8],[9]$). Consider $x_1x^1 \in X$, let $\mathcal P$ be the set of paths between them , choose any $\mathfrak{g}\in\mathfrak{P}$; any $\chi\in\mathfrak{P}$ can be written $\mathord{\hspace{1pt}\text{--}\hspace{1pt}}$ to homotopyas $\gamma = \rho \cdot \beta$., where β is a loop through x. γ and γ^2 are homotopic if β and β are. The classical action is

$$
S(s) = S_o(s) + \int d \cdot \phi d \cdot \phi d \qquad (34)
$$

$$
S_o(s) = \int \phi
$$

where

Note that

- $\int \alpha$ is independent of γ , denote $exp\left\{\frac{c}{h} \int d\right\} = c$ (35)

 $-\exp\left[\frac{i}{h}\oint_{P} \alpha\right] = \chi(q)$, with $q \circ [p]$, is constant on a homotopy

define the partial amplitude

$$
K_g(x',x) := \int_{\Omega} exp\left[\frac{i}{\hbar} S_o(x)\right] \mathcal{D}_Y
$$
 (36)

where $\mathcal{G}_{\mathbf{Q}} \subset \mathcal{G}$ is the class of paths in \mathcal{P} labelled by the same g , as \tilde{Y} = $\bigcup_{\alpha \in \mathbb{N}} \tilde{Y}$, the additivity of the path integral gives

Theorem 4.5

$$
K(x',x) = c \sum_{g \in \Pi} \chi(q) K_g(x',x) \qquad (37)
$$

(a different choice in Q , the map $\gamma \rightarrow 0$, or in Θ_o introduces only an unobservab's phase factor.)

 $EXAMPLE 2$ (Bohm-Aharonov Experiment) $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 14 \end{bmatrix}$

As the electron is classically excluded from the interior of the solenoid, the configuration space is \mathbb{R}^2 {a disk}, the **pvesyraplectic form is just that of û free particle restricted to** TQxR: σ^2 **i** σ^2 **i**_{TO.jR} **i** is of course exact, $\sigma^2 \Delta \Theta$ with

$$
\Theta_o = \Theta_{free} = -m \sigma d\psi = m \frac{\sigma^2}{2} dk
$$

But, as we have pointed out, we can add any 1-form

$$
\alpha = e\left(A(q,t) dq + V(q,t) dt\right)
$$

with cLo< = O . However, as Q is not simply connected $\sigma \neq d$ ^{*.*}

Now, as far as ve take seriously geometry and do not look into the solenoid, there is no reason to call A, resp. V, vector, resp. scalar, potential ; in order to identify them, we have to consider our system *J* be the part of a larger one, consisting of the electron and the solenoid and the magnetic field.^[3].[8]

The homotopy group is here Z , thus tb? characters (32) are written as

$$
x(n) = \left(exp\left[\frac{i}{k} \oint_{i_0} A\right] \right)^n = \left(exp\left(\frac{ie\Phi}{k}\right) \right)^n
$$

 γ ^a being a loop going once around the solenoid $\mathfrak j$ $\overline{\Phi}$ is the **enclosed magnetic flux.**

Here we recognize again the n-th power of the non-integrable phase factor of Wu and Yang [14].

Theorem 4.6

Two expressions of the classical action aie Q.M.E. iff the eorrespon-

ding Wu-Yang factors are the same : $\bigoplus_{i} \bigoplus_{j}$ iff $\chi_1(\beta) \in \chi_2(\beta)$ iff

Á

$$
\Phi_{\mathbf{1}} - \Phi_{\mathbf{2}} = \frac{\eta_{\mathbf{1}}}{\epsilon} \kappa \quad , \quad \kappa \in \mathbb{Z} \tag{38}
$$

È.

confirming the conclusions of Bohm and Aharonov. (\sqrt{k} 2 πk).

K^B PREQUANTIZATION

The fact that conditions (18), (19) are sufficient to the existence of a Q.M.W.D.A., will follow from noting the relation to prequantization.

Theorem **5.1** [21]

A Q.M.W.D.A. exists iff the system is prequantizable in the K-S (Kostant-Souriau) sense [10], [11], [13].

Proof : By Weil's theorem, the system is prequentizable iff **O S) or (19) holds. They ensure the possibility of constructing a U(l) principal bundle Y over E with connection form C" whose** curvature form is $\iota \top \mathbb{C}^* \subset \mathbb{C}$, $\top \mathbb{C}^* \times \mathbb{C}$ being the projection.

On the other hand, if the system is prequantizable, then, for any path γ in E, and $\gamma \geq \xi + T^{-1}(y)$ with $y \in \gamma'$, we have **a** unique horizontal lift $\hat{\gamma}$ through ξ .

If $\gamma \in \mathbb{U}_x$, where Y has the local trivialization $TT^{-1}(\cup_x) \preceq \cup_x \times \cup \{1\}$ $\hat{\gamma}$ is written here as $\hat{\gamma} = (\gamma', \bar{z}^{\kappa})$, furthermore, [12] [13]

$$
\frac{\overline{z}^{2}(0)}{\overline{z}^{2}(1)} = \exp\left[\frac{1}{h}S_{\mathbf{x}}(y)\right]
$$
 (39)

 $(\gamma$ being parametrized by $t \in [0,1]$; $\xi \cdot (\gamma, \ \zeta^2)$).

Thus, the classical action can be recovered by dividing the "heights" above a $U_{\mathcal{A}}$ of the horizontal lift of γ .

Now if we change our local trivialization, the new expression will be related to the eld one as

$$
\frac{\overline{z}^{\beta}(0)}{\overline{z}^{\beta}(1)} = \frac{\overline{z}_{\alpha}(\overline{y})}{\overline{z}_{\alpha}(\overline{y})} \cdot \frac{\overline{z}^{\alpha}(0)}{\overline{z}^{\alpha}(1)}
$$
(40)

with \mathbf{H}^{\prime} \mathbf{Y} (i) is the $\mathbf{Z}_{\neq 0}$ is are here the transition functions of the U(1) **bundle Y .**

80/P.ll82

Fer local variational systems the transition functions depend only of x , the projection of y onto X *t* **this is the consequence of fact, that in (18) we could restrict ourselves** to paths in \bigvee \cdot by (11). Thus

$$
C_{\alpha\beta}(x',x) = \frac{Z_{\alpha\beta}(y)}{Z_{\alpha\beta}(y')}
$$
 (41)

will be a phase factor required in Definition 3.1.

On the other hand, as the horizontal lift of curve is well-defined independently of any local trivialization, χ^2 (c) and χ^2 (1) will have a meaning as soon as y and **v** are contained in **U**_{*i*}, even if γ zigzags out and back from **V**₄ Let's <u>define</u> " ecp|| S_A(x) | then just by (39) ; this will give **a** Q.M.W.D.A., as required (cf. [5_]).

Q.E.D.

Consider a global system (E, δ) . It is always prequantiwable: Befine $Y = E * U(1)$, $\pi: Y \ni (y, z) \rightarrow y \in E$; if Θ is a 1**form on E with** *dO* **• <T , then**

$$
\omega = \tau \tau^* \sigma + \tau^* \frac{dz}{iz} \tag{42}
$$

is a connection form, and any solution is written like this.

Two such constructions are told to be equivalent, if there exists a diffeomorphic map **f** : Y → Y projecting onto E as identity, intertwinning the actions of $U(1)$ and carrying one **connection form to the ethers. (F is then necessarily of the** form $\widehat{F}(y, z) = (y, F(y, z))$ with $\widehat{F}(y) = 1$.

As it is well-known, if the underlying space is not simply connected, we may have different inequivalent prequantizations for the same classical system. We propose to rtderive this theorem $\begin{bmatrix} 10 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 11 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 13 \\ 0 \end{bmatrix}$ by establishing

Theorem 5.2 [4]

÷

Let Θ_{1} , Θ_{2} be action forms for a global variational system (E, σ) . Then Θ_1 and Θ_L are Q.M.E. (Def. 4.1) iff the corresponding prequantizations are equivalent in the proquantum bundle sense.

: If $\hat{F}:\left(\mathsf{Y},\omega_{1},\pi\right)\to\left(\mathsf{Y},\omega_{1},\pi\right)$ is a map establishing the equivalence Proof between the prequantizations, then $\hat{F}^* \omega_k = \omega_k$ implies that $\Theta_i - \Theta_k$, $\uparrow \Delta_k$ and thus, for any loop χ , we have

$$
\mathcal{L}_{\rho}\left[\begin{array}{c}\frac{1}{2} & \mathbf{1} \\ \frac{1}{2} & \mathbf{1} \end{array}\right] = \mathbf{exp}\left[\begin{array}{c}\frac{1}{2} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{array}\right], \mathbf{C} \mathbf{C}.\ \mathbf{\Theta}_{\mathbf{a}} \sim \mathbf{\Theta}_{\mathbf{a}}
$$

On the other hand, write $c^i \cdot \widetilde{C}_i \cdot \widetilde{O}_i$, (notation of Section 4), then $\Theta_3 \sim \Theta_2$ implies that $F(q) = \exp\left\{\frac{1}{4} \int_0^q f(q) \right\}$ is
defined $(\int_0^q f(\theta) f(q))$ $\int_0^q f(q) f(q) = (\int_0^q f(q)) \int_0^q f(q) g(q)$ $well$ the equivalence.

REXATION TO THE WU-YANG APPROACH TO GAUGE THEORY

Primarily interested in describing the quantized motion of a system, we investigated the conditions under which the amplitude (J) *is* **well-defined and is unique. In geometric terms these properties** could be expressed using the prequantum bundle (Y, ω, π) .

On the other hand, in their approach to gauge theory, **Vu and Yang |_14J proposed to study an expression slightly similar to the amplitude (1), namely (in U(l) case)**

$$
\exp\left[\frac{ie}{\hbar}\int\limits_{d}A_{\kappa}dx^{\kappa}\right]
$$
 (43)

In our examples (monopole and Bohm-Aharonov experiment) also our conditions turned out to depend on this expression. It is not difficult to understand that this happens quite generally, at least for electromagnetic interactions.

Electromagnetism can, in fact, be conceived as constructing a 0(1) principal bundle P with connection form £. above spacetime [21], [22]. The curvature form of this bundle is just then the electromagnetic 2-form **F** . È has the local expression .

$$
\mathcal{E} = \alpha + \frac{d\mathbb{P}}{d\mathbb{P}} \qquad (44)
$$

where the local 1-for» ot is written as

$$
\alpha = c A_x dx^x \quad (c e A_y dq^y \cdot V dt) \quad (45)
$$

The existence and uniqueness of this construction depends on the "non integrable phase factor" (43).

Now, to see the connection between these two theories, imagine that a particle with charge *e.* **and mass** *m* **moves ir the electromagnetic field. In describing the interacting quantum** system electron \rightarrow field the latter can be studied by he W.K.B. approximation. Then, the electron wave equation factors out from that of the composite system ; the effect of the field is retained by an interaction term ("minimal coupling") in the Schrödinger equation [3].

Minimal coupling has the following geometric expression $|21|$, $|22|$: Let \mathbb{G}_0 denote the symplectif form of a free particle. Then the prcquantum bundle for the electron + (passive) field is constructed as

$$
Y = pr_{\mathbf{x}}^* P \tag{46}
$$

where $r_{x} \cdot \text{TO}_{x} \cdot \text{P}(q, v, t) \rightarrow (q, t) \cdot x \cdot \hat{X}$, the connection form itself is written (with a slight ambiguity) as

$$
\omega = \Theta_{o} \cdot \xi = \text{boubt}_{q} \cdot (\Theta_{o} + \alpha) \cdot \frac{h}{q} \frac{dz}{dz}
$$
 (47)

where Θ_a is the global action form $(m\vee dq - m\frac{y^2}{4}dt)$ for σ_a

(!ow, as we have shown, the properties of the prequantum bundle depend on the amplitude

$$
\exp\left[\frac{1}{\tau_1}\int\limits_{I}^{\tau_2}(\Theta_{b}+\alpha)\right]
$$
 (48)

i y c. [TQ-.tR\)](http://TQ-.tR)

but $\int_{\mathcal{A}} \Theta_{\mathcal{A}}$ exists always and is unique. Thus all the problems of existence and uniqueness come from the factor $exp[\frac{1}{h} \int_0^1$ Finally, as o **projects to X** by construction, we can always use curves γ lying in X . Thus, we can england the role of the Wu-Yang factor μ it is just the factor which determines whether a test particle moving in the exterior classical field has a meaningful quantum description.

ACKNOWLEDGEMENT S

I am indebted to Jean-Marie SOURIAU for hospitality, help and encouragement at Marseille. Discussions with Christian DUVAL and David SIMMS are also gratefully acknowledged.

REFERENCES

 \mathfrak{p}^{\bullet} R.P. FEYNMAN and A.R. HIBBS, Quantum Mechanics and Path · Integrals, Mc. Graw-Hill Book Co., (1965). þ. Y. AHARONOV and D. BOHM, Phys. Rev. 115, 3, 145 (1959). \mathbb{P}^1 Y. AHARONOV and D. BOHM, Phys. Rev. 123, 4, 1511 (1961). $\lceil 4 \rceil$ P.A. HORVATHY, Phys. Letters A101 (1980), (to appear). $\mathbf{5}$ T.T. WU and C.N. Yang, Phys. Rev. D14, 2, 437 (1976). $\lceil 6 \rceil$ P.A.M. DIRAC, Phys. Rev. 74, 817 (1948). DEWITT and M.G.G. LAIDLAW, Phys. Rev. D3, 6, 1375 17 $c.$ $(1971).$ थि L. SCHULMAN, J. Math. Phys. 12, 2, 304 (1971). L. SCHULMAN, in "Functional Integration and its Applications", Proc. Intern. Conf. Lendon 1974, Clarendon Press (1975) A.M. Arthurs Ed. [9] J.S. DOWKER, J. Phys. A (Gen. Phys.) 5, 936 (1972). $[10]$ B. KOSTANT, in Lecture Notes in Wath. 170, Springer (1970) Taam Ed. \mathfrak{h} SOURIAU. $J.M.$ Structure des b stèmes dynamiques, Dunod $(19,0)$. $\lceil 12 \rceil$ J.M. SOURIAU, Structure of Dynamical Systems, to appear at North-Holland.

80/P.1182

×

- $[13]$ N.M.J. WOODHOUSE and D.J. SIMMS, Lecture Notes in Physics 53, Springer (1976).
- $\lceil 14 \rceil$ T.T. WU and C.N. YANG, Phys. Rev. D12, 3845 (1975).
- $\lceil 15 \rceil$ P.A. HORVATHY, J. Math. Phys. 20, 1.49 (1979).
- P.A. HORVATHY, Ph.D. Thesis, (in Hungarian) (1978). $\lceil 16 \rceil$
- $\lceil 17 \rceil$ J. KLEIN, Ann. lnst. Fourier (Grenoble) 12, 1-124 (1962).
	- J. KLEIN, Ann. Inst. Fourier (Grenoble) 13, 191 (1963).
- r_{18} C. GODBILLON, "Géométrie différentielle et mécanique analytique" Hermann. Paris (1969).
- ுரி SULANKE and WINTGEN, Differentialgeometric und Faserbündel, VEB Deutscher Verlag der Wissenschaften, Berlin (1972).
- $\lceil 20 \rceil$ $P.A.$ HORVATHY, Feynman Integral for Spin, Preprint CPT Marseille 79/P.1099 (1979) (unpublished).
- $\lceil 21 \rceil$ S. STERNBERG, in Lecture Notes in Math. 676, 1-80, Bleuler et al. Eds., Springer (1978).
- $[22]$ Ch. DUVAL. Sur les mouvements classiques dans un champ de Yang-Mills, CPT Preprint Marseille 78/P.1056 (1978) (unpublished).
- $\left\lceil 23 \right\rceil$ L. LANDAU and E. LIFCHIFTZ, Mécanique, Mir (1965).
- $\sqrt{24}$ R. ABRAHAM and J. MARSDEN, Foundations of Mechanics, Benjamin, (1978) .
- P.A. HORVATHY and L. URY, Acta Physica HL.garica 42, 3 [25] (1977) .

