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Theory of Drift, Trapped-Particle, and Alfven .
Instabilities and Anomalous Plasma Transport

. ABSTRACT

In Part A, we present results of theoretical investiga-
tions on the linear and nonlinear aspects of microseoplc low-
frequency drift, trapped-particle, and shear-Alfvén instabili-
ties in systems with finite magnetic shear. The investigations
employ analytical and numerical methods, and also particle
simulations. In particular, the following subjects are consid-
ered: (1) stability of drift~vave eigenmodes in a sheared slab
geomatry including finite ion-temperature gradients; (2) insta-
bilities in the neutral-beam-heated PLT; (3) application of
the hnllooning-mode formalism to drift, trapped-electron and
shear-Alfvén instabilities in toroidal geometry; and (4) non~
linear interactions of drift and drift-Alfven waves and associ-
ated anomalous transport.

In Part B, we show that finite ion-Larmor-radius effects
can remove the shear-Alfvén continuous spectrum extensively
discussed in ideal magnetohydrodynamic (MHD) theories. In the
absence of free energy or dissipation, the resultant eigennodes
are discrete and neutrally stable. Toroidal drifts of alpha
(or energetic) particles are found to destabilize these modes.
Stability studies of the parametric variations of the energy and
density scale lengths of the energetic particles show that, even
in the presence of electron Landau damping, modes with low
radial mode numbers remain unstable in most cases. Since alpha
particles are concentrated in the center of the plasma, this
drift-type instability may imply anomalous He-ash removal.

1, PART A. DRIFT, TRAPPED-PARTICLE, AND ALFVfN INSTABILITIES @
AND ANOMALOUS PLASMA TRANSPORT
By L. Chen, M. S, Chance, C. Z. Cheng, E. A.
Frieman, P, N. Guzdar, Y. C. Lee, R. Marchand, W.
M. Nevins, P. K. Kaw, W, W. Lee, H. Okuda, G.
Rewoldt, P. H. Rutherford, W. M. Tang

1.1 Stability of Drift Modes in Sheared-Slab Geometries

Recently, stability analyses of the collisionless (uni-
versal) drift mode have been generalized to the case of arbitrary
radial wavelengths; where the eigenmodes are described by the
following integral equation ,

]‘ dk; [(x +1/m) E'Fi(k; - k) olkl) + (1-1/a)

£2 (k -k)]¢(k')+¢(k)-0 (1)
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where t = Te/Ti' Q= u/m* ) Wy, ™ kyT c/eBL ’ Ej = mllklxlv
kh 1 k /L ’ ZJ

L and L lre, respectively, density lnd magnetic shear scale
lengths, o(kx) = Io(bi) exP(_bi}’ ) “ Py (k + k )/2 I ims the
modified Bessel function, and

Z(Ej) Z is the plasma dispersion function.

K(kx) = (1/2m) I- dx A(x) exp(rikxx}.

Both analytical [1] and numerical [2] treatments of Eq. (1)
have shown that, as in the differential-equation approxi-
mation, the eigenmodes are stable, While Eq. (1) is widely
accepted, a closer examination of its derivation reveals that
it is in error due to the assumption that the spatial dependence
due to the parallel wave number k, is weakly varying, which is
generally not true near the mode-rational surface. In fact,
the correct equation has been derived by Coppi, Rosenbluth, and
Sagdeev [3], and can be cast in the form of Ey. (1) with ¢ re-
placed by

U(k k) = 1 (bi) exp(=b Ry (2)
where ~i n [(k: + k2) (k'2 kg)lllz i/2 and b, = (ki + k;Z
+ 2 k ) pzlh. A stability proof, similar to that in Ref. [1],

can be carried out for the correct equation to show that, again,
the eigenmodes are always stable. The same conclusion is also
obtained numerically [4].

The stability of the universal eigenmode, however,is tied
to the even symmetry of electron velocity distribution Foe (v )
F (|v |) and, thus, for asymmetric Fo (v ), the eigenmode
can %ecome unstable [5]. To illustrate this point, we consider

the following Foe(y")

c./Q+v2H2 , forv, >0
1 e ]
I"oe(vll) = 2 2, 2.n
Cll(l + vi R /v ), for v < 0; (3)
where C1 - 4lveﬂ[1 + 2(2n - 3)!'/R(2n - 2)1!] and R = (n - 1)1‘/2
= 1 and A Foe dv" = 0. If the asym—

metry is strong (n >> 2), the eigenmode is found to be highly
localized away from the mode-rational surface and, therefore,
a parabolic approximation of the eigenmode potential can be
made. We then derive the following instability growth rate

a = /3 (-1 /L_+ 2~1/3 1/3,

[@/n) (/2 - DA . O
a = /A +b ), and b = k§ 1p2/2. Thus, the eigenmode becomes

to ensure F dv
] oe

n [1+ (L IZQOLB)
1/3}

unstable for sufficiently weak shear in agreement with the
nurerical results. It, therefore, suggests that, in realistic
situstions, a detalled knowledge of F_ (v ) may be crucial in
determiniwg the stability of the universai eigenmode.

The enhanced density fluctuations observed in the
neutral-beam-heated PLT [6] have stimulated much interest in
the effects of finite ion—temperature gradients
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[n, = (dInT,/dx/d1nN/dx) # 0] on drift modes [7]. To demon-
stfate the !inice—n effects, let us consider a sheared slab
and assume adiabatié (Roltzman) electrons, fluid ions, and

the small ion-Larmor-radius spproximation. For |“i >> 1, the
eigenmode ejuation can be readily solved and, for

'bsni‘ < t and the lowest efgenstate, we obtan. the following

two branches from the dioperaibn relation:

5
. @ *in Ln/L.r ' (5)
and 0, « [~ 1@+ 0 /0 L/LI/ 4D o 6)

" Q. corresponds to the ion diamagnetic drift mode destabilizéd

by positive n,; this is the usual (positive) n, instability [3]
A threshold vilua. nt = 1, appears when ion kiﬂetic effects are
kept [8]. §., on th& other hand, corresponds to the electron
drift mode, “For n, = 0, Q, reduces to the familiar Pearlstein-
. Berk repult [9]. ﬁquation (6) thus indicates positive (nega=
tive) ni'l enhance (reduce) the shear-damping rate and, for
n, $ =" % -t , a new negative n, instability. These predic-
tions fiave been verified by nume*ical snlutions of the eigen-
mode equation which includes both ion kinetic and nonadiasbatie
electron responses.,

1.2 Instabilities in the Neutral-Beam-Heated PLT

In order to describe the instabilities more realistically,
we have developed a radially local code which contains the
essential physics of the trapped-ion, the trapped-electron and
the positive-n, drift modes and employs equilibrium profiles
obtained from i one-dimensional radial transport code [10]
modeling the neutral-beam-heated PLT. In particular, the
equillibrium density and temperature for electrons, hydrogen,
deuterium, and carbon, and the safety factor q, together with
their derivatives, were evaluated halfway between mode-rational
surfaces at r = 22 cm,, the center radius of the microwave
scattering volume for density fluctuations. For a toroidal
mode number £ = 30, the mode goes unstable when T(r = 0)
= 2.3 keV (where T, = Tg =T =T ). The instability has a
characteristic frequency (n Qhe ign diamagnetic direction) of
the oxder of the ion bounce and transit frequencies and, there-
fore, can be regarded as a hybrid of the trapped-ion, trapped-

N electron, and ion-temperature-gradient modes. When compared
with the experimentally observed threshold, T,(r = 0) = 3-4 keV,
it can be concluded that there 1s agreement within the acaracy

' of the input equilibrium quantities at r = 22 cm. Hence, this
suggests the possibility that, below the threshold (which is a
combined threshold wainly on T, and n, at r = 22 cm.), there
18 a weakly unstable (trapped—&lectro%, drift) mode saturated
at a low level, and that, when the threchold is exceeded, the
hybrid mode goes unstable with a much higher growth rate. If
this stronger instability saturates at a higher level, it could
give rise to the sudden increase in the fluctuation level
observed in PLT.
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1.3 Drift, Trapped-Electron, and Shear-Alfven Instabilities
in Toroidal Geometries

Recently, the ballooning-mode formalism, first developed
for ideal MHD ballooning modes, has been generalized to .low-
frequency kinetic microinstabilities [11]. Employing this
formalism, significant new understanding has been gained on
the stability of drift-type modes in tokamaks. In particular,
it is found that, due to the appearance of a new eigenmode
branch due entirely to the finite toroidal coupling, the
stability properties can be qualitatively different from those
predicted using the slab model,

Let us consider an axisymmetric tokamak with concentric,
clrcular magnetic curfaces. For simplicity, we further assume
cold ions, and suppress electron dissipation in order to..
concentrate on the shear-damping effect. In the ballooning=-
mode representation, the corresponding (electrostatic) eigen-
mode equation is {11, 12]

ta%/a? + n2 2% Q@01 % B0 w<ben  (n)

wvhere
Qub (1+8% 8% +1~1/a+ (2€,/7) (cosd+a & sind),(8)

95 = bsqzlg:, s=rq'/q, €, = T, /R, rnl = {dln N(r) /dr|, and
© can be regarded as the coordinate along the magnetic field
line. In deriving Eq. (7), we also assume that there is no
radial phase shift butween modes located at neighboring mode-
rational surfaces.’ Equation (7) shows that torcidal coupling
has the effect of modulating the otherwise "anti-well"
potential structure and, thereby, introducing local potential
wells. Numerical sclutions of Eq. (/) have identified two
elgenmode branches. One 1s the usual slab-like (Pearlstein-
Berk) eigenmode branch, and the other is the new toroidicity-
induced branch. The slab-like branch, just as in the slab
model, has "anti-well" potential structure. The eigenmodes,
hence, are unbounded and experience finite shear damping. The
toroidicity-~induced branch, however, has negligible shear
damping since its elgenmodes are quasi-bounded by the local
wells. For the universal drift mode, we find, both analyti-
cally and numerically, that the eigenmodes of the toroidicity-
induced branch can be destabilized by either collisional [13]
or collisionless [14] electron dissipation, contrary to slab-
model predictions; while the slab-like ones always remain
stable. Calculations have also been done for the trapped-
electron mode [15], and the results show that the toroidicity-
induced branch is much more unstable than the slab-like branch.
Ae for the positive-n, drift mode, it is found that for n, > 1,
the unstable eigenmodés are strongly ballooning and toroiaal
coupling further destabilizes the instability [16].

The success of the ballooning-mode formalism in treating
tokamak microinstabilities has stimulated several extensions’
of the calculation. First, a more general iom response is
employed which is valid for both trapped-electron and trapprd-
ion regimes, and for arbitrary ratios of the perpendicular
wavelength to the ion Larmor, radius and banana width. Second,
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a fully electromagnetic analysis has been carried out by includ-
ing the parallel (A ) and perpendicular components (A,) of the
vector potential along with the electrostatic potential ¢ in
the-ballooging-mode formalism, sothat the eigenmodes of the
ghear-Alfven ns well as the finite-g (B £ plasma pressure/
magnetic pressure) modified drift branches can be investigated.
(We note that the MHD ballooning mode belongs to the shear-
Alfven branch.) In Figure 1, we show w = &_ + iy versus B for
eigenmodes in both branches. The parameterE used here are

" r/R° = 0.1, T, = 1kev, T, = 0.5 kev, q = 2,5, q'r/qg = 1,

*
r/r=1, m/mn = 3672, v =0,03, and b 0 = 0.2 (or k Py 0.63).
Flgure 1 (b} c8rresponds %o the lowest eldenstate of theldrife
branch for n =N, " 0. It can be seen that increasing £ has

a nign}ficant—effect only for B » 1%, The eigenfunction here
has $(8) and Al(é) even and A (8) odd, A perturbative analysis,
valid for B s €2 ~ 1%, reveals that the numerical results
presented here Sorrespond to the toroidicity-induced eigenmode
branch whose stability is little affected by the finite-8
coupling to the shear-Alfven branch, The slab-like branch,
however, is found to be further stabilized due to enhance-

ment in its shear—damping rate. Figure 1 (a) shows w versus B
for the shear-Alfven branch with 4(6) odd and A”(e) even and

for n=n, = -1; (negative n's are destabilizing for this

mode) . He%e. the growth rate increages rapidly above a critical
B value and then saturates. For bhoth branches, the effect of
including A, in the calculation is small even for B = 10%. How-
ever, the MHD equilibrium used here is frozen, with circular,
concentric magnetic surfaces. With more realistic MHD equilibria,
it is not expected that this will remain true for these large B
values. Hence, results for y and w_ shown in Fig. 1 are some-
what artificial in this sense.

1.4 Drift and Drift—Alfvén Turbulence énd Anomalous Transport

The linear gyrokinetic formalism has been extended to the
nonlinear regime using the following unified ordering scheme

SF.eb . fn . b.w oMo 1 Pi.g
F T N B @, k ka a

1
A system of equations can then be self-consistently derived
for the nonlinear evolution of both microscopic and macroscopic
quantities. The formalism has the advantages of being valid for
(1) kyp, ~ 0(1), (2) arbitrary B values, (3) the strong turbu-
lence re%ime where nonlinear time scales ~ linear time scales
~ O(N;l), {4) realistic geometries and, therefore, is adaptable
to the ballooning-mode representation. As a simple application
of this formalism, we show that, for drift as well as drift-
Alfven vaves, the spectral cnergy transfer due to the ion-—
induced scattering is from short to long perpendicular wave-
lengths. Meanwhile, numerical studies of three nonlinearly
ianteracting drift waves, (w,,k.) for j = 1, 2, 3, have shown that
the nonlinear dynamics can Be Strongly modified by the 4E x BeVén
« I'(k,) nonlinearity in addition to the ion polarization drift”
nonliﬁearity considered by Hasegawa and Kodama {17]}. Here I'(k.)
is the growth (I > 0) or damping (T < 0) rate correspounding toj
the nonadiabatic electron response. Epecifically, for k, < k
< kg I'(ky), T(ky) > 0, and T(ky) < 0, the results are &y g0}
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r(k,)=0, the fon polarization drift is the oply nonlinearity and,

as tedicted Ref, 17, more energy is transferred to the K, mode

than to the k. mode; (ii) for I'¢k.), F(k,) > 0, T(k,) < O and

keeping only ghe nonlinear ion po}arizat;on drift %o steaay

state’'is reached; and (1i1) inclusion of the 8E x B.yén

nonlinearity leids to bounded solutions for the three-wave .
interaction. However, a significant damping rate IT(k )/w I

~ 0(10"1 ), 18 needed to achieve a steady state.

The n, drift instability in a sheared slab and its non=-
linear evoiution have been simulated using a two-and-half
dimensional (2-~1/2D) particle code. For m, > n', the observed
characteristics of the linear instability %gree well with. those
predicted from an eigenmode analysis. The nonlinear phase of the
instability is accompanied by a large ion thermal transport
which flattens the ion temperature profile and, thereby, leads
to saturation, For n, ¢ ng s enhanced fluctuations due to
marginally stable mod&s ha%e also been observed. In both cases,
fluctuation amplitudes and, hence, the resulting anomalous
transport are found to depend critically on the linear eigen~-
mode widths. Furthermore, the observed thermal conductivities
are much larger than those predicted from & local quasi~linear
theory.

A 2-1/2D simulation hag alsc been carried out to investi-
gate microscopic shear-Alfven eigenmodes of the tearing-mode
parity. While the eigenmodes are linearly stable, it is observed
that flucutations assoclated with the lowest eigenmode are
enhanced over the thermal level and a quasi-linear modification
of the zeroth~order current is observed near the mode-rational
surface. The obsetved steady state is characterized by the
nullification of the zeroth-order current and shear, as well as
rapid electron radial energy transport near the mode-rational
surface due to the formation of micruscopic magnetic islands.

Finally, we examine the interesting phenomenon observed
in the shearless layer of a multipole: that while large-
amplitude low-frequency density fluctuations (8u/N < 30%) can
be completely gquenched when the safety factor q is a rational
number, the plasma confinement has actually deteriorvated in
this case by 50%Z [18]. It is believed that these observations
for rational q values can be explained in terms of nonlinear
excitation of convective cells and, consequently, enhanced
particle diffusion by drift-wave instabilities [19]. Specifi-
cally, once convective cells are nonlinearly eXcited to
amplitudes comparable to drift-waves, the drift instabilities
are quenched due to the phase~mixing of particle orbits.
Meanwhile, since convective cells are incompressible, the
associated density fluctuations are small [20], which is
consistent with the observation. For irrational q values,
however, the convective cells are strongly damped since the
field lines are not closed. Furthermore, for k,p, < 1, the
mode-coupling coefficients of drift waves are sma}l and,.
hence, drift modes saturate at high amplitudes. Numerical
simulations using a three-dimensional cyliindriecal particle
code have been performed to verify the theoretical interpre-
tations described. The simulation parameters are m,/meT= 400,

. i e
Te/T]. = 16, (2‘2/141"e = 4, a 64 x 64 two-dimensional spatial
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grid, p, = 2, B = B, e, +B (r) e » L (system length in z) =
640 and’4 ~ 5 Fourjer modespnre employgd to represent z~direction
variations, Also, B (r) = r so that q = 2ar B_/B_(r) is constant,
i.e,, there 1s no shBar. Runs have been made With q = 2 and /5,
reapectively, to study the q-value effects on the density
fluctuations, Furthermore, in order to model the experiments
more closely, steady-state simulations have been carried out
with the initial density and temperature profiles more or less
maintained. Figure 2 shows the time development of the poten-
tisl fluctuations for several modes when the q value is
irrational, i.e., q = /5 and, in this case, there is no convec-
tive cell. It is clearly seen that several drift modes, (m,n)

= (~1,0), (~4,2), (-3,1) remain at large amplitudes even after
saturation., Figure 3 shows the case of q = 2 with the other
parameters kept fixed, Here, it is seen that the drift modes,
(m,n) = (-1,11 and (-3,1) first grow to large amplitudes at

t = 2400 w e . and then decay away to small amplitudes. Mean-
while, conlective cells (m,n) = (-2,1), grow slowly and saturate
at a level comparable to the drift waves. The saturation level
here is quite small compared with the ¢ = /5 case, which is
consistent with experimental results.
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Destabilization of Low Mode Lumber Alfven Modes in Tokamaks
by Energetic Beam or Alpha Particles

K. T« Tsangs, D. J. Sigmar, and J. C. Whitson
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830, U.S.A.

With the inclusion of finite Larmor radius effects, the second
order differential equation for the 1ideal MHD Alfven wave 1s
replaced by a fourth orderone21,22]. Discrete elgensolutions are
possible because the Alfven saingularity 1s removed from the
highest derivative. Rosenbluth and Rutherford first included
this fourth order firn.te Larmor radius term to investigate the
excitation of shear Alfven waves by energetic ions in a tokamak.
However, the fourth order term they derived is valid only in slab
geometry for rather short radial wave lengths. 1In cylindrical
geometry, their slab fourth order term is incompatible with the
boundary condition at r = (0, where r 1s the minor radius.
Therefore if one uses the Rosenbluth-Rutherford equation in
.cylindrical geometry, a global unstable mode can be found even
wvhen the energetic ion contribution is turned off, clearly a
spurious result.

We give the correct fourth order elgenmode equation in
cylindrical geometry and construct a quadratic form to show that
the eigenmodes are always neutrally stable in the absence of free
energy and dissipation. Tho effect of alpha particles manifests
itself predominantly through the current due to their large
toroidal drifc motion. The electrons contribute a stabilizing
Landau resonance through the chatge neutrality conditiouw. Charge
neutrality and Ampere’s law provide two equations for the scalar
and vector potentials (¢, A"). There results a single fourth
order eigenmode equation for cylindrical geometry

.19 3 mz
nl Gty 2

H

Ug¢ =0, (9a)



whexe

Up s 02/%2 = k2 = B (1 -y /i) £,2(2,) /2R (9w
0 A 1 a b+ ] a“Vqy ’

U, = v} + /1 +520 0], (9¢)

ky 1s the parallel wavenumber, w im the mode frequency, f -
'.r /T,y wy = (ncT/reB)ILnNfdr, &, = 0/|kylv,, o2 = T4, (c/eB)?, m
is tg‘le poloidal mode number, Z is the plasma dispersiun funetign,
t&e subseripts refer to electrons, ions and alpha particles, Vy =
B4/ (4mNMy) s the Alfveqz speed, 5, = u/|ky[V,, R is the mafcr
radius, and By = STN,T./B 1f the finite Larmor radius term in
the charge neutrality condition is ignored, then Eq. (9a)
reduces to the second order eigenmode equation derivable from
ideal magnetohydrodynamics. In Eq. (9), we have neglected Wyey
sand w,, compared with w, but w, 1is kept. Note also that Eq.
(9) is applicable to modes with poloidal mode number m > 2. (The
m = 1 mode would require full toroidesl geometry in the
equilibrium.)
When electron damping and alpha particle undamping are
ignored, we can derive a quadratic form

‘

2[fd “12+<2-nf:dr|¢|2/rv§
A

_3,2 -2 19 8 m? 2
l'pif drrVA I( Brﬁ ?)4"]

3 a :
-f dr K2 3 |§;%l2 + 7 arm? - 1) k2 151 Yx
[+]

2
278 X 3 38 42, 2,8 2
AN Bt TR SR S
2 (.2 a 2 .5 (9 ok 3 4
+ “« 1R dr & 2 8% &L 10
B (ne - 1) e[f0 Tt (=2 (31: r3)} (10)

where a is the mino: -plasma radius, and p is the ion gyroradius
wit;h electron I:eruperature. If p /5 << E‘1 a/ar << 1, both
sides of Eq. (10) are positive, w® must be positive and the
system is neutrally stable. If the finite Larmor radius terms

are’ approximated by their slab form it is impossible to comstruct
a quadratie form, however.
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Equaticn (9) is solved numerically _using a conducting wall
boundary condition at r = a and E_ = Br “« 0 at v = Q. For
tokamak geometry, Ry = (o - £9)/qK, where £ 1s the toroidal mode
number and q is the safety factor. We assume paiabolic profiles
for q aEd the density N, q(r) = 1 + (qq - 1)(x/a)“, eand N = No[po
- (x/a)%]

In this paper, ue .lnxeatzlgat« the deatabilization of the
local Alfven wave w? - ki v “"A due to fast particles by
choosing low mode numbers surh that the first mode rational
surface ky = 0 lies radially outside of the Alfven resonance U, =
0, Eq. §9b)- U, plays the role of a potential well for the
Tadial aigenrfdes. For the alpha particlei we assume 8, = 8,
exp| ~ /L) ] and ¥ o ©XP [ = (x/1,) T

When P = 0, aﬁ% eleetron Landau damping is turned off, for
fixed £ and m such that k, # 0 we find radiai eigenmodes with
purely real w. The fundame'lcal radial mode has the smallest w
(wh,, ~ 1, whese Wpo 18 the Alfven frequency at the center) and
the fven resonance asurface closest to r = 0. As the radial
mede number dincresses, w increases and the Alfven resonance
surface moves outward. When B,. %0 these wigenmodes are
destabilized. Figures 4 show the eigenfunctiona of the unstable
fundamenial and first radial harmonics for the following
parameters of an ignited izkamgk. L =3 m= 2 g ™ 3, 1, =T
10 keV, B = 43KG, N, = 10°%/en wBl v 2%, e w 3%, b 255
Mel', R = 4m, a = Im, Lh = 0 3m, uné Pg : lele

Analyzing the local dispersion ’elation obtained from Eq.
(9) we se= this instability is driven by w,,. This is
nunerically confirmed in Fig. 5. where the growth rate Il @ =
mﬂquP for the fundamental radial mode is plotted against L /a
for = 3,5, 2.5 and 1 MeV. From Fig. 5, we conclude that i)
the growth rate is, ligher for larger T , 1i) it increases with
deccnasing L, and 11i4) for fixed Ta the.e exists a critical L,
belew which the mode is unstable.

As the quantitative results show the congitions for
instability are easily met since the alpha particle pressure is
localized in the central region. Undexr these circumstances,
quasilinear thectyy can be expected t~ flatten the alpha density
profile and to yield anomalous ot.ward diffusion of the alpha
particle ash.
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Fig. 1. w = w_+ iy versus R for
elgenmodes in (as the shear-Alfvén
branch with ng = Neg ™ -1, and (b) the
drift branch with ny = Mg ™ 0.

(PPPL~802098)
Fig. 2. Perturbed poten-
tials at different time steps
for various (m,n) modes.
Here, 4 = ¥5 is an irration-
al number.
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Fig. 3. Same as Fig. 2.,

except ¢ = 2 is a rational
number.

(PPPL~502169)
Fig. 4. Eigenfunctions (Re¢/r)
of the unstable fundameni:al and
first radial harmonics for the
parameters of an ignited tokamak
given in the text.
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Fig. 5. Normalized growth rate Im Q for the
fundamental radial mode versus normalized a
particle density scale length L,/a for Ty = 3.5,
2.5 and 1 MeV, Same parameters as in Fig. 4.




