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Theory of Drift, Trapped-Partide, and Alfven 
Instabilities and Anomalous Plasma Transport 

ABSTRACT 

In Part A, we present reaults of theoretical investiga
tions on the linear and nonlinear aspects of microscopic low-
frequency drift, trapped-particle, and shear-Alfven instabili
ties in systems with finite magnetic shear. The investigations 
employ analytical and numerical methods, and also particle 
simulations. In particular, the following subjects are consid
ered: (1) stability of drift-vave eigenmodes in a sheared slab 
geometry including finite ion-temperature gradients; (2) insta
bilities in the neutral-beam-heated PLT; (3) application of 
the ballooniitg-mode formalism to drift, trapped-electron and 
shear-Alfven instabilities in toroidal geometry; and (4) non
linear interactions of drift and drift-Alfven waves and associ
ated anomalous transport. 

In Part B, we show that finite lon-Larmor-radius effects 
can remove the. shear-Alfven continuous spectrum extensively 
discussed in ideal magnetohydrodynamlc (MHD) theories. In the 
absence of free energy or dissipation, the resultant eigenmodes 
are discrete and neutrally stable. Toroidal drifts of alpha 
(or energetic) particles are found to destabilize these modes. 
Stability studies oJE the parametric variations of the energy and 
density scale lengths of the energetic particles show that, even 
in the presence of electron Landau damping, modes with low 
radial mode numbers remain unstable in most cases. Since alpha 
particles are concentrated in the center of the plasma, this 
drift-type instability may imply anomalous He-ash removal. 

1. PART A. DRIFT, TRAPPED-PARTICLE, AND ALFVEN INSTABILITIES 
AND ANOMALOUS PLASMA TRANSPORT 
By L. Chen, M. S. Chance, C. Z. Cheng, E. A. 
Frieman, P, N. Guzdar, Y. C. Lee, R. Marchand, W. 
M. Nevins, P. K. law, W. W. Lee, H. Okuda, G. 
Rewoldt, P. H. Rutherford, W. M. Tang 

1.1 Stability of Drift Modes in Sheared-Slab Geometries 

Recently, stability analyses of the collisionless (uni
versal) drift mode have been generalized to the case of arbitrary 
radial wavelengths; where the eigenmodes are described by the 
following integral equation , 

J dk^ [<T + i/n) ^ ( k ; - k x) o(k^) + (i-i/n^.. 

" P e ( k x ~ k x ) ] •<*;> + *< k
x> " ° • <1) 
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where T = Tjl±, ft = „/ u^, »*. - IM^e/eBL^ ^ - o)/|k,'jX|vtj. 
kjj - kJ l* z i Z - Z(£ ), Z Is the plasma dispersion function, 
L and L are, respectively, density and magnetic shear scale 
lengths, o(k ) - I (b.) exp(-b,) , b. - p 2 (k 2 + k 2 ) / 2 , 1 i s the 

A 0 1 i i i x y o 
modified Bessel function, and 

A(k x) - <l/2n) j dx A(x) exp(-ikxx). 
Both analytical [1] and "numerical [2] treatments of Eq. (1) 
have shown that, as in the differential-equation approxi
mation, the eigenmodes are stable. While Eq. (1) is widely 
accepted, a closer examination of its derivation reveals that 
it is in error due to the assumption that the spatial dependence 
due to the parallel wave number k.. is weakly varying, which is 
generally not true near the mode-rational surface. In fact, 
the correct equation has been derived by Coppi, Rosenbluth, and 
Sagdeev [3], and can be cast in the form of Eq. (1) with a re
placed by 

3{kx,k;) - l o(E t) expC-b^), (2) 
where b, • [<k2 + k2) (k'2 + k 2 ) ] 1 / 2 p2/2 and b, - (k2 + k' 2 

2 i _ x y A y >** i A * 
+ 2 k ) p*/4. A stability proof, similar to that in Ref. [1], 
can be carried out for the correct equation to show that, again, 
the eigenmodes are always stable. The same conclusion is also 
obtained numerically [4]. 

The stability of the universal eigenmode, however,is tied 
to the even symmetry of electron velocity distribution F (v..) 
" Foe^ vll^ a n d ' t l j U 8» f o r a s v m m e t r i c Foe^vll*' t h e eiBen«iode 
can become unstable 15]. To illustrate this point, we consider 
the following F (y..) 

F C v ) - J * " / V ' ) 2 ' f ° r V » > 0 

o e V < - 2 R 2 / v V , for v.. < 0 ; (3) 
e -1/2 

where C. - 4/v ir[l + 2(2n - 3)!!/R(2n - 2)!!] and R - ( n - l ) * ' ' ' 

rv^ + 'n'' 
1 ^ / ( 1 + v„ 2 B 

1 ,̂ .e..tl + 2(2n - 3 ) ! . , ^ — -,..., ~ %- -, 
to ensure F dv„ - 1 and v.. F dv„ • 0. If the asym-J oe II J II oe II 
metry is strong (n » 2), the eigenmode is found to be highly 
localized away from the mode-rational surface and, therefore, 
a parabolic approximation of the eigenmode potential can be 
made. We then derive the following instability growth rate 

Imll » /5 {-L /L + 2~lf3 D II + (L /2JJ L ) 1 / 3] n B o n o s 
[ ( m ^ ) (l/0o - 1) 21 1 / 3} , (4) 

ft * 1/(1 + b ), and b m k 2 tp2/2. Thus, the eigenmode becomes o s s y i 
unstable for sufficiently weak shear in agreement with the 
numerical results. It, therefore, suggasts that, in realistic 
situations, a detailed knowledge of F e( vi|) "^Y be crucial in 
determining the stability of the universal eigenmode. 

The enhanced density fluctuations observed in the 
neutral-beam-heated PLT [6] have stimulated much interest dn 
the effects of finite ion-temperature gradients 
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ln. = (dlnT /dx/dlnN/dx) »< 0] on drift modes [7J. To demon
strate the rinite-n. effects, let us consider a sheared slab 
and assume jidiabatic (Rolteman) electrons, fluid ions, and 
th« small ion-Larmor-radius approximation. For |n^| » 1, the 
eigenmode equation can be readily solved and, for 
}b it. j < T and the lowest eigenscate, we obtati, the following 
two branches from the dispersion relation: 

ft. « i n. L / l t , < 5) 
.1 i n s 

and ft, « [1 - i<l + n./T) L /L ]/<l + b ) . (6) 
2 1 n 6 s 

ft. corresponds to the ion diamagnetic drift mode destabilized 
by positive n.; this is the usual (positive) ru instability [3]. 
A threshold value, n + • 1, appears when ion kifietic effects are 
kept [8], n , on thS other hand, corresponds to the electron 
drift mode. For n. « 0, R, reduces to the familiar Pearlstein-

. Berk rewult [9]. Equation (6) thus indicates positive (nega
tive) n 's enhance (reduce) the shear-damping rate and, for 
n. S i\ " -T , a new. negative n. instability. These predic
tions Save been verified by numerical solutions of the eigen-
node equation which includes both ion kinetic and nonadiabatlc 
electron responses. 

1.2 Instabilities in the Neutral-Beam-Heated PLT 

In order to describe the instabilities wore realistically, 
we have developed a radially local code which contains the 
essential physics of the trapped-ion, the trapped-electron and 
the positive-n. drift modes and employs equilibrium profiles 
obtained from 5 one-dimensional radial transport code [10] 
noddling the neutral-beam-heated PLT. In particular, the 
equilibrium density and temperature for electrons, hydrogen, 
deuterium, and carbon, and the safety factor q, together with 
their derivatives, were, evaluated halfway between mode-rational 
surfaces at r = 22 cm., the center radius of the microwave 
scattering volume for density fluctuations. For a toroidal 
node number I - 30, the mode goes unstable when T(r = 0) 
- 2.3 IceV (where T - Tg » T - T ). The instability has a 
characteristic frequency (In the ion diamagnetic direction) of 
the order of the ion bounce and transit frequencies and, there
fore, can be regarded as a hybrid of the trapped-ion, trapped-
electron, and ion-temperature-gradient modes. When compared 
with the experimentally observed threshold, T.(r » 0) = 3-4 keV, 
it can be concluded that there is agreement within the accuracy 
of the input equilibrium quantities at r = 22 cm. Hence, this 
suggests the possibility that, below the threshold (which is a 
combined threshold mainly on T and n. at T = 22 cm.), there 
Is a weakly unstable (trapped-llectroff, drift) mode saturated 
at a low level, and that, when the threchold is exceeded, the 
hybrid mode goes unstable with a much higher growth rate. If 
this stronger instability saturates at a higher level, it could 
give rise to the sudden increase in the fluctuation level 
observed in PLT. 
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1.3 Drift, Trapped-Electron, and Shear-Alfven Instabilities 
In Toroidal Geometries 
Recently, the ballooning-mode formalism, first developed 

for ideal MHD ballooning modes, has been generalized to .low-
frequency kinetic microinstabilltie.s [11]. Employing this 
formalism, significant new understanding has been gained on 
the stability of drift-type modes in tokamaka. In particular, 
it is found that, due to the appearance of a new eigenmode 
branch due entirely to the finite toroidal coupling, the 
stability properties can be qualitatively different from those 
predicted using the slab model. 

Let us consider an axisymmetric tokamak with concentric, 
circular magnetic curfaces. For simplicity, we further assume 
cold ions, and suppress electron dissipation in order to 
concentrate on the shear-damping effect. In the ballooning-
tnode representation, the corresponding (electrostatic) eigen
mode equation is [11, 12] 

M 2 / d S 2 + n 2 n 2 Q<n,e)3 * (e)»- 0; — < e < » (7) 
where 

Q - b g(l + s 2 6 2) + 1 - 1/£J + (2Cn./Sl) (cosB + s 9 sine),(8) 
2 2 2 * —1 1 

% " b s q / e n ' s " r q'' q' e n ' r n ' R ' r n " | d l n M^ r* ^ d r l ' a n d 

S can be regarded as the coordinate along the magnetic field 
line. In deriving Eq. (7), we also assume that there is no 
radial phase shift between modes located at neighboring mode-
rational surfaces.' Equation (7) shows that toroidal coupling 
has the effect of modulating the otherwise "anti-well" 
potential structure and, thereby, introducing local potential 
wells. Numerical solutions of Eq. (»') have identified two 
eigenmode branches. One is the usual slab-like (Pearlstein-
Berk) eigenmode branch, and the other is the new toroidicity-
induced branch. The slab-like branch, just as in the slab 
model, has "anti-well" potential structure. The eigenmodes, 
hence, are unbounded and experience finite shear damping. The 
toroidicity-induced branch, however, has negligible shear 
damping since its eigenmodes are quasi-bounded by the local 
wells. For the universal drift mode, we find, both analyti
cally and numerically, that the eigenmodes of the toroidicity-
induced branch can be destabilized by either collisional [13] 
or collisionless [14] electron dissipation, contrary to slab-
model predictions; while the slab-like ones always remain 
stable. Calculations have also been done for the trspped-
electron mode 115], and the results show that the toroidicity-
induced branch is much more unstable than the slab-like branch. 
As for the positive-n. drift mode, it is found that for n. > 1, 
the unstable eigenmodes are strongly ballooning and toroidal 
coupling further destabilizes the instability [16]. 

The success of the ballooning-mode formalism in treating 
tokamak microinstabilities has stimulated several extensions 
of the calculation. First, a more general ion response is 
employed which is valid for both trapped-electron and trapp"~d-
ion regimes, and for arbitrary ratios of the perpendicular 
wavelength to the ion Larmor. radius and banana width. Second, 
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a fully electromagnetic analysis has been carried oat by includ
ing the parallel (A..) and perpendicular components (A^) of the 
vector potential along with the electrostatic potential $ in 
the-balloonlng-mode formalism, sothat the eigenmodes of the 
shear-Alfven as well as the finite-B (3 5 plasma pressure/ 
magnetic pressure) modified drift branches can be investigated. 
(We note that the MHD ballooning mode belongs to the shear-
Alfven branch.) In Figure 1, we show « • w + iy versus 6 for 
eigenmodes in both branches. The parameters used here are 
^ - r/RQ - 0.1, T e - 1 keV, T t - 0.5 keV, q - 2.5, q'r/q - 1, 
r /r - 1, m /m - 3672, v* - 0.03, and b . - 0.2 (or k p - 0.63). 
Figure 1 (bj cSrresponds to the lowest elgenstate of tne drift 
branch for n. • n " 0 . It can be seen that increasing 6 has 
a significant effect only for B > 12. The eigenfunction here 
has $(§) and A x(§) even and A (I) odd. A perturbatlve analysis, 
valid for 6 i f2 - IX, reveals that the numerical results 
presented here Correspond to the toroldiclty-induced elgenmode 
branch whose stability is little affected by the finite-6 
coupling to the shear-Alfven branch. The slab-like branch, 
however, is found to be further stabilized due to enhance
ment in its shear-damping rate. Figure 1 (a) shows w versus 0 
for the shear-Alfven branch with $(9) odd and A..(6) even and 
for n • n • -1; (negative n's are destabilizing for this 
mode). He?e, the growth rate increases rapidly above a critical 
B value and then saturates. For both branches, the effect of 
including A i in the calculation is small even for 6 = 107,, How
ever, the MHD equilibrium used here is frozen, with circular, 
concentric magnetic surfaces. With more realistic MHD equilibria, 
it is not expected that this will remain true for these large 0 
values. Hence, results for Y and w shown in Fig. 1 are some
what artificial in this sense. r 

1.4 Drift and Drift-Alfven Turbulence and Anomalous Transport 

The linear gyrokinetic formalism has been extended to the 
nonlinear regime using the following unified ordering scheme 

ii - s§± • is. - ik - _£L - 1̂! - _i_ - ̂ i - s « i 
F T N B Jl. kj. kja a 

A system of equations can then be self-consistently derived 
for the nonlinear evolution of both microscopic and macroscopic 
quantities. The formalism has the advantages of being valid for 
(1) kjp. - 0(1), (2) arbitrary 0 values, (3) the strong turbu
lence regime where nonlinear time scales ~ linear time scales 
- 0(wJJ1), (A) realistic geometries and, therefore, is adaptable 
to the ballooning-mode representation. As a simple application 
of this formalism, we show that, for drift as well as drift-
Alfven waves, the spectral unergy transfer due to the ion-
induced scattering is from short to long perpendicular wave
lengths. Meanwhile, numerical studies of three nonlinearly 
interacting drift waves, (u ,k.) for j » 1, 2, 3, have shown that 
the nonlinear dynamics can tte itrongly modified by the 6E x B-V6n 
• T(k.) nonlinearity in addition to the ion polarization~drift" 
nonlinearity considered by Hasegawa and Kodama [17]. Here T(k ) 
is the growth (r > 0) or damping (r < 0) rate corresponding to-' 
the nonadlabatic electron response. Specifically, for k- < k 
< k 3, I ' ^ ) , T(k 2) > 0, and r(k 3) < 0, the results are (1) for 
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T(k )«0, the ion polarization drift is the only nonlinearlty and, 
as predicted Ref. 17, more energy is transferred to the K node 
than to the k mode; (ii) for T(k ), r(k ) > 0, r(k.) < Band 
keeping only the nonlinear ion polarization drift, fto steady 
atate'is reached; and (ill) inclusion of the 4E x B«Vin 
nonllnearity lends to bounded solutions for the three-wave 
Interaction. However, a significant damping rate |r(k,)/u.| 
-OU'O" 1), is needed to achieve a steady state. 3 3 

The n. drift instability in a sheared slab and its non
linear evolution have been simulated using a two-and-half 
dimensional (2-1/2D) particle code. For n > n +, the observed 
characteristics of the linear instability agreecwell with' those 
predicted from an eigenmode analysis. The nonlinear phase of the 
instability is accompanied by a large ion thermal transport 
which flattens the ion temperature profile and, thereby, leads 
to aaturation. For n s n+ , enhanced fluctuations due to 
marginally stable modes have also been observed. In both cases, 
fluctuation amplitudes and, hence, the resulting anomalous 
transport are found to depend critically on the linear eigen
mode widths. Furthermore, the observed thermal conductivities 
are much larger than those predicted from a local quasi-linear 
theory. 

A 2-1/2D simulation has also been carried out to investi
gate microscopic shear-Alfven eigenmodes of the tearing-aode 
parity. While the eigenmodes are linearly stable, it is observed 
that flucutatiorts associated with the lowest eigenmode are 
enhanced over the thermal level and a quasi-linear modification 
of the zeroth-order current is observed near the mode-rational 
surface. The observed steady state is characterized by the 
nullification of the zeroth-order current and shear, as well as 
rapid electron radial energy transport near the mode-rational 
surface due to the formation of roicr-jscopic magnetic islands. 

Finally, we examine the interesting phenomenon observed 
in the shearless layer of a roultipole: that while large-
amplitude low-frequency density fluctuations (6ri/N < 30%) can 
be completely quenched when the safety factor q is a rational 
number, the plasma confinement has actually deteriorated in 
this case by 50Z [18]. It is believed that these observations 
for rational q values can be explained in terms of nonlinear 
excitation of convective cells and, consequently, enhanced 
particle diffusion by drift-wave instabilities [19]. Specifi
cally, once convective cells are nonlinearly excited to 
amplitudes comparable to drift-waves, the drift instabilities 
are quenched due to the phase-mixing of particle orbits. 
Meanwhile, since convective cells are incompressible, the 
associated density fluctuations are small [20], which is 
consistent with the observation. For irrational q values, 
however, the convective cells are strongly damped since the 
field lines are not closed. Furthermore, for k,p < 1, the 
mode-coupling coefficients of drift waves are small and,, 
hence, drift modes saturate at high amplitudes. Numerical 
simulations using a three-dimensional cylindrical particle 
code have been performed to verify the theoretical interpre
tations described. The simulation parameters are m./m ..." 400, 
T /T-. • 16, li /u > 4, a 64 x 6t two-dimensional spatial 
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grid, oi - 2, B - B z e^ f B (r) efl , L z (system length in z) -
640 and 4 - 5 Fourier modes are employed to represent indirection 
variations. Also, B (rl « r so that q = 2nr B /B (r) is constant, 
i.e.. there is no shiar. Runs have been made witR q - 2 and fi, 
respectively, to study the q-value effects on the density 
fluctuations. Furthermore, in order to model the experiments 
more, closely, steady-state simulations have been carried out 
with the initial density and temperature profiles more or less 
maintained. Figure 2 shows the time development of the poten
tial fluctuations for several modes when the q value is 
irrational, i.e., q • /§ and, in this case, there is no convec-
tive cell. It is clearly seen that several drift modes, (m,n) 
" (-1,0), (-4,2), (-3,1) remain, at large amplitudes even after 
saturation. Figure 3 shows the case of q • 2 with the other 
parameters kept fixed. Here, it is seen that the drift modes, 
(m,n) - (-1,1) and (-3,1) first grow to large amplitudes at 
t • 2400 w p e and then decay away to small amplitudes. Mean
while, connective cells (m,n) » (-2,1), grow slowly and saturate 
at a level comparable to the drift waves. The saturation level 
here is quite small compared with the q = /5 case, which is 
consistent with experimental results. 
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With the inclusion of finite Larraor radius effects, the second 
order differential equation for the ideal MHO Alfven wave is 
replaced by a fourth order one [21^2]. Discrete etgensolutions are 
possible because the Alfven singularity is removed from the 
highest derivative. Rosenbluth and Rutherford first Included 
this fourth order finite Larmor radius term to investigate the 
excitation of shear Alfven waves by energetic ions in a tokamak. 
However, the fourth order term they derived is valid only in slab 
geometry for rather short radial wave lengths. In cylindrical 
geometry, their slab fourth order term is incompatible with the 
boundary condition at r » 0, where r is the minor radius. 
Therefore if one uses the Rosenbluth-Rutherfotd equation in 
. cylindrical geometry, a global unstable mode can be found even 
when the energetic ion contribution is turned off, clearly a 
spurious result. 

We give the correct fourth order eigenmode equation in 
cylindrical geometry and construct a quadratic form to show that 
the eigenmodes are always neutrally stable in the absence of free 
energy and dissipation. The effect of alpha particles manifests 
Itself predominantly through the current due to their large 
toroidal drift motion.' The electrons contribute a stabilizing 
Landau resonance through the charge neutrality condition. Charge 
neutrality and Ampere's law provide two equations for the scalar 
and vector potentials (<i>, Aj). There results a single fourth 
order eigenmode equation for cylindrical geometry 

P i l

f 2 3 t 1 3r r r 2 1 J r 3 r 3r r 2 ^ 

+ 1 » r*D0 i - t -»L=_Iff 0* - 0 , (9a) 
r 2 3r ° 3 r r r 2 ° 

h 
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where 
U„ - u 2/V^ - k 2 - B a(l - !-«(,/«>) C aZtt a)/2R 2, <9b) 
U x - 3« 2/4v| + tk2/[ 1 + 5 £Z(C e)], (9c) 
ki is the parallel wavenumber, ID is the mode frequency, T « 
Tg/T,, w* - (mcT/reB)MnN/3r, 5 e - «/|kM |vfe, p 2 - TjM., (c/eB) z, m 
is the poloidal mode number, Z is the plasma dispersion function, 
the subscripts refer to electrons, ions and alpha particles, vf -
B 2 / ( 4 T T N 1 M 1 ) is the Alfven speed, C a - w/|kfl |Va, R is the major 
radius, and 3 a - 8irNaTa/B • If the finite Larmor radius term in 
the charge neutrality condition is ignored, then Eq. (9a) 
reduces to the second order eigenmode equation derivable from 
ideal magnetohydrodynaraics. In Eq. (9), we have neglected u A 1 

and in* compared with u, but u ^ is kept* Note also that Eq. 
(9) is applicable to modes with poloidal mode number m _> 2. (The 
m - 1 mode would require full toroidal geometry in the 
equilibrium*) 

When electron damping and alpha particle undamping are 
Ignored, we can derive a quadratic form 

< u 2 [ / a d r 4 l £ : £ l 2 + < m 2 - D / a d r It I 2 / r V2 

o u? o r r 0 

- / ' d. kf r' | i - i | 2

 + ;" dr<„2 - 1) wf I f l V r o " dr r o » 

* *\ (»2 - l) «, [f" dr kf tJ ( i - ^ ) ( i - i - )] (10) 
o or r or J 

where a is the minoi plasma radius, and P. is the Ion gyroradius 
with electron temperature. If p ±/r « 1. p 3/3 r « it both 
sides of Eq. (10) are positive, ID 2 must be positive and the 
system is neutrally stable. If the finite Larraor radius terms 
are'approximated by their slab form it is impossible to construct 
a quadratic iorm, however. 
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Equsticn (9) la solved numerically .using a conducting vail 
boundary condition at r - a and E f • B r » 0 at r - 0. For 
tokamak geometry, k, » (m - tq)/qR, where I ia the toroidal mode 
number and q is the safety factor. He assume parabolic profiles 
for q and the density N, q(r) - 1 + (q. - l)(r/a) , and K - N„fp„ 
- (r/a)2] ' 

In this paper, we investigate .the destabllizatiou of the 
local Alfven wave ID » kf t£ s w£ due to fast particles by 
choosing low mode numbers such that the first node rational 
surface k« • 0 lies radially outside of the Alfven resonance U « 
0, Eq. (9b). U plays the role of a potential well for the 
"radial eigenrnodes. For the alpha particles, we assume 8. • B„. 
exp[ - Cr/I^)2] and N - \ Q exp [ - (r/I^)2!. 

When P„ 0 • 0, and electron Landau damping is turned off, for 
fisted t, and n such that k» + 0 we find radial eigenmodes with 
purely real w. The fundamental radial mode has the smallest u 
(u/Wif. ~ 1« where w A o is the Alfven frequency at the center) and 
the TUfven resonance surface closest to r - 0. As the radial 
mode number increases, w increases and the Alfven resonance 
surface moves outward. When 0 a o 1*0 these eigenmodes are 
destabilized. Figures 4 show the eigenfunctions of the unstable 
fundamental and first radial harmonics for the following 
parameters of an Ignited Cokamak: I • 3, m • 2, q » 3, l'± • T * 
10 keV, B - 45KG, Nfl - lO^/cm 3, S, - 6 e * 2%, &tt* - 3X, T a - 1.5 
MeV, R » 4m, a - Im, 1̂  - 0.3m, and p Q «- 1.1. 

Analyzing the local dispersion relation obtained from Eq. 
(9) we sea this Instability is driven by u ^ . This is 
numerically confirmed in Fig. 5. where the growth rate Infi (S = 
w/w^) for the fundamental radial, mode is plotted against La/a 
fot™ a » 3.5, 2.5 and 1 MeV. From Fig. 5, we conclude that 1) 
the growth rate is. higher for larger T a, ii; it increases with 
deceasing L^ and ill) for fixed T a, these exists a critical 1^ 
below which the mode is unstable. 

As the quantitative results show the conditions for 
instability are easily met since the alpha particle pressure is 
localized in the central region. Under these circumstances, 
quasilinear theory can be expected t'- flatten the alpha density 
profile and to yield anomalous ov.ward diffusion of the alpha 
particle ash. 
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