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ABSTRACT

The use of adjoint techniques to determine the in-
teraction of externally incident collimated beams
of particles with cylindrical targets im a conve-
nient means of examining a class of problems impor-
tant in radiation transport studies. The theory
relevant to such applications im derived, and 2
simple example involving a fissioning target is
discussed. Rasults from both discrete ordinates
and Monte Carlo transport-code calculations are
presented, and comparisons are made with results
ned from forward culations. The accuracy
of the discrete ordinates adjoint results depsnds
on the order of angular quadrature used in the
calculation. Reasonable accuracy by using EON
quadratures can be axpectsd from order Sy OF
higher,
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CALCUTATION OF THE RESPONSE OF CYLINDRICAL TARGETS
TO COLLIMATED BEAMS OF PARTICLES USING
ONE~DIMENSIONAL ADJOINT TRANSPORT TECHNIQUES

Introduction

A problem frequantly encountered in radiation transport studies involves the
response of a target to a collimated beam of incident particles., This type of prob-
lem typically requires calculation of the number of reactions of a given type that
occur in specific regions of the target per unit incident beam fluence. Such prob-
lems are readily amenable to the use of adjoint transport calculations.

The use of adjoint calculations to obtain neutron penetration factors in
spherical geometry has been described by Hansen and Sandmeier.l Numerous applica-
tions of this technique in spherical and slab gecmetry, using both discrete ordi-
nates and Monte Carlo transport codes, have been puhlished (e.g., see References
2, 3, and 4). The purposa of the present paper is to extend the adjoint technique
of Hansen and Sandmeier to cylindrical geomatry and to present the results of a
simple cylindrical test problem. As in previous studies, the principal motivation
behind the use of adjoint as opposed to forward techniques to solve this type of
problem im the saving of computer tims achieved; i.e., one forward calculation
must be performed for each incident-particle energy in order to obtain the informa-
tion produced in a sirgle adjoint calculation.

Theory

The forward and adjoint steady-state transport equations may be written as

fe T+ % = for®eroE, Beaf) ap'aii’ +s , [+8)

NI P L -ﬁ*t'(a—-z'. fisft) dE* 4@’ + s* , (2)

respectively. The pressnt notation is mimilar to that of Hansen and Sandmhr."
The particle flux ¢ (adjoint flux 0+] is a Function of space, snergy, and angle

(. E, R); the source 5 (adjoint source S')is a functlon of (Z,E}. Multiplyiny Eq.
(1) by ¢+ and Eq. (2) by ¢, subtracting the products, and integrating over the rel-
evant ranges of E and {i, and over the voluma of a region of interest V, gives*

“Details of the derivation of thia result have been prezented slsevwha:
for example, References L and 2.
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Here n is the unit inner normal on the surface A bounding the volume V. The sur~
face A ia assumed to consist of the points EA.

Eg. (3) may bhe used to relate the adjoint source and flux to the physical
guantities of interest by judicioum definition of s, S+, and h. Specifically, the
responge of a target to a particle beam may be obtained by defining st (z,8) =
I(T,E), where [ is a reaction cross section of interest and § = 0. In this case

R-f[fe:dl:dﬁw:[f/‘”*(ﬁ.ﬁ)udgdﬁl 4}
i) QEA

VRE

Eq. (3) becomes

where R is the number of reactions of the type defined by I that occur inside the
voluma V due ta the forward particle flux ¢. The importance of this result is
that, uwing Eq. (4!, R may be determined by the integral on the right for which ¢
need be known only on the surface A,

To cast Eq. (4) into cylinirical geometry, conmider Figure 1. In this geom-
etry a parallel beam of par:icles, moving in direction @ (the -x direction in the
figure), is apsumed incldent on an infinite cylinder oriented nocrmal to the beam,

The volume V is defined as the interlor of the cylinder, which is bounded by the
surface A of radius x,- The forward flux ¢ on the surface A is given by

& = S (E) & @ - ﬁo) . (5)

On the surface A the adjoint £lux depends on i, and ;A through the scalar
product

unﬁo-:':-co-e,

where 6 ie the azimuthal angle shown in Figura 1.
The surface differential®

dA = ZrA dae 4z .,

*The Factor of 2 in the axprassion for dA for the sy Y about
6 = O,
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projected ailong the incident particle direction, is

=2r pdu dz
= A .

fi,+n (6}
1 -
Subgtituting Eqg. (5} and (6} into Eq. (4) givee
® o' u
du dE , 7}

where all quantities have been assumed independent of z and the result now refers
to a unit heicht of the cylinder. 1In this equation, the angular integral is non-
zero for u < 0 only since the boundary condition on ¢+ is O” [rA.E.u] =0 for u > 0.
Thus, by symmetry, the integral need be taken only over 0 < 8 < =/2, i.e., over
one-half the side of the cylinder facing the incidr .t beam. In this came, Eg. (7)

becomes
3 1 oty
R= 2'»["5 5, (E) f =ty (a)
(-] (-] 1l -y

COne-dimensional diacrete ordinate codes are well suited for solving problems
of the present typa. In cylindrical geomstry, the angular quadrature consists of
dimcrete directions ﬁm as shown in Pigure 2, Each discrete direction has a solid
angle, or weight W asmociated with it. There are two components of hm, ‘m' and pm

2 172
by = (1 - Em) cos wm

2. 172
N = (1€ sin v, 9
where the (u,n,f) are defined along orthogonal coordinates with unit vectors (:?,3,
2) as shown in Figure 2 and um2 + nmz + 5m2 = 1.

The ﬁm are arranged in levels corresponding to each Em. The level with En\
closesc to zero (call it EO) lies most nearly psrpendicular to the z-axis and
therefore corresponds closest to the direction of the collimated beam of Figure 1.
For example, the guadrature directions for an SB EON cylindrical quadrature in
the positive (u,n,§) octant are shown in Figure 3. The ﬁm shown are numbered in
the seguence required as input to ANISN. The coordinates for each ﬁm in this quad-
rature set sre shown to thrse significant figures in Table 1 (mee, for example,
References 5 and 6). In this set en = 0.218...



Figure 2. Discrete Directions Em in Cylindrical Geometry
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Figure 3.

Discrete Angular Mesh for One Octant of an S
Cylindrical EQN Quadrature
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In discrete ordinatem, the angular integral af EqQ. (8) corresponds to a sum—
mation over the leakage in the ;o level.* This sum is analogous to the spherical
geometry result of Hansmen and Sandmeier except for the coneideration of the g
levels in the cylindrical quadrature, Thus, ¢+ may be related to L;'m . the angu-~
lar leakage in group g and quadrature direction m, obtained in an adjoint Sp calcu~
lation for which the geometry and source correspond to the problem to be solved.

TABLE 1

Discrete Directions in
Sg Cylindrical EQN Quadrature

o u n 3
3 0.218 0.218 0.951
7 0.218 0,577 0.787
8 0.577 0,218 0.787

13 0.218 0.787 0.577
13 0.577 0.577 0.577
15 0.787 0.218 0.577
21 0.218 0.951 0-218
22 0.577 0.787 0.218
23 0.787 0.577 0.218
24 0.951 0.218 0.218

For a multigroup adjoint calculation, the total response R may be conve-
niently defined by a sum over the response in each group g,

R

where G is the number of energy groups in the calculation. In discrete notation,
the angular integral of Eg. {8) may then be written#*

.
L w!
Ry~ X Lqom Yn¥m (1)
m:co 1{_1'—1 _ u'“
Um<°

*This is exact only when En = 0. For EQN quadraturee, [P 0 as the

order n + «; thersfore, the accuracy of the following analysis would be expected to
improva with inc: sing n when such quadratures are used.

**Note that, for adjoint calculations, the discrete ordinate transport codes
invert the order of the energy groups but not the discrete directions. Thus, to
interpret adjoint angular fluxes, the code user must correct both the groups and
:?- angles, i.e., group G is actually gro'p 1, and direction Vg is actually direc-

on wp_.
n

13
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where

(11}

In discrete ordinates codes the weights are normalized to unity. Thus the w, for
mef must be normalized, as in Eq. {11}, to make tie discrete summation equivalent
to the angular integral of Eg. (B). The factor of 2 in Eg. (B) has been omitted
from Eq. {10) because the i n already contain the sum of the right- and left-hund
azimouthal components of the ;ngular leakage for a given '#n in Eq. (9).

Unlikxe the spherical result of Hansen and Sandmeier, the cylindrical response
is not autematically calculated by the discrete ordinates transpor: codes. However,
by printing the angular flux, the user can obtain the Lt o and perform the summa-
tion of Eq. (10, by hand. Alternatively, a simple updaté to the code will permit
the responsa to be printed directly.

Example Problem

As a practical application of the cylindrical adjoint technigue developed in
the previous section, consider the model target system shown in Figure 4 struck by
a collimated beam of neutrons., This target consists of an annulus of 239?-., 0.05
cm thick, surrounded by 1.55 cm of CHZ' The inner diameter of the 239?\: annulus is
1D cm. The atomic densities of the materials, shown in Table 2, are identical t .
those used in the spherical fission detector example presented by Hansen and

.:;eier. Also, as in their example, the l6-group Haneen and Roach7 neutron croas
:1-:s have been used, with Pl scattering for H and Po scattering for C and

TABLE 2

Geometry of the Cylindrical Target

Atom Density Number of Spatial

24 3 Outer Radius Intervals Used in
Region Material (10°7 nuclei/em™) (em) Sp Calculations
1 void 0 5 5
2 23%,y 0.0498 5.05 5
3 CH2 Nc = 0,03957 7 20

By = 0.07914



Dimensions in cm

AP I,

Figure 4. Geometry of Exaraple Problem, One-Dimensional

Infinite Cylinder
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To determine the number of fissions induced in the 239, of Figure 4 per in-

cldant nnu::on/cmz. the adjoint source was ret to ):fuz), the macroscopic fission
cross saction of Pu. The resulting source in the lé-group craoss-section struc-
ture is shown on the left side of Table 3. With this smource, the ANISN discrete
ordinates transport cocle"‘i was used in the adjoint mode to determine Lt ) and
hence the group~dependent response of Eq. {10). The results for RQ, obt;ined by
using Sge S1a¢ and 516 symmetric EQN cylindrical quadratures, are shown in the
central section of Table 3.

ks in spherical gemuy,l the adjoint cylindrical geometry results can be
verified with forward calculations. In this case, an angular-dependent boundary
source must be used to simulite a parallel-beam source normal to the axis of the
cylinder, i.,e., a source i1s used that is constant in the angles me ) and zero for
all other angles. This source must be placed at a distance rg > 'uSrA in order to
simulate a parallel beam with reasonable ac:uracy.1‘9 To normalize to a unit inci~-
dent fluence on the cylindrical target, the forward source sg,m must be of magnitnde

The discrete ordinates codes customarily contain the fission cross section
only as the product vEf. Thus, to cbtain the fission response from a forward cal-
culation with a source in group g the explicit sum

I

Ry = 25 iom. 5, v
=1

i=1) g'=

must be taken, where the sum over i refers to the pertinent spatial intervals* in
the problem, and oi,g is the scalar flux. This sum is readily obtained using the
activity option in discrete ordinates codes. Alternatively, the fission source
calculated by the code (which 1s actually the fission neutron production rate) can
be divided by the average number of prompt neutrons per fission to obtain Rg.

The results of 516 forward ANISN calculations of the fission response of the
cylindrical target of Pigure 3 to incident neutron beams in enexgy groups 1, 6, and
13 are also shown in the central section of Table 3. Obviously a forward calcula-
tion must be performed for each energy group of incident neutrons in order to dup-
licate tha data obtained from a single adjoint calculation.

Monte Carlo adjoint calculationm of the fission response of the exmpie tar-
qet to incident parallel beams of neutrons were performad with the MORSE code.

*The sum need not includc every interval containing fissile material; i.e.,
the can be d ined a function of Space point 1f desired.
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TABLE 3

Results of Calculations of the Fisaion Response Rg for the Cylindrical Example Problem

Rq. ¥lssions/cm per Incident Neul:zon/cm2 in Group g

Cross-Section Data Discrete Ordinates Resultd Monte Carlo Results —
Energy i . -
Group Upper Encrgy ‘d3°;"§3§°"“’° &g)ﬂﬁ.%k—_‘m?“ Forward Adjoint Calculations Forward
g _ Bound T ("7pu) 8 12 16 Calculation Leakage Polnt Detéctor Calculation
1 - 0.0946 0.35 0.49 6.45 a.54 0.54 {0.08)s 0.52 (0.05) 0.52 (0,02)
Z 3.0 Mev 0.0971 8.51" 0.58 0.66 - G.¥9 (0.11) 0,82 (0.06) -
3 1.4 0.0911 0.73 0.85 a.95 - 1.2 (0.11) l.04 (0.05) -
4 0.9 0.0846 0.94 1.09 1.22 - 1.4 (0.10) 1.33 {0.05) -
5 0.4 0.0831 1.27 1.48 1.66 - 2.1 (0.10) 1.74 (0.06) -
6 100 kev 0.0956 1.60 l.88 2.09 2.42 2.1 (0.10) 2.0 {0,07) 2.35 (0.01)
T 17 " 0.1245 1.87 . - 2,3 (0.14) 2.0 (0.a7) -
] 3 0.2091 2.14 2.53 2.77 - 3.8 (0.14) 2.3 (0.08) -
9 550 av 0.8217 2.40 2.02 3.10 - 3.7 {0.14) 2.3 (0.08) -
10 100 2.091 2.60 3.08 3.36 - 3.8 (0.11) 2.6 (0.10} -
11 30 3.884 2.71 3.22 3.51 - 1.9 (0.12) 2.7 (0.11) -
12 10 1.195 2.73 3.24 3.52 - 4.8 (0.16) 2.8 (0.12) -
13 3 0.996 2.78 3.30 3.59 3.86 4.1 (0.18) 2.9 (0,16} 4.02 (0,01)
14 1.0 6.922 Z.70 3.20 3,51 - 4.3 (0.17) 3.0 (0.16)
15 0.4 60.805 2,17 2.5% 2.82 - 3.9 {D0.19) 2.5 (0.18)
16 0.1 (thermal) 35.109 1.25 1.50 1.63 nd 1.8 (0.20) 2.3 (0.27)

*Quantities in parentheses are the fractional standard deviation cptimates.
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The results from such calculations can be scored in a varlety of ways. A direct
analog of the diacrete ordinates solution can be obtained by tallying the adjoint
particles leaking fram the cylinder, weighted by u/ Vl u“ , as a function of en-
ergy and of angle with respect to the z-axis. Alternatively, a last-flight estima=-
tor can be used to score the adjoint flux at a distant point.*

The geemetry used in the present HORSE calculations is shown in Figure §.
Albedo media with specular reflection were used to simulate an infinite cylinder.
Proper normalization of the results requires consideration of the manner in which
MORSE normalizes adjoint calculations, o i.e., of the fact that the result must be
normalized to the total adjoint source per unit height of the cylinder. In the
present case this is given by

Cn £
Vpu X, Tg e
g=1

where qu is the volume of znPu per unit height of the cylinder. 1In addition, if
the direct Sn analog scoring of the adjoint leakage as a function of angle is used
(along with the default angular-dependent printout) to obtain R_, the units of this
printout must be considered--viz., particles/steradian/ev. The coupling of the
forward and adjoint fluxes on the surface of the cylinder in Eq. (10} then requires
that the adjoint leakage be multiplied by 2n. If the distant point detector option
is usetzi to score the adjoint leakage, with the detector at a distance rqr 2 factor
of 4nry must be used instead.

The results of MORSE adjoint calculations for R_, using the geometry of Fig-
ure 5, are shown on the right side of Table 2. Results for both the analog-leakage
and the distant point detector tallies are shown, The point detector has the vir-
tue of ease of use; otherwise the detectors are comparable.** The results af for-
ward MORSE calculations for source groups 1, 6, and 13, using exactly parallel beam
sources, are also shown on the right side of Table 3.

Comparisons between the results of Table 3 show general agreement for the
responses Rq among the various calculationa, As expected, the dimcrete ordinates
adjoint results are mensitive to quadrature order. Figure 6 mhows the ANISN re-
sults for groups 1, 6, and 13, as a function of the quadrature order n. For com~
parison, the ANISN and MORSE (with one standard deviatlon uncertainty indicated)

*Thera 1s no direct analogy in discrete ordinates to the latter scoring al-
though a similar approach would be tc surround the discrete ordinates target cylin-
der with a large void region. 1In this case the angular leakage through the outer
boundary would be only in the most outward-directed uy direction; however, EQN

quadratures do not calculate radial streaming correctly, and results obtained with
such sats would be inaccurate,

®+For the simple blasing scheme (source biasing and radial path stretching) used
in the present calculations, a smaller variance was obtained in the high-energy
groups than in the low-energy groups. The results for the low-enargy groups could
have bsen improved by the use of snergy blaming; however, this waz not considered
neca. ry for the present comparison.
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Response Rg. (f/cm)/(n/cmz)
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forward results for these groups are also shown. In eu.ch case the series of C
adjoint results for increasing n approachs the MORSE results. The S). results are
within 10% of the MORSE results for each case; however, the S remults are low by
about 30%. Clearly a relatively high-order EQN quadrature must be used in the type
of discrete-ordinates cylindrical adjnint calculation under discussion in order to
achieve a reasonable degree of accuracy in tha answer. On the other hand, the upper
curves for each group in Figure § show that the results of the forward ANISN calcula-
tions are not sensitive to quadrature order.

Apart from quadrature order, there are several differences ip the various
calculations that account for the lack of exact agreement among the results. Since
the same cross sections were used in all of the calculations, errars in these cross
sections are not of concern in this comparisan. The forward MOR3E results may be
assumed “nxact" within statistice. All the other calculations contain errors asso-
ciated with tne discrete angular mesh and/or the lack of exact parallelism in the
beam because of a finite distance between the source and the target. Therefore,
precise agreement should not be expected.

Conclusions

The cylindrical adjoint transport technigue of calculating the response of a
target to an incident parallel beam of particles is expected to be useful in ana-
lyzing certain problams involving targets with large length-to-diameter aspect ra-
tios. The example presented above shows several means of obtaining response func-
tions for such targets, all of which give reasonably accurate results provided a
relatively high order of angular resolution (25). for discrete ordinates with
EQN quadratures) is used.
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