
s> 
IAND80-0432 

Unlimited Release 
UC-?9c 

/ / / .? / 

\$M* 

Calculation of the Response of Cylindrical 
Targets to Collimated Beams of Particles Using 
One-Dimensional Adjoint Transport Techniques 

Stephen A. Dupree 



SAND80-0432 
Unlimited Release Distribution 
Printed June 1980 category uc-79c 

CALCULATION OF THE RESPONSE OF CYLINDRICAL TARGETS 
TO COLLIMATED BEAMS OF PARTICLES USING 

ONE-DIMENSIONAL ADJOINT TRANSPORT TECHNIQU 

Stephen A. Dupree 
Theoretical Division 4231 

Sandia National Laboratories 
Albuquerque, NM 87185 

ABSTRACT 

The use of adjoint techniques to determine the in
teraction of externally incident collimated beams 
of particles with cylindrical targets is a conve
nient means of examining a class of problems impor
tant in radiation transport studies. The theory 
relevant to such applications is derived, and a 
simple example involving a fissioning target is 
discussed. Results from both discrete ordinates 
and Monte Carlo transport-code calculations are 
presented, and comparisons are made with results 
obtaintd from forward calculation*. The accuracy 
of the discrete ordinates adjoint results depends 
on the order of angular quadrature used in the 
calculation. Reasonable accuracy by using EQN 
quadratures can be expected from order s., or 
higher. l b 
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CALCULATION OF THE RESPONSE OF CYLINDRICAL TARGETS 
TO COLLIHATED BEAMS OF PARTICLES USING 

ONE-DIMENSIONAL ADJOINT TRANSPORT TECHNIQUES 

Introduction 

A problem frequently encountered in radiation transport studies involves the 
response of a target to a coiiimated beam of incident particles. This type of prob
lem typically requires calculation of the number of reactions of a given type that 
occur in specific regions of the target per unit incident beam fluence. Such prob
lems are readily amenable to the u«e of adjoint transport calculations. 

The use of adjoint calculations to obtain neutron penetration factors in 
spherical geometry has been described by Hansen and Sandmeier. Numerous applica
tions of this technique in spherical and slab geometry, using both discrete ordi
nate* and Honte Carlo transport codes, have been puhlished (e.g., see References 
2, 3, and 4). The purpose of the present paper is to extend the adjoint technique 
of Hansen and Sandmeier to cylindrical geometry and to present the results of a 
simple cylindrical test problem. As in previous studies, the principal motivation 
behind the use of adjoint as opposed to forward techniques to solve this type of 
problem is the saving of computer tins achieved] i.e., one forward calculation 
must be performed for each incident-particle energy in order to obtain the informa
tion produced in a single adjoint calculation. 

Theory 

The forward and adjoint steady-state transport equations may be written as 

fi • 5$ + i f c * - ftzmiE'+E, 5'-*n) dE'dii' +s , I D 

and 

-fi • V* + + I % + « /i +E -(B+E', n*ft') dE' dfi' + S + , (2J 

respectively. The present notation is iLrailar to that of Hansen and Sandweier. 
The particle flux 4 (adjoint flux • ) is a function of space, energy, and angle 
(r, E, ft)j the source S (adjoint source S +>Is a function of (f,E». Multiplying Eq. 
(1) by * + and Eq. (2) by *, subtracting the products, and integrating over the rel
evant ranges of E and ft, and over the volume of a region of interest V, gives* 

'Details of the derivation of this result have been presented elsewhere! see, 
for example. References 1 and 2. 
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J] &s*dE a"d v * y , / A + s aE d^dv 

+ JJjH*(a • n) dA aE dfl . 

Here n ia the unit inner normal on the surface A bounding the volume V. The B U T 
face A ia assumed to consist of the points r.. 

Eq- (3) may be used to relate the adjoint source and flux to the physical 
quantities of interest by judicious definition of S, S , and A. Specifically, the 
response of a tarqet to a particle beam may be obtained by defining S (r,£) -
£(r,E), where £ is a reaction cross section of interest and 5 - 0 . In this case 
Eg. (3) becomes 

R "JJJ^ d E *fi d v - / / / * * + t 5 • n) dA dE di5 , (4) 
VOE flEA 

where Ft is the number of reactions of the type defined by I that occur inside the 
volume v due to the forward particle flux *. The importance of this result is 
that, ;ipi-ng Eq. (41, R may be determined by the integral on the right for which $ 
need be Known only on the surface A. 

To cast Eq. (4) into cylindrical geometry, consider Figure 1. In this geom
etry a parallel beam of par-.icles, moving in direction 5 (the -x direction in the 
figure}, is aosumed incident on an infinite cylinder oriented normal to the beam. 
The volume V IB defined as the interior of the cylinder, which is bounded by the 
surface A of radius r.. The forward flux $ on the surface A is given by 

< * S 0(E) I (ff - S 0) , (5) 

On the surface A the adjoint flux depends on fi and r. through the scalar 
product 

u •» 5 • a • cos s , 

where 9 i» the azitnuthal angle shown in Figure 1. 
The surface differentia]** 

dA - 2r A d6 dZ , 

«The tactor of 2 in the expression for dA accounts for the symmetry about 
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Figure 1. Geometry for Cylindrical Adjoint Calculations 
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projected along the incident particle direction, is 

-2r. jjdji dZ 
n" dA - A 

Subst i tut ing Eqs. (51 and (61 into Eq. (4) gives 

,<E) * + P 
<3JJ dE , 

where all quantities have been assumed independent of z and the result now refers 
to a unit heiant of the cylinder. In this equation, the angular integral is non
zero for v < 0 only since the boundary condition on i) is $ Ir_,E,p) = 0 for JJ > 0. 
Thus, by symmetry, the integral need be taken only over 0 ^ 8 ^ */2, i.e., over 
one-half the side of the cylinder facing the incid'- .t beam. In this case. Eg. (7) 
becomes 

:rafdE S0(E] ( , 
VT 

One-dimensional discrete ordinate codes are well suited for solving problems 
of the present type. In cylindrical geometry, the angular quadrature consists of 
discrete directions tt_ as shown in Figure 2. Each discrete direction has a solid 
angle, or weight w^, associated with it. There art two components of ISm, t^, and * m 

2 ^ 2 
M m = (1 " O <=os K 

where the (u,n,€) are defined along orthogonal coordinates with unit vectors (r,6, 
2 2 2 2) as shown in Figure 2 and u + n + E - 1. m m ^m 

The fi are arranged in levels corresponding to each E . The level with £ 
closest to zero (call it £ ) lies most nearly perpendicular to the z-axis and 
therefore corresponds closest to the direction of the collimated beam of Figure 1. 
For example, the quadrature directions for an S g EQH cylindrical quadrature in 
the positive (u«n,€) octant are shown in Figure 3. The JL shown are numbered in 
the sequence required as input to ANISN. The coordinates for each f)m in this quad
rature set sre shown to three significant figures in Table 1 (see, for example. 
References 5 and 6). In this set I - 0.218... 



Figure 2. Discrete Directions fi in Cylindrical Geometry 
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Figure 3. Discrete Angular Mesh for One Octant of an S„ 
Cylindrical EQN Quadrature 

12 



In discrete ordinates, the angular integral af Eq, (8) corresponds to a sum
mation over the leakage in the £ level.* This sum is analogous to the spherical 
geometry result of Hansen and Sandneier except for the consideration of the £ m 

levels in the cylindrical quadrature. Thus, <f>+ may be (elated to L* m , the angu
lar leakage in group g and quadrature direction m. obtained in an adjoint S n calcu
lation for which the geometry and source correspond to the problem to be solved. 

TABLE 1 
Discrete Directions in 

Sg Cylindrical EQN Quadrature 

3 0.218 0.218 0.951 
7 0.218 0.577 0.7B7 
e 0.577 0.21B 0.787 

13 0.218 0.787 0.577 
14 0.577 0.577 0.577 
15 0.787 0.21B 0.577 
21 0.218 0.951 0.218 
22 0.577 0.787 0.218 
23 0.787 0.577 0.218 

For a multigroup adjoint calculation, the total response R may be conve
niently defined by a sum over the response in each group g, 

•£ 
where G IB the number of energy groups in the calculation. In discrete notation, 
the angular integral of Eq. IB) may then be written** 

E L u w' T*" m " (10 
3 "™za */, _ ..a 

•This is exact only whan i - 0. For EQN quadratures, I -. 0 u the 
order n -* -; therefore, the accuracy of the following analysis would be expected to 
improve with increasing n whan such quadratures are used, 

**Note that, for adjoint calculations, the discrete ordinate transport codes 
invert the order of the energy groups but not the discrete directions. Thus, to 
interpret adjoint angular fluxes, the code user must correct both the groups and 
the angles, i.e., group G is actually grotp 1, and direction u is actually direc
tion -y_. n 



In discrete ordinates codes the weights are normalized to unity. Thus the w for 
mcC must be normalized, as in Eq. (11], to make the discrete summation equivalent 
to the angular integral of Eq. (B). The factor of 2 in Eq. (8) has been omitted 
from Eq. (10) because the L already contain the sum of the right- and left-hand 
azimuthal components of the angular leakage for a given -p in Eq. [9). 

Unlike the spherical result of Hansen and Sandmeier, the cylindrical response 
is not automatically calculated by the discrete ordinates transport codes. However, 
by printing the angular flux, the user can obtain the L and perform the summa
tion of Eq. (10; by hand. Alternatively, a »imple update to the code will permit 
the response to be printed directly. 

Example Problem 

As a practical application of the cylindrical adjoint technique developed in 
the previous section, consider the model target system shown in Figure 4 struck by 
a collimated beam of neutrons. This target consists of an annulus of P-,, 0.05 

239 cm thic!t, surrounded by 1.95 cm of CH-. The inner diameter of the Pu annulus is 
ID cm. The atomic densities of the materials, shown in Table 2, are identical t 
those used in the spherical fission detector example presented by Hansen and 

•-. eier. Also, as in their example, the 16-group Hansen and Roach neutron cross 
••~:i- -s have been used, with P, scattering for H and P scattering for C and 

TABLE 2 
Geometry of the Cylindrical Target 

Reqion Material 
Void 

Atom Deneity 
(lO 2 4 nuclei/m 3) 

0 

Outer Radius 
[cm] 

Number 
Interve 
S„ cal 

of Spatial 
lis tiled in 
culationa 

1 
Material 

Void 

Atom Deneity 
(lO 2 4 nuclei/m 3) 

0 5 

Number 
Interve 
S„ cal 

5 
2 2 3 9 P u 0.049B 5.05 5 
3 CH2 N c - 0.03957 

N„ - 0.07914 
7 20 



Dimensions in cm 

Figure 4. Geometry of Example Problem, One-Dimensional 
Infinite Cylinder 
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To determine the number of fission* induced in the ' 
adjoint source was Ret to I (£], the macroscopic fission 
The resulting source in the 16-group cross-section struc

ture is shown on the left side of Table 3. With this source, the WISN discrete 
ordinatea transport code ' was used in the adjoint mode to determine L , and 
hence the group-dependent response of Eq. (10). The results for R . obtained by 
using Sg, s, 2, and S. g symmetric EQN cylindrical quadratures, are shown in the 
central section of Table 3. 

verified with forward calculations. In this case, an angular-dependent boundary 
source must be used to simulate a parallel-beam source normal to the axis of the 
cylinder, i.e., a source is used that is constant in the angles meC and zero for 
all other angles. This source must be placed at a distance r_ > ^Sr. in order to 

To normalize to a unit inci-

The discrete ordinates codes customarily contain the fission cross section 
only as the product vZ . Thus, to obtain the fission response from a forward cal
culation with a source in group g the explicit sum 

must be taken, where the 'sum over i refers to the pertinent Bpatial intervals* in 
the problem, and $^ is the scalar flux. This sura is readily obtained using the 
activity option in discrete ordinates codes. Alternatively, the fission source 
calculated by the code (which is actually the fission neutron production rate] can 
be divided by the average number of prompt neutrons par fission to obtain R . 

The results of s, g forward AHISN calculations of the fission response of the 
cylindrical target of Figure 3 to incident neutron beams in energy groups 1, 6, and 
13 are also shown in the central section of Table 3. Obviously a forward calcula
tion must be performed for each energy group of incident neutrons in order to dup
licate the data obtained from a single adjoint calculation. 

Monte Carlo adjoint calculations of the fission response of the example tar
get to incident parallel beams of neutrons were performed with the MORSE code, 

*Th« sum need not include every interval containing fissile materialr i.e., 
the response can be determined as a function of space point if desired. 



TABLE 3 
Results of Calculations of the Fission Response R for the Cylindrical Example Problem 

R , fissions/cm per Incident Neutron/cm in Group c 

Cross-SectIon Data Discrete Ordinatee Results Monte Carlo Results 
Energy 
Group Upper Energy 

Bound 
Adjoint Source 

S £( 2 3 9Pu) 
Adjoint 

5 8 
0.35 

Calculations 
S12 S16 
0.40 0.45 

Forward 
Calculation 

0.54 

Adloint Calculations Forward Upper Energy 
Bound 

Adjoint Source 
S £( 2 3 9Pu) 

Adjoint 
5 8 
0.35 

Calculations 
S12 S16 
0.40 0.45 

Forward 
Calculation 

0.54 
Leakage 

0.54 (0.08)* 
Point Detector 

0.52 (0.05) 
Calculation 

1 «> 0.0946 

Adjoint 
5 8 
0.35 

Calculations 
S12 S16 
0.40 0.45 

Forward 
Calculation 

0.54 
Leakage 

0.54 (0.08)* 
Point Detector 

0.52 (0.05) 0.52 (0.02) 
2 
3 
4 
5 
6 

3.0 HeV 
1.4 1 
0.9 
0.4 t 
100 Jcev 

d.097i 
0.0911 
0.0846 
0.0831 
0.0956 

0.51 
0.73 
0.94 
1.27 
1.60 

0.58 
0.85 
1.09 
1.48 
1.88 

0.95 
1.22 
1.66 
2.09 2.42 

Q.B9 
1.2 
1.4 
2.1 
2.1 

(0.11) 
(0.11) 
(0.10) 
(0.10) 
(0.10) 

0.82 (0.06) 
1.04 (0.05) 
1.33 (0.05) 
1.74 (0.06) 
2.0 (0.07) 2.3S (0.01) 

1 
8 
9 
10 
11 
12 
13 

i' 
550 e 
100 
30 
10 
3 

1 0.1245 
0.2091 
0.8217 
2.091 
3.884 
1.195 
0.996 

1.87 
2.14 
2.40 
2.60 
2.71 
2.73 
2.78 

2.2i 
2.53 
2.83 
3.08 
3.22 
3.24 
3.30 

2.4J 
2.77 
3.10 
3.36 
3.51 
.•J.52 
3.59 3. 86 

2.3 
3.8 
3.7 
3.8 
3.9 
4.8 
4.1 

(0.10) 
(0.14) 
(0.14) 
(0.11) 
(0.12) 
(0.16) 
(D.18) 

2.0 <0.07> 
2.3 (0.08) 
2.3 (0.08) 
2.6 (0.10) 
2.7 (0.11) 
2.8 (0.12) 
2.9 (0,16) 4.02 (0.01) 

u 
15 
16 

1.6 
0.4 
0.1 ( 

6.922 
60.BD5 

thermal) 35.109 
2.70 
2.17 
1.25 

3.2? 
2.59 
1.50 

3.51 
2.82 
1.63 \ 4.3 

3.9 
l.B 

(0.17) 
(0.19) 
(0.20) 

3.0 (0.16) 
2.5 (0.18) 
2.3 10.27) 

•Quantities in parentheses are the fractional standard deviation estimates. 



The results from such calculations can be scored in a variety of ways. A direct 
analog of the discrete ordinate* solution can be obtained by tallying the adjoint 
particles leaking from the cylinder, weighted by u/ Vl - u , as * function of en
ergy and of angle with respect to the z-axis. Alternatively, a last-flight estima
tor can be used to score the adjoint flux at a distant point.* 

The geometry used in the present MORSE calculations is shown in Figure 5. 
Albedo media with specular reflection were used to simulate an infinite cylinder. 
Proper normalization of the results requires consideration of the manner in which 
MORSE normalizes adjoint calculations, i.e., of the fact that the result must be 
normalized to the total adjoint source per unit height of the cylinder. In the 
present case this is given by 

PU Z* g 
g=l 

where V_ is the volume of Pu per unit height of the cylinder, in addition, if 
the direct S analog scoring of the adjoint leakage as a function of angle is used 
(along with the default angular-dependent printout) to obtain R , the units of this 
printout must be considered—viz., partisles/steradian/eV. The coupling of the 
forward and adjoint fluxes an the surface of the cylinder in Eq. (10) then requires 
that the adjoint leakage be multiplied by 2n. If the distant point detector option 
is used to score the adjoint leakage, with the detector at a distance r,, a factor 

2 of 4Trr, must be used instead. 

The results of MORSE adjoint calculations for R , using the geometry of Fig
ure 5, are shown on the right side of Table 3. Results for both the analog-leakage 
and the distant point detector tallies are shown. The point detector has the vir
tue of ease of use; otherwise the detectors are comparable.** The results of for
ward MORSE calculations for source groups 1, 6, and 1], using exactly parallel beam 
sources, are also shown on the right side of Table 3. 

Comparisons between the results of Table 3 show general agreement for the 
responses R among the various calculations. As expected, the discrete ordinates 
adjoint results are sensitive to quadrature order. Figure 6 shows the ANISN re
sults for groups 1, 6, and 13, as a function of the quadrature order n. For com
parison, the ANISN and MORSE (with one standard deviation uncertainty indicated) 

*There is no direct analogy in discrete ordinate! to the latter scoring al
though a similar approach would be to surround the discrete ordinates target cylin
der with a large void region, in this case the angular leakage through the outer 
boundary would be only in the roost outward-directed y direction! however, EQW 
quadratures do not calculate radial streaming correctly, and results obtained with 
such sets would be inaccurate. 

**For the simple biasing scheme (source biasing and radial path stretching) used 
in the present calculations, a smaller variance was obtained in the high-energy 
groups than in the low-energy groups. The results for the low-energy groups could 
have been improved by the use of energy biasing} however, this was not considered 
necessary for the present comparison. 

II 
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Figure 5. MORSE Geometry for Cylindrical Example Problem 
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Figure 6. Comparison of Responses R Calculated with 
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forward results for these groups are also shown, in e^ch case the series of S 
adjoint results for increasing ti approach* the MORSE results. The S,, results are 
within 10% of the HORSE results for each case; however, the Sfl results are low by 
about 30%. Claarly a relatively high-order EQN quadrature must be used in the type 
of discrete-ordinates cylindrical adjoint calculation under discussion in order to 
achieve a reasonable degree of accuracy in tha answer. On the other hand, the upper 
curves for each group in Figure 6 show that the results of the forward ANISN calcula
tions are not sensitive to quadrature order. 

Apart from quadrature order, there are several differences in the various 
calculations that account for the lack of exact agreement among the results. Since 
the same cross sections were used in all of the calculations, errors in these cross 
sections are not of concern in this comparison. The forward MORSE results may be 
assumed "ixact" within statistics. All the other calculations contain errors asso
ciated with tne discrete angular mesh and/or the lack of exact parallelism in the 
beam because of a finite distance between the source and the target. Therefore, 
precise agreement should not be expected. 

Conclusions 

The cylindrical adjoint transport technique of calculating the response of a 
target to an incident parallel beam of particles is expected to be useful in ana
lyzing certain problems involving targets with large length-to-diameter aspect ra
tios. The example presented above shows several means of obtaining response func
tions for such targets, all of which give reasonably accurate results provided a 
relatively high order of angular resolution (>S 1 6 for discrete ordinates with 
EQN quadratures) is used. 
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