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ABSTRACT

A ballooning mode equation that includes full finite Larmor radius
effects has been derived from the Vlasov equation for a circular tukamak
equilibrium, Numerical solution of this equation shows that finite

Larmoxr radius effects are stabilizing.



I. INTRODUCTION

Recent interest in the stability of high beta tokamak equilibria
leads to active investigatioﬁ of magnetohydrodynamics ballooning modes .l h
According to magnetohydrodynamic theory, an unstable mode cew develop
and balloon in the bad curvature region of a tokamak when beta (= plasma
pressure/magnetic field pressure) is higher than a certain critical
value that depends on equilibrium. Moreover, this mode is more unstable
when the toroidal mode number £ is large. However, in the large %
limit, the magnetohydrodynamic model fails because finite Larmor radius
and kinetic effects become important. Thus, a careful inclusion of
these effects in the ballooning eigemmode equation is necessary in
order to obtain a more accurate value for the critical beta.

Chu et al.® investigated these kinetic effects through a modified
energy principle. An approximated eigemmode equation was derived
including finite Larmor radius and trapped particle effects. Because
the eigenmode equaticn is no loﬂger self-adjoint, the energy principle
approach cannot retain the full finite Larmor radius effect. At the

same time, Lee and Van Dam®

derived a ballooning eigenequation from the
Vlasov equation with a model collision operator that simulates finite
electron conductivity. However, this equation contains no Zinite Larmor
radius effect and can be reduced to the magnetohydrodynamic ballooning
equation only in the low collision frequency limit.

A kinetic derivation of the ballooning equation from the gyro-
averaged Vlasov equation is presented here. The equation is no longer
self-adjoint when all finite Larmor radius effects are included. 1In the

small finite Larmor radius limit, this equation reduces to the ideal

. magnetohydrodynamic ballooning equation. The advantage of this derivation
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is its relatively easy extension to include other kinetic effects
properly. Conmnection to drift waves and other microinstabilities is

also easier using this approach. A quadratic form can be constructed if
finite Larmor radius terms from the neutrality condition are neglected.
Thus it can be shown that the finite Larmor radius terms from Ampere's law
are stabilizing. Numerical solution of the ballooning equation shows that

the net effect of all finite Larmor radius terms is still stabilizing.

II. BALLOONING MODE EQUATION

For simplicity a simple tokamak equilibrium with circular concentric
magnetic flux surfaces is employed. The extension of this derivation to
general equilibria will be discussed in a future publication. The
variables r, 6, and  stand for the radial, poloidal, and toroidal
coordinates. Since Z is the ignorable coordinate, all perturbed
quantities X can be expressed as X(r,0,%,t) = X(r,8) exp (-i%; - iwt),
where £ and w are the toroidal mode number and frequency, respectively.

The gyroaveraged Vlasov equation for the ion can be writteca as

e

v,
(=~ vy +uyde, = T; (w - m*i)FiJo(ct» - -;:ﬂ- A"> , (1)
where

vZ 1 9 3
w =iv2+—i'— — ¢cos © — + sin & —
di i 2 r 28 ar/

ii é—-, and

or

it >

~1 3
TR
k, = (-13/%0 - Rq)/Rq . ’ o

Here F is the equilibrium distribution function for ions, ¢ is the o

S R

perturbed electrostatic potential ﬁ! is the parallel component of



the perturbed vector potential, 8 is related to the perturbed distribution

| = - » —¢ -»‘—’. .—
function fi by fi e¢Fi/Ti + exp (ﬂL)gi, L=/S7d¢ k, vl/Qi, Q =
eB/Mic, Wey = lchi/eBan, L;I = 3 &n N/3r, q is the safety factor, and
the rest of the notation is standard. Decomposing Eq. (1) to its

Fourier components, we have

W = k¥ ey + vgylm = Vg, /7

+ m+ g /- (g, - gm+1)/8r]

e(w - w*c)JoFi(¢m —'WIAHm/c)/Ti : (2)

where k“m = (m - 2q)/Rq, vy (v2 + v2/2)/9 R k = 8m/r - 1§a/ar,

and the Fourier component of a perturbed quantity X(r,8) is defined by

X (r) = f(de/mr)x(r,e) exp (-im6)

Equation (2) displays the familiar poloidal mode coupling due to the
normal and the geodesic curvature of the magnetic field lines. At this

6

point, we introduce the radial translational invariance® assumption in

the large m limit:

Xy O = X Gx - 38) (3

where x = r - L A =1/ is the separation between adjacent mode
rational surfaces, and r = r  is the rational surface on which Hlm = 0.

A general phase factor in Eq. (3) is omittad because this factor equals
unity for the most unstable mode. Equation (3) can be shown to be
equivalent to the ballooning mode formulism2 % used in magnetohydrodynamic

calculations. Applying Eq. (3), we can rewrite Eq. (2) as



(@ = g v )8y () + vy {m - g (x +8)/xr + (m+ g (x - 8)/x
- dlg (x +4) - g (x - A)]/3r}

= e = uy)ToF [0, (x) - & G/el/T, . )

To avoid the advanced and retarded arguments in g, we transform Eq. (4)

to the k_ space. Recognizing Kp = kﬁx, with Hf = 2s/Rr and s = rq/r,

we have
—-— ' 5
[w ihlvualakx + vdi(ke cos kxA + kx sin kxA)]gm
=ew - m="=i)‘]0‘f'i.[:$1n - vII‘Z‘IIm/'::]/Ti ’ %)
where
(o]
2 = -llzf -
Xm (2n) » dx Xm(x) exp ( ikxg),
ke = m/r,
> ~ ~
kl = keB + ers

and we have ignored one compared with m. Equation (5) is now a simple
first-order differential equation which can be solved in principle to
obtain gm. Rather than solving Eq. (5) now, we take the zeroth moment
of Eq. (5) and add it to the corresponding moment equation for electromns.

The resulting equation is

> A ~ - ¢ ;] = ~n . ~ J.
® [dv[gi exp (1) - g} - ik N [dv v [8; exp (L) - g,]
- ~ ~n
+ (ke cos kxA + kx sin kxA) fdv[vdigi exp (iL) - vdege]

= eNdlw - w, + T - v, OTol/T_ , (6)



where
To = Ip(b) exp (-b),
b= (k2 + k2)e2 ,
pi = TiMi(c/eB)z,
Weg = ~T0xys

T = Te/'l‘i,

and the subscript m has been understood for simplicity. Notice that 2“
disappears from Eq. (6) because we assume there is no equilibrium
parallel ion flow and electron current is ignored. Using the neutrality

condition
~ aA ~ RN
-edN/T, + ] dve; exp (iL) = efN/T, + f ave,

we can rewrite Eq. (6) as

k"'alakx{fdz i [gi exp (iL) -~ ge]}

. > A
= -l(ke .cos kxA + kx sin kxA)fdv[v exp (iL) - vdege]

ai81

"+ iNeb(w - wy ) (T - /T, . (7

.The left-hand side.is related to the perturbed parallel current 5" s

which can be expressed in terms of K“ through Ampere's law:

(k§1+ kg)zﬂ = 4113" Jc = lme[[d?rr v [’g\i« exp (il) - ge]] /e . (8)

PEY

e 1 - K .
.‘L‘L [ ¥



Combining Eqs. (7) and (8), we have

2 24
(3/3k [ (kg + k24 ]
= 4mie{-(k kK A+ k. si aviv..g L g
= 4nie{-(ky cos k_ . Sin kxA)[ vivy e, exp (iL) - vdege]

+ Nef(w - w,,) (80 = 1)/T,}/ek! . (9)

Equation (9) is an equation between K" and $ because gi and §P can be
expressed by $ and K“ . Treating ions in the fluid limit but electron

transit frequency as much higher than w, we have

g, = e(l = u /wF I (G - vuX“ leyit, , (10a)
1 98 [0k = —e(w - w, IF Ay [eT, . (10b)

Equation (10a) can be obtained from Eq. (5) by assuming w >> k“vi,kvdi.

Equation (10b) is obtained by assuming k" v, >> w,kv e in the corresponding

d

electron equation.

The perturbed ion density N i is given by \

N/N = e[-1+ (1 - w,,/w)Tolé/T, . (11
The perturbed electron density ﬁe is

R_/N = /T, - e - w, )8 /iy e, a2

Thus the neutrality condition can be written as

& - by /lge = T = w,) (To = DF/ @ - wy) - (3)



Transformed to kx space, Eq. (13) becomes
why lc = 1/ (/3K )L = T(w - wy ) (T = )¢/ (v - m*e)JcS} . (14)

It is interesting to observe that if finite Larmor radius effects are
ignored in Eq. (13) then we have ¢ - mﬁllhlc = 0, which means the per-
turbed parallel electric field EI = 0 because w¢ - wﬁl/c n %l' There-
fore Eq. (13) is the extension of the ideal magnetohydrodynamics assump-
tion E+ 7 x ﬁlc = 0 to include finite gyroradius effects.’

Substituting Eqs. (10) in Eq. (9), we get

(3/3k,) (k§ + kg)K"

= (c/w){B(R/L_)(a/8)2[cos k& + (k /ky) sin k AJA

A

+ w0 ) (To - 1)/23}é , (15)

where
A=1- (“/“*1 -1)[Tg - 1 -b(l'g - T1)/21/(2 + 2) ,
Qp = kekDics/Rq,

Ay = (Ti/4nNe2)1/2, and

= 2
B = SRN(Ti + Te)/B .

Combining Eqs. (14) and (15), we obtain the fcllowing eigenmod:

equation:

fiJ S

e .



(3/3k,) (k2 + k3) (3/3k ) [1 - T(w - w, I (Tp - D /(w - v, )1}

{B(R/L ) (q/8)2[cos k8 + (k /) sin k A]r

+wle - w, )(To = /936 . (16)

Agside from more subtle kinetic effects. such as coupling to ion acoustic

waves and electron resonance, Eq. (16) includes all finite Larmor radius

effects through w, and I'g. In the limit of small gyroradius, (kepi,kxpi)
<< 1, Eq. (16) reduces to
2 2 A
(3/0k ) (k2 + k2) (3/3k )¢
= 3)2 s
{B(R/Ln)(q/s) [cos kxA + (kx/ke) sin kxA]
_ 2 4 1.2Y52/02148
+ w(w w*i)(kx + kgdef/a5te - (17)

When Way is further neglected, Eq. (17) is equivalent to the ideal
magnetohydrodynamics ballooning equation. This equivalence is best
demonstrated by comparing Eq. (17) with Eq. (24) of Connor et al." and
identifying kxlgke with the variable y employed by Connor et al. 1In

Eq. (16), the term w(w - ) on the right-hand side agrees with both

Wyey
Chu et al.’ and Lee and Van Dam.? However, Chu et al.> could not
include all the finite Larmor radius effects because the eigenmcde
equation is no longer self-adjoint; hence the full finite Larmor radius
Qodification cannot be reiained in an energy principle approach. Lee

~and Van Dam3 followed a kinetic approach with a model collision operator,

but their equation contains no finite Larmor radius effects.

AN R
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IXI. QUADRATIC FORMS

A simple conclusion can be drawn from Eq. (17) by construction of
a quadratic form. However, trouble arises from the finite Larmor radius
term introduced by the neutrality condition, which appears in the
magnetic field line bending terms {left-hand side of Egq. (16)]. This
finite Larmor radius term changes the differential operator to a non-self-
adjoint one. If this finite Larmor radius term is neglected (this is
justified a posteriori by numerical solutions), the differential operator
in Eq. (16) becomes self-adjoint and the following quadratic form can be

constructed:
wlw - w*i)ﬂﬁon = A + B(R/Ln)(Q/S)zAz N (18)

where

[+ -]

o= [ M a-rpld2>0,
-0
w «

= 2 2 Y 2

mo= [ w02 lada |2 >0,
oo

Az = f_m Ak [cos k A + (k /ky) sin k AlX .

Solutions of Eq. (18) are

0/f = 0, /200 + (0, /220)2 + [A1 + BR/L) (a/5)221/A0}H/2 . (19)

From Eq. (19) it is clear that the only possible source of instability is

the beta terﬁ; all other terms inside the square root are positive
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except Ln' We assume (and verify later) that A; is positive. An
expression for the critical beta, Bc’ above which instability occurs can

be obtained from Eq. (19),

B, = ~[(u,;/200)2 + A1 /Agl(L_/R)(5/)2 . (20)

This expression for BC assumes a form similar to a numerical result

obtained from magnetohydrodynamic calculation,®

B, = (form factor)e/q? ,

where € is the inverse aspect ratjo. Equation (20) also tentatively
verifies the conjecture that the effect of Wyey is stabilizing. If we take

w = 0, then w2 is a real number (as in the case of ideal magnetohydro-

*j
dynamics). If the finite Larmor radius modification to the field line
bending term is not negligible, Eq. (16) is not self-adjoint and no

useful information can be extracted from the quadratic form. Then we

must resort to numerical solutions.

IV. NUMERICAL SOLUTION

Since Eq. (16) is even in kx, a can assume either even or odd
solutions (in kx). We solve Eq. (16) by a standard shooting method.
Figures 1 and 2 show the most unstable even and odd solutions,
respectively, for kepi =0.5,q=2, t=1, Ln/R = -0.2, s = 0.5, and
B = 0.2. ¥For this high beta value, the mode is clearly unstable.
Furthermore, these numerical solutions show that the even mode (in kx)
is more unstable than <dd modes (in kx), which agrees with results from

£fluid calculation.
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When beta decreases, the growth rate of the most unstable even mode
reduces until finally a critical beta is reached such that the mode
becomes marginally stable. This critical beta is plotted in Fig. 3 as a
function of § for kepi =0.1, q=2, T =1, and Ln/R = -0.2. The long-
dashed line in Fig. 3 represents the ideal magnetochydrodynamics model in
which Eq. (17) is used with Wy q set equal to zero. The short-dashed
line is obtained by using Eq. (17) and retaining the effect of Wyy e
The result of Eq. (16) is shown by the solid line. Figure 3 shows that
the ideal magnetohydrodynamics model is slightly pessimistic. Including
a nonzero w,, in Eq. (17) is indeed more stable, as expected from
Eq. (20). This effect _s also noted by Chu et al.® The full effect of
the finite Larmor radius is also stabilizing, and this does not agree
with the conclusion of Chu et al., due to their energy principle approach.
Figure 3 also shows the stabilizing effect of shear on the critical
beta, which also agrees with the fluid result for similar equilibria.

In Fig. 4, we show the dependence of the critical Bi (= BﬂNTi/BZ)
on kepi, for 8 = 0.5, Ln/R = ~0.2, T =1, and q = 2, The critical B;
has a minimum around kepi = 0.03. Any value of kepi below or above this
value is more stable. It is interesting to note that this behavior at
small kbpi agrees with magnetohydrodynamics thecry, though we should
keep in mind that at this low kepi’ Eq. (16) is no longer valid, because

the ballooning mode formulism holds only in the high m limit.

&
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V. CONCLUSIONS

A collisionless ballooning mode equation, which includes full
finite Larmor radius effects and reduces to the corresponding ideal
magnetohydrodynamics equation in the small Larmor radius limit, has been
derived from the Vlasov equation for a circular concentric tokamak
equilibrium. A quadratic form can be constructed if finite Larmor
radius terms from the neutrality condition are neglected. This qua-
dratic form shows that the Way term is stabilizing. Numerical solution
of the ballooninz equation verifies this and also verifies that the full
finite Larmor radius effect is also stabilizing. The adiabatic electron
and fluid ion model is employed here. More subtle kinetic effects, such
as electron resonance, ion acoustic effects, and magnetic drifts in the
neutrality condition, as well as a self-consistent tokamak equilibrium,
must be included before the critical beta values for present or future

tokamaks can be determined.
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FIGURE CAPTIONS

FIG. 1. Real part of $(kx) for the most unstable even (in kx) mode.
The parameters used are kepi =0.5, q= 2, 8 =0.,2, T =1, Ln/R = =0.2,
and 8 = 0.5. The eigenfrequency is w/Qg = -1.17 + 16.59.

FIG. 2. Real part of $<kk) for the most unstable odd (in kx) mode,
with the same parameters as in Fig. 1. The eigenfrequency is
w/Qy = -1.75 + 13.76.

FIG. 3. Critical B, = BﬁNTi/BZ vs 8 for kyp, = 0.1, L_/R = =0.2,
q=2, and T = 1, assuming (a) Eq. (17) with Weg = 0 (long dashes),
(b) Eq. (17) with Wiy # 0 (short dashes), and (c) Eq. (16) (solid line).

FIG. 4. Critical By vs Koo, for § = 0.5, Ln/R = -0.2, q = 2, and
T = 1, assuming Eq. (16).
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