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ABSTRACT 

A ballooning mode equation that includes full finite Larmor radius 

effects has been derived from the Vlasov equation for a circular tukamak 

equilibrium. Numerical solution of this equation shows that finite 

Larmor radius effects are stabilizing. 
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I. INTRODUCTION 

Recent interest in the stability of high beta tokamak equilibria 

leads to active investigation of magnetohydrodynamics ballooning modes.1 

According to magnetohydrodynamic theory, an unstable mode cci develop 

and balloon in the bad curvature region of a tokamak when beta (= plasma 

pressure/magnetic field pressure) is higher than a certain critical 

value that depends on equilibrium. Moreover, this mode is more unstable 

when the toroidal mode number £ is large. However, in the large I 

limit, the magnetohydrodynamic model fails because finite Larmor radius 

and kinetic effects become important. Thus, a careful inclusion of 

these effects in the ballooning eigenmode equation is necessary in 

order to obtain a more accurate value for the critical beta. 

Chu et al.5 investigated these kinetic effects through a modified 

energy principle. An approximated eigenmode equation was derived 

including finite Larmor radius and trapped particle effects. Because 

the eigenmode equation is no longer self-adjoint, the energy principle 

approach cannot retain the full finite Larxnor radius effect. At the 

same time, Lee and Van Dam3 derived a ballooning eigenequation from the 

Vlasov equation with a model collision operator that simulates finite 

electron conductivity. However, this equation contains no finite Larmor 

radius effect and can be reduced to the magnetohydrodynamic ballooning 

equation only in the low collision frequency limit. 

A kinetic derivation of the ballooning equation from the gyro-

averaged Vlasov equation is presented here. The equation is no longer 

self-adjoint when all finite Larmor radius effects are included. In the 

small finite Larmor radius limit, this equation reduces to the ideal 

magnetohydrodynamic ballooning equation. The advantage of this derivation 



is its relatively easy extension to include other kinetic effects 

properly. Connection to drift waves and other microinstabilities is 

also easier using this approach. A quadratic form can be constructed if 

finite Larmor radius terms from the neutrality condition are neglected. 

Thus it can be shown that the finite Larmor radius terms from Ampere's law 

are stabilizing. Numerical solution of the ballooning equation shows that 

the net effect of all finite Larmor radius terms is still stabilizing. 

II. BALLOONING MODE EQUATION 

For simplicity a simple tokamak equilibrium with circular concentric 

magnetic flux surfaces is employed. The extension of this derivation to 

general equilibria will be discussed in a future publication. The 

variables r, 6, and C stand for the radial, poloidal, and toroidal 

coordinates. Since X, is the ignorable coordinate, all perturbed 

quantities X can be expressed as X(r,6,C,t) = X(r,8) exp (-ifcs - iwt), 

where I and w are the toroidal mode number and frequency, respectively. 

The gyroaveraged Vlasov equation for the ion can be written as 

(1) 

where 

J0 = Jo(kivi/ni) , 

^ = (-i3/36 - Aq)/Rq . 

Gere F is the equilibrium distribution function for ions, <|> is the 
' • ' 5 . - - % J;/ perturbed electrostatic potential, A., is the parallel component of 



the perturbed vector potential, g^ is related to the perturbed distribution 

function f ± by - - e ^ / T ^ + exp C-iOg^ L = d<j> t^ • v ^ C ^ , = 

eB/M^c, = AqcT i/eBrL n, L" 1 = 3 £n N/3r, q is the safety factor, and 

the rest of the notation is standard. Decomposing Eq. (1) to its 

Fourier components, we have 

+ < - + l > g n r i . 1 / r - a ( g n _ 1 - W / 3 r ] 

= e(« " • ( 2 ) 

where kj|m = (m - £q)/Rq, v d i = (v| + v£/2)/Q±R, ^ = 9m/r - ir3/3r, 

and the Fourier component of a perturbed quantity X(r,8) is defined by 

Xm(r) = /<de/2*)X<r .e> exp (-im6) . 

Equation (2) displays the familiar poloidal mode coupling due to the 

normal and the geodesic curvature of the magnetic field lines. At this 

point, we introduce the radial translational invariance6 assumption in 

the large m limit: 

W x ) = V * - • ( 3 ) 

where x = r - r m , A = l/Jlq is the separation between adjacent mode 

rational surfaces, and r = r is the rational surface on which k. = 0. m || m 

A general phase factor in Eq. (3) is omitted because this factor equals 

unity for the most unstable mode. Equation (3) can be shown to be 

equivalent to the ballooning mode formulism 2 - 4 used in magnetohydrodynamic 

calculations. Applying Eq. (3), we can rewrite Eq. (2) as 



(« - l^Vy)^*) + V d i ^ m " D ^ t x + A)/r + (m + Dg^Cx - A)/r 

- 3tgmCx + A) - gm(x - A)]/9r} 

- e(u> - ̂ ^JjjF^^Cx) - ̂ . G O / c ] / ^ . (4) 

To avoid the advanced and retarded arguments in g^, we transform Eq. (4) 
A A A 

to the k x space. Recognizing kj|m = with = £s/Rr and s = rq/r, 

we have 

[oi - ik||'V|| 3/3kx + vdi(kQ cos kxA + k x sin k ^ ) ] ^ 

- e<w - V ^ V A - v|| W c ] / T i ' (5) 

where 

X = (2TT)"1/2 I dx X (x) exp (-ik x), m J M m x • -CO 

kg = m/r, 

= ke® + V ' 

and we have ignored one compared with m. Equation (5) is now a simple 

first-order differential equation which can be solved in principle to 

obtain g^ Rather than solving Eq. (5) now, we take the zeroth moment 

of Eq. (5) and add it to the corresponding moment equation for electrons. 

The resulting equation is 

oj f dv[g± exp (iL) - S ] - a|- v„ exp (iL) -
J x 

+ (kg cos kxA + k x sin kxA) J dv[vd±gi exp (iL) - vdege] 

» e N M u - + T(U - u* ±)ro]/T e » (6) 
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where 

T 0 - I o ( b ) exp ( - b ) , 

b = ( k j + k | ) p f , 

p | = T ^ C c / e B ) 2 , 

T - T e/T ± > 

and the subscript m has been understood for simplicity. Notice that Ay 

disappears from Eq. (6) because we assume there is no equilibrium 

parallel ion flow and electron current is ignored. Using the neutrality 

condition 

-e*N/T± + J dvg4 exp (iL) - e$N/Te + J dvgg , 

we can rewrite Eq. (6) as 

k,l'3/3kx f dv v„ [g± exp (iL) - Se] 
J 

« -i(kQ cos kxA + k x sin kxA) Jdv[vdig± exp (iL) - vdegg] 

' + iNeKui - w A l ) < r 0 - 1 ) / ^ . (7) 

The left-hand side.-is related to the perturbed parallel current j|| , 

which can be expressed in terms of Ay through Ampere's laws 

( k j + k | ) A j | Airj|j / c = 47re /dv V|| exp (iL) - ge] i /c (8) 

-J-



Combining Eqs. (7) and (8), we have 

0/3k x)[(kJ + k2)A,,] 

= 4irie{-(kQ cos k xA + k x sin k xA) /^[v^g.j, exp (iL) - v d g g e ] 

+ Ne$(co - w ^ H A o " D / T ^ / c k ^ . (9) 

Equation (9) is an equation between A^ and $ because g^ and g p can be 
A, A 

expressed by <{> and A|| . Treating ions in the fluid limit but electron 

transit frequency as much higher than u>, we have 

- e(l - u^/uOFjJoC* - v|| , (10a) 

ikll 3 g e / 3 k x = ~ e < U 1 ~ W*e)Fe^ll / e T e ' ( 1 0 b ) 

Equation (10a) can be obtained from Eq. (5) by assuming oj » 

Equation (10b) is obtained by assuming k||Vg » w . k v ^ in the corresponding 

electron equation. 

The perturbed ion density N^ is given by \ 

Nj/N - e[-l + (1 - M d k i/w)r 0]i/T ± . (11) 

The perturbed electron density is 

N g/N - e4>/Te - e(a) - to*e)Aj| /lc,| cT & . (12) 

Thus the neutrality condition can be written as 

$ - U)A|| /K| | c - T ( W - W # 1 ) ( R O - ! ) ? / < « - W * E ) • ( 1 3 ) 
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Transformed to k x space, Eq. (13) becomes 

uAjj/c = lkj|'(3/3kjt){[l - t<a> - w#i)(r0 - l)*/(w - . (14) 

It Is Interesting to observe that if finite Larmor radius effects are 

ignored in Eq. (13) then we have <|> - uiAjj /k|| c = 0, which means the per-

turbed parallel electric field Ejj = 0 because - a>A||/c Ê  . There-

fore Eq. (13) is the extension of the ideal magnetohydrodynamics assump-

tion E + v x B/c = 0 to include finite gyroradius effects. 

Substituting Eqs. (10) in Eq. (9), we get 

(8/9k x)(k2 + kg)A|| 

- (c/u){6(R/Ln)(q/s)2tcos kxA + (kx/k0) sin k ^ U 

+ u(u - wAi)(r0 - i)/njj}$ , (15) 

where 

x = l - - I)tr 0 - 1 - b(r 0 - r x)/2]/(i + 2) , 

* k8XDiCS/,Rq> 

XD± - (T^ t tNe2)l/2, and 

B = 8irN(T. + T )/B2. X 6 

Combining Eqs. (14) and (15), we obtain the following eigenmo&i 

equation: 

r . 



(3/3kx)(kJ + k | ) 0 / 3 k x ) [ l - t(m - o»Ai)(r0 - 1)/(u> -

= {B(R/L )(q/s) 2[cos U + (k /k A) sill k A]X II X X v X 

+ oiCoj - M # i ) ( r 0 - i)/ng}$ . (16) 

Aside from more subtle kinetic effects ; such as coupling to ion acoustic 

waves and electron resonance, Eq. (16) includes all finite Larmor radius 

effects through ioA and Tq. In the limit of small gyroradius, O&gP^jk^p^) 

« 1, Eq. (16) reduces to 

(3/3kx)(k2 + k ^ O / S k ^ H 

- (3(R/L n)(q/s) 2Icos k ^ + (k x/k 0) sin k x A ] 

+ o»(u - w A.)(kJ + k2)p2/fi2}$ . (17) 

When is further neglected, Eq. (17) is equivalent to the ideal 

magnetohydrodynamics ballooning equation. This equivalence is best 

demonstrated by comparing Eq. (17) with Eq. (24) of Connor et al. 4 and 
A 

identifying kx/skg with the variable y employed by Connor et al. In 

Eq. (16), the term w(u) - to..) on the right-hand side agrees with both *i 

Chu et al. 5 and Lee and Van Dam. 3 However, Chu et al. 5 could not 

include all the finite Larmor radius effects because the eigenmode 

equation is no longer self-adjoint; hence the full finite Larmor radius 

modification cannot be regained in an energy principle approach. Lee 

and Van Dam 3 followed a kinetic approach with a model collision operator, 

but their equation contains no finite Larmor radius effects. 
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H I . QUADRATIC FORMS 

A simple conclusion can be drawn from Eq. (17) by construction of 

a quadratic form. However, trouble arises from the finite Larmor radius 

term introduced by the neutrality condition, which appears in the 

magnetic field line bending terms [left-hand side of Eq. (16)]. This 

finite Larmor radius term changes the differential operator to a non-self-

adjoint one. If this finite Larmor radius term is neglected (this is 

justified a posteriori by numerical solutions), the differential operator 

in Eq. (16) becomes self-adjoint and the following quadratic form can be 

constructed: 

u)(u> - u^fi^Ao - AX + p(R/Ln)(q/S)2A2 , (18) 

where 
f °° 

A 0 * J Ak x(l - r 0)|$| 2 > 0 , 

—CO 

f00 
A! = J Akx(kJ + k2) |3$/3kx|2 > 0 , —OO / _ 

A2 Akjcos kxA + (kx/k0) sin kxA]X . 
-40 

Solutions of Eq. (18) are 

to/ft0 - w A i / 2J2 0 ± { K i / 2 J J 0 ) 2 + l A i + B ( R / L n ) ( q / S ) Z A 2 ] / A 0 } 1 / 2 . ( 1 9 ) 

From Eq. (19) it is clear that the only possible source of instability is 

the beta term; all other terms inside the square root are positive 



11 

except Ln< We assume (and verify later) that A2 is positive. An 

expression for the critical beta, above which instability occurs can 

be obtained from Eq. (19), 

Bc = -[(oJAi/2n0)2 + Ai/Aq] (L^/R) (S/q)2 . (20) 

This expression for 0c assumes a form similar to a numerical result 

obtained from magnetohydrodynamic calculation,8 

3 = (form factor)e/q2 , c 

where e is the inverse aspect ratio. Equation (20) also tentatively 

verifies the conjecture that the effect of is stabilizing. If we take 

03. = 0, then to2 is a real number (as in the case of ideal magnetohydro-

dynamics). If the finite Larmor radius modification to the field line 

bending term is not negligible, Eq. (16) is not self-adjoint and no 

useful information can be extracted from the quadratic form. Then we 

must resort to numerical solutions. 

IV. NUMERICAL SOLUTION 

A 

Since Eq. (16) is even in kx> $ can assume either even or odd 

solutions (in k^). We solve Eq. (16) by a standard shooting method. 

Figures 1 and 2 show the most unstable even and odd solutions, 
A 

respectively, for = 0.5, q = 2, t = 1, Ln/R = -0.2, s = 0.5, and 

3 = 0.2. For this high beta value, the mode is clearly unstable. 

Furthermore, these numerical solutions show that the even mode (in k^) 

is more unstable than odd modes (in k ), which agrees with results from 

fluid calculation. 



When beta decreases, the growth rate of the most unstable even mode 

reduces until finally a critical beta is reached such that the mode 

becomes marginally stable. This critical beta is plotted in Fig. 3 as a 

function of s for kap. - 0.1, q - 2, T = 1, and L /R = -0.2. The long-o i n 
dashed line in Fig. 3 represents the ideal magnetohydrodynamics model in 

which Eq. (17) is used with OJ^ set equal to zero. The short-dashed 

line is obtained by using Eq. (17) and retaining the effect of 

The result of Eq. (16) is shown by the solid line. Figure 3 shows that 

the ideal magnetohydrodynamics model is slightly pessimistic. Including 

a nonzero oi^ in Eq. (17) is indeed more stable, as expected from 

Eq. (20). This effect _s also noted by Chu et al.5 The full effect of 

the finite Larmor radius is also stabilizing, and this does not agree 

with the conclusion of Chu et al., due to their energy principle approach. 

Figure 3 also shows the stabilizing effect of shear on the critical 

beta, which also agrees with the fluid result for similar equilibria. 

In Fig. 4, we show the dependence of the critical (= 8irNT^/32) 

on kflp ., for s = 0.5, L /R = -0.2, T » 1, and q - 2. The critical p. o l n i 
has a minimum around k.p. = 0.03. Any value of k.p. below or above this o i o i 
value is more stable. It is interesting to note that this behavior at 

small k p agrees with magnetohydrodynamics theory, though we should 6 1 

keep in mind that at this low kgP^ Eq. (16) is no longer valid, because 

the ballooning mode formulism holds only in the high m limit. 



13 

V. CONCLUSIONS 

A collisionless ballooning mode equation, which includes full 

finite Larmor radius effects and reduces to the corresponding ideal 

magnetohydrodynamics equation in the small Larmor radius limit, has been 

derived from the Vlasov equation for a circular concentric tokamak 

equilibrium. A quadratic form can be constructed if finite Larmor 

radius terms from the neutrality condition are neglected. This qua-

dratic form shows that the term is stabilizing. Numerical solution 

of the ballooning equation verifies this and also verifies that the full 

finite Larmor radius effect is also stabilizing. The adiabatic electron 

and fluid ion model is employed here. More subtle kinetic effects, such 

as electron resonance, ion acoustic effects, and magnetic drifts in the 

neutrality condition, as well as a self-consistent tokamak equilibrium, 

must be included before the critical beta values for present or future 

tokamaks can be determined. 

ACKNOWLEDGMENT 

The author appreciates useful discussions with J. W. Van Dam. 



14 

REFERENCES 

^D. Dobrott, D. B. Nelson, J. M. Greene, A, H. Glasser, M. S. Chance, 

and E Frleman, Phys. Rev. Lett. 39, 943 (1977). 
2A. H. Glasser, in Proceedings of the Finite Beta Theory Workshop, 

edited by B. Coppi and W. Sadowski (U.S. Department of Energy, 1977), 

p. 55. 
3Y. C. Lee and J. W. Van Dam, in Proceedings of the Finite Beta Theory 

Workshopj edited by B. Coppi and W. Sadowski (U.S. Department of 

Energy, 1977), p. 93. 

W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. Lond., 

Ser. A: 365, 1 (1979). 

®M. S. Chu, C. Chu, G. Guest, J. Y. Hsu, and T. Ohkawa, Phys. Rev. Lett. 

41, 247 (1978). 
6K. T. Tsang and P. J. Catto, Phys. Rev. Lett. 39, 1664 (1977). 
7A. Hasagawa and L. Chen, Phys. Rev. Lett. 35, 370 (1975). 

®A. M. M. Todd, M. S. Chance, J. M. Greene, R. C. Grimm, J. L. Johnson, 

and J. Manickan, Phys. Rev. Lett. 38, 826 (1977). 



15 

FIGURE CAPTIONS 

FIG. 1. Real part of $(k ) for the most unstable even (in k ) mode. 
X X 

The parameters used are k„p. • 0.5, q » 2, B • 0.2, T « 1, L_/R - -0.2, Q 1 " 
and s » 0.5. The eigenfrequency is u/«0 = -1.17 + 16.59. 

FIG. 2. Real part of $(k ) for the most unstable odd (in k ) mode, 
X X 

with the same parameters as in Fig. 1. The eigenfrequency is 
w/n0 = -1.75 + i3.76. 

FIG. 3. Critical g. - 8irNT./B2 vs s for k_p. - 0.1, L /R = -0.2, i x o x n 
q = 2, and t - 1, assuming (a) Eq. (17) with = 0 (long dashes), 
(b) Eq. (17) with t 0 (short dashes), and (c) Eq. (16) (solid line). 

FIG. 4. Critical B. vs k„p. for s = 0.5, L /R = -0.2, q » 2, and i o x n 
T • 1, assuming Eq. (16). 
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