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l. Introduction 

1. 

It Is well known that atomic nuclei show collective 
properties. One Important aspect of collective motion is the 
concentration in energy of excitation strength. This 1 B best illus
trated by the nuclear photo effect I 1] which has the t llowing 
two main characteristics : 1) the photoabsorption cross-section 
shows, all over the periodic table, a broad peak that taKes a large «irt of the 
integrated photo cross-section, ii) the variation of the peak eneroy Is a 
smooth function of the mass nunber A. Tao main routes can be followed In order 
to describe such a behaviour 

1) the more detailed, in which the strength function (E) 
is calculated at all energies E 

2) a more global in which only some energy moments of the 
strength function S(B). axe computed 

The purpose of this talk is to describe some methods 
and applications corresponding mainly to the second route. A 
description of the strength distribution by Its energy moments 
or sum-rules will be especially suited when the excitation 
strength is highly collective, In which case one can hope that 
the knowledge of a very limited number of moments will give the 
salient- features of S(E). Would S(E) have a complicated struc
ture as a function of E then many moments would be required in 
order to reproduce its properties (see contributions of 
P. Langhoff and J.C. Wheeler to this conference). 

The kind of questions we shall address ourselves 
when dealing with sum-rules are : do they have a clear physical 
meaning, can they be extracted directly from experimental data 
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are they modal dependent, to which kind of correlations <>re they 
sensitive to,which properties of effective interactions do they 
reflect, can they be computed easily 7 Let us anticipate by 
saying that some particular sum-rules, besides being a means to 
reconstruct the strength function, have Indeed a direct physical 
meaning and are therefore interesting by 'themselves. 

The material of this talk is organized as follows : 
In section 2 we give some general properties of sum-rules. In 
section 3 we discuss the experimental situation concerning the 
photoabsorption cross-sections (El, T - 1 mode) and the electric 
isoscalar monopole (BO, T.» 0 mode) and quadrupole (B2, T - 0 mode) 
giant resonances. In section 4 we discuss the corresponding theo
retical sum-rule approaches, with special emphasis on selfcon
sistent methods, and we end up with some general conclusions. 

Various aspects of sum-rule techniques can be found 
in reviews, textbooks or lecture notes [ 1-5] . In this talk -
several Important questions of current interest in this field 
will not be touched. Let us particularly mention the problem of 
location and interpretation of magnetic dipole strength in 
nuclei [6,7], the discussion of electronuclear sum-rules [8-10] 
and the role of sum-rules in relating different versions of 
collective theories (34-36] . 
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2. General properties of the strength function 111] 

When a system with hamiltonian H » T + V is per

turbed by an external oscillating field Q cos(Et/M the response 

can be expressed by the time averaged expectation value of the 

perturbing operator and is given by the dynamic polarizability 

a(E) 

a(E) = <o|Q G(E)Q|0> (2.1) 

where G(E) is the Green function 

G (E) 3 (H-S-Er1 + (H-8+Er1 ( 2 - 2 > 

Q Û 

It can be shown that 

Pfc<E> ..5 i _ l 
S + > . il . (ElTîJ * ia(E)=-£ — * +£ u,(E)E j _ 1 (2.3) 

^ k=l E k+1 j=l 3 

{k odd) (j odd) 

where the u's are given by 

k (2.4a) lik(E)=£ |<n |Q | 0>| E* 

n 

and 

J B >E 
n 

|0> , |n> denote ground and excited states of the system. <-0<E_ 

denote ground state and excitation energies. Introducing 

m • u , (E -<• 0) (2.5a) 
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1^= lik(E + ») 

one can see that the static a (E -» o), instantaneous »(E * » ) 
response Is characterized by the set of odd negative, positive 
moments m. of the strength distribution S(E) respectively 

S IE) =£|<n |0| 0> |%(E-E n) 
n 

m k = /"s(E)E* J E = E EjJ|<n | Q | 0 > | 2 

•'o 

a (E ->• 0) = 2(m_ + E2m«+ . . . ) 

, m 
a(E - ») = - fi<Mt + - J i + . . . ) 

One can make similar considerations in terms of the Fourier 

transform F(t) of the strength function [10] 

(2 6) 

(2 7) 

(2 8) 

(2 9) 

^.p S(E) =,-i/ dt e - i t E F < t ) (2.10) 

where the characteristic function F(t) is given by 

F(t)=Ze ltEn|<n|Q|0>|'= m 0 + if m,+ ^ m 5 +... t 2- 1 1» 

Dispersion relations can be written connneeting the real and 
imaginary part of F(t). One can then eliminate Re F(t) and 
eq. (2. 10) becomes 

/ ' 
S(E)= 4 / * si» Et Im F<t) (2.12) 

which again involves only odd moments. In what follows we shall 
deal mainly with the quantities mfc, with k an arbitrary integral 
and Q a 1-body hermitian operator (a multipole operator). One 
can also write, for k integer and positive, m. as a ground 
state expectation value 
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with 

m o =< 0 | Q 2|0 > (2.13) 

11̂ = (-l)t(l)lt <0 | Q s. O t | 0> (2.14) 

Q = [1H, (1H, .... [iH, Q ]...)] (2.15) 

where s Is the number of times that H appears in (2.15) and s,t 
are arbitrary integers but such that s + t «= k. For the odd mo
ments, eg. (2.-14) can also be written as 

n^ = -j t-) t(i) k<0| t Q s, Q t] |0> (2.16) 

which provides a useful simplification s [Q , QJ leads to a 
(k + l)-body operator. In contrast, the even moments are written 
in terms of anticommutators [4] and are thus (k + 2)-body ope
rators. When Q commutes with the 2-body interaction V (Q isos-
calar, V momentum independent) the many-body character of the 
operators in eg. (2.16) gets simpler. Q. is then a 1-body opera
tor and the situation is illustrated on table 1. Some moments, 
marked with an asterisk in table 1, shall be discussed in section 
i : m and m, for the electric dipole mode (Q,~ 2-body) ; m. and 
nu for electric isoscalar monopole and quadrupole modes 
(Qj- l-body>. 

The more widely used sum-rule is the linear energy 
weighted one (often referred toas EWSR) 

m, = E E „ l < n I Ql>0| 2= -§ <0 I 10, [H, Q]] | 0 > = m T + my 
<2.17) 
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where m,, m? denote the kinetic, potential contribution to m. 

respectively. If Q =y ]q(?j) one has 

m T = -à-* A ( ? q ) s (2.18) 
1 2m ° 

where (? q) is the ground state expectation value. 
' 0 

- Monopole case q, = r 2 

(2.19) m T _ 2tl2 ,_j m = — — Ar* 
i m g 

where r 2 is the ground state mean square radius 
o 

- Quadrupole case q. = r 2-3z 2 

m T = «Efftr
2 (2.20) 

l m o 

If the interaction contains no velocity dependent 

T term contributing to m^, then n^ = m 1 and can be extracted 
2 

directly from the experimental knowledge of r g. 

- Dipole case (with respect to center of mass R) 

S = f (?r5) - i ±i±,, u)- i ( E T 3 (i,) (£ r-J <2.„, 

« rr. » _ * 2 NZ . _V _ H 2 NZ , , . , i t •}•}•> 
m , ( D

B

) = 2 5 T + m x = 2 i T ( 1 + K » < 2 ' 2 2 ) 

where the dipole enhancement factor K is given by 

K " hm < 0 l [ D

Z ' [ V ' D J ] I 0 > (2.23) 

K is different from zero only if the interaction is velocity 

dependent and / or contains exchange terms like t+(i) T_(j) 

which do not commute with the dipole operator. 

Among the inverse energy weighted moments, only the 

m, moment will be discussed. It gives the static polarizability 
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o s o(E = 0) or zero frequency response and can be obtained by 

studying the response of the nucleus to a weak static external 

field H - XQ. It is given by 

(2.24) 
2 dX^ 

:X- 0 'x=0 

where the expectation value is taken with respect to the ground 

state of H - XQ. 

From the knowledge of several moments various 

quantities with dimensions of energy can be constructed, for 

instance 

È* s < m k / V * > ' / 2 < 2 - 2 5 > 

and 

E k E mk Mk_t (2.26) 

They statisfy the inequalities 

— > V B k > 1 k - , * S - , > — ( 2 - 2 7 ) 

The equality signs in (2.27) hold when the strength is concen

trated at a single energy (case of maximum collectivity). The 

closer the different É , E. lie, the more concentrated in energy 
k K 

the strength function will be. Let us emphasize that there is 

no special merit in calculating the centroid energy m,/m.. 

Rather the natural procedure is to select the moments that can 

be computed more reliably and then, by eq. (2.27) or similar 

relations, give bounds on the quantities one is interested in. 
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By properly choosing the value of k in m. (positive or negative), 

more emphasis can be put on the low or high energy part of the 

strength function. For instance, in the dipole caee, the s ta t ic 

polatizability (m )̂ i s unsensltive to tie high energy tall of the photonuclear 

cross-section. On the contrary the integrated photoabsorption cross-section, 

which is proportional to m , , gets a sizable contribution from i t . 

Let us f inal ly mention that i t may be very useful 

to derive more general sum-rules than the ones considered in 

th i s ta lk . One can define 

rak(A, B)= \Y. E * <<0|»,|a><n|B|O> + <O|B|n><n|A|O>) (2.28) 
n 

The sum-rules we consider correspond to A » B (a multipole ope
rator) and when there i s no ambiguity we use the notation 
m. (A,A) =m k(A) = m.. Several authors [4 , 12-15] have considered 
the case k = 1 in (2.28) . One has, for instance 

nMptf) , p(r')> = ! < 0 | l p « r ) , lH, p(r"')]l | 0> = ( 2 - 2 9 > 

= ^ V r . 7 r l ( « ( r - r ' ) < 0 p(r) | 0>) 

where P (r) = \& (r-r.) is the density operator. For many purposes 

it is convenient to write (2.29) in momentum space 

V p î ' p - q > * 5 < 0 ! IPÏE' fH,p_-nio> - < 2 - 3 0 > 

- fe*-«<ûIPS_5|«> 

where P + • V expt - i ï ï . r . ) . Introducing the inultipoXe operators Q 
k * 



QX = J r * ï X ( ( r ) p <r) dr 

0D =fr2 p(h dr , 

U?* 0) (2.31) 

<2.32) 

and the foran factors 

FX <gj = (4it(2X + 1)] ^ f j j ^ r ) Y X o ( f )p(r)dr- , (2.33) 

with the elastic form factor defined by 

F e l (q) 3 <0|P X "°(oJ|0> (2.34) 

and using that the isoscalar density commutes with the inter

action, one obtains by perfoming the appropriate integrations, 

for instance 

<P,Q X) 
V2 , , d P (r) 

hx* - # — *X„<*> <X^°J o.3« 

(p.Q«) =-S_ (3 + r|j) P M(?) (2.35b) 

(Q X,F X) = (-) X + 1j^X(2X + l)o,X (|a=) X" 1F e l(q) (^0) (2.36a) 

<°°'p0> ' a ' d T ^ i ^ 

2m <Q"> = £r M2X + l)jf Arf" 2 

ft*» 

«3°) m o 

(2.36b) 

(2.37a) 

(2.37b) 

Eqs.(2.35) relate sum-rules involving transition densities to the 

ground state density. The r.h.s. of (2.35) is identical to the 
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transition densities obtained through specific nuclear models, 
e.g. by Tassie [16], following the hydrodynamical description 
of an irrotational fluid. Eqs.(2.36) relate sum-rules involving 
transition form factors to the elastic form factor. Egs.(2.35) 
are the familiar sum-rules for multipole matrix elements, rela
ting them to the ground state expectation value of r n ; they 
are particular cases of the more general relation (2.18). All 
these sum-rules are particularly easy to exploit when, for a 
given multipolarity, they are dominated by a single collective 
state. In this case, for instance, all the form factors become 
proportional to each other [ 13] and the transition density of < 
the state dominating the sum-rule coincides with the one obtained 
by Tassie. 
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3. Experimental aystematlcs on electric giant resonances. 

A great deal of information on the dipole strength 
comes from photonuclear dat& [17-22, 48] . There are two main 
sources : 

1) neutron emission cross-sections (y, xn). The sum of all 
the partial neutre, cross-sections gives practically 
the total cross section for heavy nuclei because in 
that case the (y, p) contribution is very small due 
to the Coulomb barrier. For light nuclei, the photo-
nuclear cross-sections will give only a fraction 'f 
the total cross section. 

ii) total absorption cross-sections. One must extract from 
the data the nuclear contribution from the total mea
sured cross-section. The non-nuclear part increasing 
rapidly with Z, this method has been used only fcr 
light nuclei (A <40). 

For these reasons, both methods are complementary 
but unfortunately it has not been possible to make a direct 
test on the consistency of data extracted by the two techniques. 

Host of the information concerning the isoscalar 
quadrupole and monopole modes comes from inelastic hadron scat-

3 

tering (p, d, He and a) with projectile energies of the order 
of 100 Hev. To extract nuclear structure information one must 
make specific assumptions for the nuclear reaction process 
(direct reaction) and for the transition densities. As a con
sequence the parameters derived when analyzing the data are by 
far less reliable than for the photonuclear case. This remark 
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applies especiallly to the percentage of EWSR for the isoscalar 
monopole node. 

3.1 Dipole case (GDP.). 

On f i g . l are plotted the data corresponding to the 

energy E_ of the giant dipole resonance. They can be well repro

duced by (see f i g . l b) 

E = 79 A' JMev (3.1) 
D 

However a similar agreement can be obtained with E. s const. A'6 Mev, 
-v as shown on fig.l a . Let us remind that a A'1 -law is obtained 

[ 5] in the hydrodynamic model for the motion of neutron versus 
protons, motion in which the boundary of the nucleus remains 
unchanged (Stelnwedel - Jensen volume mode). For the motion of 
neutrons as a whole versus protons as a whole (Goldhaber - Teller 

—V surface mode) a A's-law is obtained (see ref.l47lfor a hydrody-
namical description in which this two modes are coupled). 

The data on the widths are reproduces on fig.2 a. 
They lie between 4 and 7 Hev and show pronounced deformation 
and shell closure effects. 

It is customary to discuss the following integrated 
quantities extracted from the total photoabsorption cross-section 
a (u) 

a »/a(u»<up du p = 0,-1,-2 (3.2) 

a) a 
n 

Integrated cross-sections up to the pion threshold 
have been determined for light nuclei (A<40) by total photon 
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absorption cross-section measurements [20] . Kecently the o(y,xn) 
cross-sections of five heavy nuclei (Sn, Ce, Ta, Pb and u) 
have been measured at Saclay with monochromatic photons of up 
to 120 Mev. In fig.3 are reproduced the data corresponding to 
lead showing a long tail, of the order of 10 to 20 mb [ 21, 22] . 

On fig.2 b are plotted values of <j obtained by 
o 

extrapolating cr(oi) with a Lorentz-curve that fits the measured 
cross-section in the giant resonance region. For medium and 
heavy nuclei one obtains K » 0.3 (see egs.(2<3), (4 .10)).On 
fig.4 are plotted the values of 1 + K obtained from the photo-
neutron cross-section measurements of heavy nuclei. Since it 
is often assumed that one can compare the dipole EWSR with 
experiment up to the pion threshold, a smooth extrapolation from 
120 to 140 Mev has been made before extracting the value of 
the enhancement factor K. One obtains K = 0.75±0.15, independent 
on the mass number for A > 8 . Also included on fig.4 are the 
Mainz values (20] for light nuclei, from total cross-section 
measurements. 

The long tail of u(u) (see fig.3) beyond the GDE 
is largely due to medium or short range correlations, mainly 
induced by the tensor force ( 23] . Consequently, approaches like 
RPA that include only long range correlations and ignore the 
tensor force should produce, for heavy nuclei, values of 
K = 0.2-0.4, whereas theories that include short range tensor 
correlations should produce values of K =0.8-1.0. 
b) a , (bremsstrahlumg weighted) and a_2 

Some data are reproduced on table 2. The values in 
columns X come from total cross-section measurements, in 
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columns I I from photoneutron c r o s s - s e c t i o n s . The v a l u e s for 

A >100 , for which photoneutron data g i v e r e l i a b l y the t o t a l 

photo c r o s s - s e c t i o n , are w e l l reproduced by 

V 
o_j - ( 0 . 2 0 * 0 . 0 2 ) A ' 3 m b (3 .3 ) 
<T^ = (2 .7 ± 0 . 2 ) A ^ p b / M e v (3 .4 ) 

3.2 Quadrapole lsoscalar (GQR). 
On fig.5 is reproduced the sysismatics on GQR ( 24] 

energy, width and percentage of EWSR (KI, ). The peak energy E 
1 Q 

is «ell reproduced by 

E •» 63 A /% Mev (3.5) 

with some tendency towards a slightly larger value for heavy 
nuclei. 
The resonance width is of the order of 4-6 Mev, larger for very 
light systems, smaller for very heavy. For A5- 100, the EWSR 
(eg.(2 .20)) is exhausted by the measured strength. Probably 
that for the sum-rule depletion error bars larger than those of 
fig.5 would better reflect present uncertainties. 

3.3 Monopole lsoscalar (GMR)• 
Fig.6 summarizes the data obtained by inelastic 

deuteron scattering at 82 and 108 Hev at Orsay [25] , inelastic 
a scattering at 96 Mev at Texas [ 26] , inealstic 'He scattering 
at 108 Mev at Grenoble [ 27] and 60 Mev inelastic proton scat
tering at Oak Ridge [28]. Progress in determining monopole 
strength has been recently achieved mainly by 
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i) measuring cross sections at very small angles, where 
L = 0 an<î L = 2 angular distributions differ substan
tially, providing unambiguous L = 0 signature, 

ii) reducing the background coining from particles «scat
tered by the spectrometers 

Fig. 6a shows that the resonance peak E M is well 
reproduced by 

E = 80 A /* Mev (3.6) 
n 

The resonance widths (fig.3b) are typically of the order of 
3 Hev and a large fraction (fig. 3c) of the m, sum-rule (eq.(2.19)) 
is exhausted (remember that the methods used in extracting sum-
rule depletions in hadron scattering are quite model dependent). 
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4. Evaluation of sum-rules 

4.1 RPÀ sum-rules [ 11, 29-38] 

Host of the sum-rule evaluations described in 

what follows w i l l be RPA sum-rules, i . e . in analogy to eg.(2-7) 

m.CRPA) = E ( V k l < n l « l 0 > R P f l l 2 (4.1) 

where <E )j,pA, <n Id 0 > R p A are excitation energies, transition 
matrix elements corresponding to the RPA method. As is well known, 
the standard Time Dependent Hartree-Fock (TDHF) derivation of RPA 
specifies how to construct the response friction and the RPA 
matrices from the effective interaction used in determining the 
ground state. We shall say that a RPA calculation is selfconsis-
tent when it is performed by using this procedure. All the pro
perties and theorems we shall discuss concerning sum-rules and 
RFA apply only to the selfconsistent RPA scheme. 

a) m, (Thouless theorem [ 29) ) 
If Q is a 1-body operator, then 

m (RPA) = !<$ |[Q,[H,Qj] U > (4.2) 

where •denotes the Hartree-Fock (HF) solution. The RPA, in con
trast to t«a Tamm-Dancoff approximation (TDA), preserves in the 
sense of eq.(4.2) the exact relation eg.(2.17). What is remar
kable with this and related theorems is that, despite the fact 
that RPA contains dynamical ground state correlations, some RPA 
sum-rules (m. in this case) can be obtained as an expectation 
value with respect to the HF uncorrelated ground state. 
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b) nu (cubic energy weighted) 

A relation s i m i l a r t o (4 .1) h o l d s 

m $ (RPA) - 5 <*|[ G,[ H f G ] ] | *> (4 .3) 

where G is an operator which can be explicitely derived from the 
HF hamiltonian [36] . When (v, Ql --= 0, eq.(4.3) reduces to I 11,331 

n>s(RPA) = |<*|[Q, ,[H,Q,]]|̂ > (4.4) 

with Q, defined by eg.(2,15). This allows to interpret m, as a 
polarizability : "Scale" the HF wave function * by 

$_•<, (n) = e^ Q l * (4.S) 

where r\ i s a " s c a l i n g " p a r a m e t e r . Then 

m (RPA) = 5 — <<KM) |H |* (n>> | < 4 - 6 > 
2 « 1 * l n - 0 

in analogy to eqs.(2.24, 4.7). If Q = Q°is the monopole operator, 
the transformation (4.5) scales by the samt factor sach single-

X= 2 particle wave function. If Q = C J15 *'*!^ quad-npole operator, 
the transformation (4.5) induces the same volume preserving 
quadrupole transformation on each single-particle wave function. 

c) m , (inverse energy weighted) 
The static RPA polarizability can be obtained by 

[30, 31] 

1 a^.^,,, ,„, .,,,-• = l i (X)>| «••?> m.JRPA) = § |^<KX)|Q|*(X)>| = \ 2_<*(X)|H|*( 

where 4>(X) is the constrained HF solution of H-XQ. Bq. (4.7) is 
the RPA version of the exact relation (2.24). 
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d) Dynamic polarizabllitv a (E) [36 ] 

More generally, it can be shown that the TDHF 

polarizability a T D H p(E) satisfies 

T D H P < ' ̂l <M«+* < EnW E / 

which is the TDHF analogue of eq.(2.1) 

In what follows we shall compare to experimental 

data sum-rules evaluated by the methods just outlined. The results, 

depending as they do, on ?»?_ theorems are of the same accuracy, 

in principle, as full RPA calculations. In practice they are 

superior to most existing RPA calculations, since these often 

contain lack of selfconsistency and/or basis truncation effects, 

in particular by ignoring continuum particle states. We show in 

fig.7 the monopole and quadrupole isoscalar strength from a 

selfconsistent RPA calculation which properly includes the con

tinuum [39, 40]. (see introduction, route n°l). The strength S(E) 

being a relatively smooth function of the energy, these results 

give additional support to the view that a very limited set of 

moments will reproduce essential features of the strength distri

bution and will contain systematic effects. When using sum-rules 

to locate collective strength in the case of a broad resonance, 

different definitions of energy (È "s, B's in eqs.(2.25, 2.26)) 
k 

will differ considerably yet still being consistent (for instance 

the monopole isoscalar case of M 0 on fig.7). When the resonance 

is narrow (the other cases on fig.7) the different definitions 

lie much closer together. To illustrate this point, arrows 
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on fig.7 show values of È, and Ë,(È,< Ë,) for the monopole case. 

The arrows for the quadrupole case indicate the value of Ê 3. 

The different Ë's have been calculated by the techniques des

cribed above [11, 33] and are consistent with the complete cal

culation of ref.[39, 40], 

Most of the results we shall discuss are obtained 

with effective interactions, in particular of the Skyrme type 

(41, 42]. The simplicity of these interactions (zero range) is 

such that analytical results can be obtianed in some cases, 

giving more physical insight. Their parameters have been fitted to observed 

bulk properties of ground states (total binding energies, radii) 

given by the HP method. They contain momentum dependent terms 

that induce a non-locality of the average field (I.e. an effec

tive mass m ) and take into account finite range effects. Des

pite of the velocity dependence, one still has [V, Q] = 0 when 

Q Is an isoscalar operator.' For isovector operators, the velo

city dependent terms contribute to the commutator and immitate 

closely the effects of a charge-exchange force. Like more rea-1 

listic effective forces, Skyrme interactions contain a two-body 

density dependent term. Specifically 

vtf^.ptf^prf,))-} t^l+XP^tr-JSCr-^) (4.9) 

Choices i n the l i t e r a t u r e are Y=l [41 ,42) , Y=2/3 [ 4 3 ] , Y=l /3 [ 4 4 ] , 

Y = l / 6 [ 4 5 , 4 6 ] . 

When dealino with density dependent forces care mustBe taken in 

proper ly d e f i n i n g the RPA matr i ce s and the proof o f Thouless 

and r e l a t e d theorems r e q u i r e s fur ther e l a b o r a t i o n but they s t i l l 

hold [ 1 1 , 38] . 
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4.2 Comparison with experiment. 

4.2.1. Dlpole case. 

We shall discuss separately the integrated photo-

absorption cross-sections (3.2). If higher multipole contribu

tions and finite wavelength modifications are ignored, they are 

given by the sum-rules 

°P = 4» ! lv i (V p = 0 ' _ 1 ' ' 2 < 4 ' 1 0 ) 

where the dipole operator B is given by (2.21). it can also be 

written 

5 - f *„ <«•»> 
where r Z N = S z - ̂  is the relative coordinate of the center of 

mass of protons with respect to the center of mass of neutrons. 

Consequently/ in the dipole approximation, the only quantities 

relevant to photoabsorption are the ones connected with the re

lative motion of the cm. of protons with respect to the cm. of 

neutrons. Let us assume that this motion is decoupled and that 

its hamiltonian H_ M is 

H, = £ + i » f t 2 r i N < 4 - 1 2 ' ZN 2u 

where u =(NZ/A)m. One has E D = Tin , a 0 = 60INZ/A) Hev.mb,o <=a /Tift, 

and <J = o/(î if l) 2 [30] . The harmonic o s c i l l a t o r independent p a r t i c l e 

model (HOSH) gives TiQ̂ hw where ht» I s the frequency of the HOSH 

[ 49] . One gets (taking tun = 41 A*^1 Mev and NZ/A « A/4) 

E - 4*a"'* Mev, o - 0.37 A A » b , 0_ - 8.92 A ' 'ub-Hev" ' 

(4.13) 
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in disagreement with the experimental values (3.1), (3.3) and 
-l/, 

(3.4). If one takes in (4.11) 1W = 79 A , 3Mev in order to repro
duce the observed giant resonance energy (3 .1) one has 

E D = 79 A /'Mev, a = 0.19 A ^ mb, a = 2.4 A ^ ub.Mev"1 

(4.14) 
in good agreement with the data for heavy nuclei. So, to get 
agreement with experiment for E D, a and a one has simply to 
change the frequency of the relative motion of protons with 
respect to neutrons from the value produced by the independent 
particle model (hw) to approximately twice this value. The ques
tion now is : Are usual microscopic theories of collective 
motion, like TDA or RPA, successful in this respect ? Before 
embarking ourselves in more ambitious and selfconsistent treat
ments wich, in particular, take exchange effects into account, 
let us look to what one can expect from simple approaches. Speci
fically, let us consider the predictions of the degenerate sche
matic model [51, 52]. If the coupling constant is adjusted in 
order to give n Q R p A = ^ T D A = **n (observed collective frequency), 
one has 

0 (TDA) fin *!2 79 
—=J = = « — (4.15) 
a (RP&) AS ttu 41 

where Ae= 6 - e. is the particle-hole energy. The TDA value of 
o (O.<O|D 2|0> , see (4.10)) corresponds to an independent parti
cle evaluation, should therefore be identified to the one given 
by (4.13) and will be in disagreement with the data. On the. 
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contrary, from (4.15) one can see that a (RPA) will coincide 
with (4.14) and agree with the data. In summary : 

i) photoabsorption is only sensitive to the relative motion 
of protons as a whole with respect to neutrons as a whole 
(45, 501. This simple observation invalidates, for Instance, 
previous attempts to extract the mean square radius from 
the integrated cross-section a ; 

-l 

ii) the data indicate that this relative motion has a frequency 
which is twice the one predicted by the independent par
ticle model, which includes only Pauli correlations [50) 
(equivalentlyr the amplitude of dipole oscillations is 
smaller than the one predicted by the independent parti
cle model) ; 

iii) the schematic model indicates that, in contrast to TDA, 
the ground state long range correlations Included in RPA 
produce precisely the effect indicated in 11). 

Let us now discuss results obtained in selfcon
sistent approaches, specifically complete RPA calculations 
with Skyrme forces [39, 40, 53, 54] as well as some sum-rule 
evaluations [ 32, 55-57]. The calculated cross-sections show, 
in comparison with the data, too much structure and only after 
smoothing the computed cross section can one reproduce the 
experimental peak [ 54]. Commonly used Skyrme forces give some 
additional strength beyond the resonance that has no experimental 
counterpart, feature which is not well understood. There are good 
indications [ 46] that the parameters of Skyrme-type forces can 
be modified in such a way that, keeping agreement with bulk 
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proparties, the dipole {and other multipole) strength is better 
reproduced. Remember also that from a variety of analysis (see for ins
tance [ 17, 46, 47)) one can conclude that the volume symmetry 
energy in nuclear matter at the saturation density is by no means 
the only relevant parameter in determining the dipole strength. 

a) g 

In section 4.3 will be discussed results of evalu
ations of the enhancement factor K (eqs.(2.23), (4.10)) with 
realistic forces. Let us now only mention that, as should be 
clear from the discussion of section 3.1, Skyrme-type forces 
should produce values of < of the order of 0.2-0.4. For these 
forces the expression of K is 

K = UP T ( t i + V./"" 2 '*' d* 4 - 1 6 ) 

where p is the ground state density and ti and t 2 are the para
meters that govern the momentum dependence of the interaction. 
For lead, the values corresponding to S III [42] , SkM[46] and 
Ska [44) are 0.42, 0.37 and 0.69 respectively [46]. This last 
value indicates that the Ska force fails in reproducing correctly 
the dipole strength. As we shall later see, the polarizability 
predicted by this force is indeed in disagreement with the expe
rimental data. 
b) o 

=1_ 
Dellaflore and Brink [ 50] have given a beautiful 

model- independent interpretation of cr, 
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•'Js (¥)'<•! i - i is(¥ , < 0 " , - ' D > 

which follows immediately from (4.10) and (4.11). Eq.(4.17) 
tells that a is a direct measure of the Goldhaber-Teller (GT) 
zero-point motion. As pointed out in ref.[ 48) , the amplitude 
of this motion is surprisingly large for light nuclei. We illu
strate this point in table 3. From the experimental knowledge of 
ct (first column) is extracted the value of <c„„>'1 (second 
column) by use of relation (4.17). The ratio fl of the zero-point 
GT root mean square radius to the charge root mean square radius 
r 0 (third column) 

. ( < 0l r»' O >) '/2 (4.18) 

is given in the fourth column. The fifth column gives the follo
wing estimation of ft : taxe (4.12) to describe the relative pro
ton-neutron motion, with Ml = 79A ' 3 Mev,l» = (A/4)m, the h.o. Is 

- 2/ 2 

state for the zero-point motion and r;= 0.9A " fm . One obtains 
S • 1.87 A "' , in very good agreement with the value of A extrac
ted from experiment. The last column (.RQDR =^5/3 ft) corresponds 
to the ratio.tof the root mean square radius of the proton-neutron 
motion of the giant resonance (relative motion in the In state) 
to the ground state charge root mean square radius. 

For light nuclei, where A and K G D R are large, there 
are good chances that proton and neutron distributions have a 
relatively small overlap, as sketched on fig.8. One can then 
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imagine that the study of the deexcitation of the GDR of light 
systems may provide information on, for instance, neutron-
neutron correlations . In particular, the possibility to observe 
multineutron bound states in this way should be explored 
(in 7L1, for which flGDR is 0.S8, the 2n and 3n thresholds are 
in the giant resonance region). 

£orp = -l, eg. (4.10) reads 

"-, = 4 l , Z «5 <0|D||0>, (4.19) 

the experimental knowledge of a providing thus a direct measure 
-l 

of the ground state expectation value of a two-body operator 
(see also table 1) and giving direct information on two-body 
correlations. Furthermore, as discussed above and emphasized in 
ref.[ 58], the value of <0)D„|0> obtained from a correlated and 
non-correlated ground state wave function is very different. As 
Lane and Mekjian say, "there are remarkably few examples in 
nuclear physics where one can pinpoint the effect of correla
tions in so explicit a way... The only other case is that of 
the total energy where the operator is the hamiltonian". in 
fact, as we shall see in section 4.4 when dealing with <j0, the 
enhancement factor K provides, with some qualifications, another 
case. 

On table 4 comparison is made, for a.O and ™Pb 
of the experimental and computed RPA values of o_y, and a very 
good agreement is achieved with the Mainz value of 1 60 and the 
Saclay value of »epb. The RFA value is evaluated by means 
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of eg.(3.2), after computing the entire dipole strength distri
bution, since there is no direct way to obtain even RPA sum-rules 
[35] (m„(Dz) in this case). The experimental value for lead, when 
the giant dipole resonance is Lorentz extrapolated and the con
tribution below 7.3 Mev is estimated [ 58] , is corrected from 
0.19 to 0.22 which coincides (accidentally !) with the computed 
value . Let us emphasize that the agreement with experiment for 
light t'y) and heavy ( ̂ b ) nuclei gives a very strong indica
tion that values extracted from photoabsorption data for light 
nuclei and photoneutron data for heavy nuclei are consistent. 
One can finally conclude that the ground state dipole correla
tions deduced from experiment are large and well reproduced by 
selfconsistent RFA approaches 
c) o 

-» 
From (4.10) and (2.-24) one has 

where a D is the static dipole polarizability. It has been com
puted [ 56] using the HP method with an applied external dipole 
field (eq.(4.7)). Results corresponding to several forces are pre
sented on table 4. Although they depend on the interaction used, 
one can see, by comparing to the experimental values, that they 
roughly reproduce the Mainz values for light nuclei and the 
Saclay values for heavy nuclei. So, before going into a more 
detailed analysis, one can get two main conclusions : 1) photo-
neutron data for light nuclei do not provide an estimate of o ; 
2) the calculations indicate that contrarily to what has been 
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concluded by other authors, the a values (as well as o ) 
-2 -1 

extracted from photoabsorption data for light nuclei and from 

photoneutron data for heavy nuclei are consistent in the sense 

that the same theoretical scheme (selfconsistent RPA)reproduces 

both. 

It is popular in the literature to give values of 

a referred to Migdal's estimate of the polarizability, which 

reads ( 59, 1] 

•-, = 2*2 ë -£nç , ( 4- 2 1 ) 

where R is the sharp nuclear radius and a is the volume symme

try energy coefficient appearing in the NeizsScker formula. Values 

obtained through eq.(4.21) are given at the bottom of table 4 

where the values of a corresponding to each force are also in

cluded. As can be seen, (4-21) does not provide a good estimate 

of (7.2 and the correlation between values of o and a predicted 

by (4-21) is not correct. Agreement of eg.(4.21) with the data 

for heavy nuclei could be achieved by taking a * 20 Mev but this 

value is very far from the ones obtained from forces that des

cribe correctly bulk properties as well as from the value obtai

ned in the liquid droplet model (a = 36.8) [60]. In fact, the 

inadequacy of (4 .21) is not surprising, for the dipole mode can

not be described simply as a volume mode. As pointed out in 

refs.[46, 47], surface effects are very important and the most 

relevant parameters are the volume and surface (stifness coef

ficient against formation of neutron skin) symmetry energy 

coefficients. Also included on the last column of table 4 is a 

lower bound of o obtained by sum-rule techniques (32, 37, 55] . 
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By comparing results of the last two columns, which are obtained 

with the same force, one can see that the bounds are 5-15% lower 

than the exact BPA values and provide an e f f ic ient and simplified 

way to estimate the dipole polarizabi l l ty . Comparison of results 

obtained with different forces with experimental values show 

that Ska force does not describe correctly dipole properties and 

that SkM force i s s l ight ly better than Skyrme forces. The pre

dicted values for»Zr are too high compared to the photoneutron 

value. However for this nucleus the (y, p) channel would probably s t i l l give 

a sizable amount to the total cross-section and increase c 4 . We think that 

the canari son between calculated and observed values cannot be pushed further 

until an estimation of the error bars attached to the values extracted from 
photoabsorption cross-sections i s given. 

4 .2 .2 . fiuadrupole case, (see [ill and references therein) 

We shall use to estimate the energy E. of the giant 

quadrupole resonance the quantity È3 (see eq.<2.25)) that can be 

computed using eqs.(4.2) and (4.6) with 0 =Etrl - 3z2J. For 

Skyrme-type forces one obtains 

/ 4* 2 T \ V, / E \ Vi 

where r 2 is the mean square radius, T is the total kinetic energy 

of the ground state and E.. (finite range term) is the contri

bution to the ground state energy arising from the momentum de

pendent terms of the interaction (terms that give rise to an 

effective mass). One can show that E /T is almost independent 

of A and therefore the quantity 1 + E /T can be estimated by 
fin 

taking the limit of a large system, in which case it tends to 
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m/m , where m is the nuclear matter effective mass. 

[ 4ft2T \ \ /nT 
\m A r'J V m* V I ^ I -/-• <4-23) 

If one estimates T/r1 by its harmonic oscillator value, one 
o 

obtains 

When m/m = 1 one recovers the Suzuki- Mottelson result. Intro

ducing the experimental iniormation on the energy of the giant 

quadrupole resonance (eq.(3.5)) one obtains the following esti

mation of the nuclear matter effective mass 

'_ = 0.75 - 0.85 (4.25) 

Several authors have performed this type of analysis reaching 

similar conclusions. In ref.I Gila slightly larger value of m%i 

than the one provided by eq.(4-25) is obtained. In ref.I 38] , E 
16 4Ù 

is computed for 0 and Ca with the finite range density depen

dent interaction Go of Campi-Sprung. 

Our main conclusion is that if the quadrupole 

strength is highly collective, the knowledge of the energy E. 

of the guadrupole resonance c£ be used to estimate the nuclear 

matter effective mass m . 

4.2.3. Monopole case (see [111 and references therein) 

The study of the liant monopole resonance is of 

special interest. It corresponis to the "breathing" or compression-
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dilatation mode and its frequency provides information on the 
incompressibility of nuclear matter, a parameter of central 
dynamical interest that otherwise can be reached only rather 
indirectly. For nuclear matter, the incompressibility K__ is 
defined unambiguously as 

"a- » K " ^ | «•"> *$ V*F0 

where E/A is the energy oer particle and k_ (k_ ) is the Fermi 
s Bo 

momentum (Fermi momentum at saturation density) . For finite 
nuclei there is no unique definition of incompressibility : 
the response of the nucleus will depend on the form of the 
applied monopole field. We shall consider Q = £r| and shall 
discuss the properties of the compression modulus K, associated 
to "scaling" (see eg.(4.6)), in which case 

~k (•&) m

3 
(4.27) 

where m is given by (4.4) or (4.6). This procedure will be more 
sensible the more concentrated in energy the strength distri
bution is. Explicit calculations show indeed that the monopole 
strength for Q = Jr? is concentrated in energy for heavy nuclei 
(see fig.7). Using again to estimate the monopole energy G H the 
quantity E, , one has, using (4.2) and (4.4) or (4.6) 

EM " 7 V -J- (4.28) 
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The experimental position of the monopole resonance (eq. (3-6)) 
gives, by use of (4.28), K.s 150 Mev. For Skyrme-type forces one 
can furthermore show that 

K - K, « 63(1 +Y) Mev (4.29) 
nm A 

where Y is defined in eq. (4.9). Due to the limited number of 
parameters of Skyrme-type forces, the effective mass m and the 
incompressibility are related and using the constraint (4.25) 
on the effective mass put by the data in the quadrupole reso
nance one deduces that, in order to reproduce the experimental 
information, one must take y -l/3- '/6 and by use of (4-29) one 
obtains for the nuclear matter incompressibility K a 220-230 Mev. 
Explicit calculations of E confirm this analysis and in 
ref.[46] a Skyrme-type force with Y = Vt a l i & *„-, • 2 2 0 M e v h a s 

been constructed that keeps agreement with bulk properties and 
reproduces correctly quadrupole r monopole and dipole resonances. 

It is worthwile to mention that Blaizot et al. 
[ 61, 62] in their study of monopole resonances using RFA reach 
also the conclusion that present data require K « 210 ± 30 Mev. 
Finally, Myers and Swiatecki [60], using a completely different 
approach-macroscopic description of binding energies - obtain 
for the nuclear matter incompressibility a value of 240 Mev. 
We believe that the convergence, using different methods that 
include different experimental information, towards values o£ 
K = 200-240 Mev is a very significant result. It should be nm 
used in the future to test effective nucleon-nuoleon inter
actions as well as many-body theories of nuclear matter. 
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4.3 The dipole enhancement factor K. 

Let us now separately discuss what can be learned 
from the experimental knowledge of 0 , using methods that go 
beyond KPA and that use realistic two-body forces. In contra
distinction to a and <j, for which the energy weighting facili-

-1 -8 

tates the comparison with finite energy evaluations, for o 
there is no clear cut relation between the experimental value 
up to pion threshold and the Thomas-Reiche-Kuhn (TRK) evaluation 
(evaluation given by egs.(2.22), (2.23) and (4.10)). some general 
remarks are in order here [9, 63, 64] : 

i) the evaluation of the double commutator with the con
ventional nuclear physics includes photoabsorption 
also above pion threshold 

ii) there is considerable, although not complete, cancella
tion of dipole retardation effects against higher 
multipoles 

iii) there are contributions from the subnucleonic level, 
isobaric and meson exchange currents. 

From detailed studies performed mainly for the 
deuteron, one expects that the TRK value should slightly exceed 
the experimental measured photoabsorption cross-section inte
grated up to pion threshold. More work in this direction is 
needed before a more quantitative statement can be made. 

That the TRK value may be interesting in order to 
compare different many-body approaches is based on the fact 
that the double commutator (2.23J is a two-body operator (see 
table 1). Consequently, the value of K defends on the two-body 
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cor re la t ions of the wave function induced by the hamiltonian. 

rn section 4.2.1 we have seen tha t for a too the two-body cor re 

la t ions come in to play. However, for the l a t e r case i t i s mainly 

the long range cor re la t ions t h a t modify the independent p a r t i c l e 

va lue . For K , on the contrary, the in te rac t ion appears explidtely 

and the weighting provided by the interaction in matrix element of r zV empha

sizes an intermediate range of 1 to 2fm, where the defect wave function is 

s t i l l appreciable. Furthermore, the presence of the tensor force in r'V allows 

a coupling of channels that is very important and no analogous process occurs 

fora [65] . 

On tab le 5 are reproduced the r e s u l t s of several 

ca lcu la t ions of the TRK value o fKus ing r e a l i s t i c forces,Haraada-

Johnston (HJ) and Reid soft core (RSC) p o t e n t i a l s . Also inc lu

ded for comparison are the experimental values (see section 3 .1) . 

The experimental value for 'He i s obtained by adding the c o n t r i 

butions of known decay channels and i s probably un re l i ab le . The 

ca lcu la t ions for A = 2 and 3 contain no unce r t a in t i e s (the exact 

non-relativistic problem i s solved, using Fadeev equations for A = 3) 

and d i f ferent authors obtain e s sen t i a l l y iden t i ca l r e su l t s 

[ 64 ,66-68] . Several methods have been used for heavier nuclei s 

f i r s t - o r d e r per turbat ion theory to estimate tensor effects in 

ref . [ 69) , a linked expansion of the expectation value (2.23) 

involving the Bethe-Goldstone wave function in ref . [ 70] , the expS 

method in ref .[ 71] , va r ia t iona l ground s t a t e wave functions of 

the Jastrow type incorporating state-dependent cor re la t ions 

(central and tensor) in ref . [ 72). Two main features emerge from 

these ca lcula t ions : 1) K i s sens i t ive to the behaviour of the 

po ten t ia l a t intermediate range (1 t o 2 fm), 2) the contribution 
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of tensor correlations is large (it roughly doubles the value 
of K I 72) ). Results obtained for 160 and "ta show some tendency 
to give a larger value than the experimental one, as expected. 
The data for heavy nuclei (independence on A) suggest that a 
relevant comparison can be made between a nuclear matter evalua
tion of K and the experimental value for heavy nuclei (with the 
uncertainties stated at the beginning of this section). Comparison 
of the computed values with the HJ potential shows that K is 
sensitive to the many-body approach as well as the approximations 
used. The results obtained in ref.[ 72]suggest that the HJ is more 
successful than the RSC potential in reproducing the experimental 
values. The nuclear matter value of ref.[69] should be considered 
as a rough estimation and an accurate calculation using the 
Brueckner-Bethe approach is needed. 

From the above discussion the following conclusions 
can be drawn : The TRK evaluation of K is an interesting test for 
nuclear matter theories and brings them closer to experiment. The 
sensitivity to medium range correlations, where the nucleon-
nucleon Interactions best founded theoretically to date are 
especially reliable, opens the door towards more fundamental 
approaches. Let us mention some work already done in this direc-' 

tion [76, 77]. A computation of K with, for instance, the Paris 
potential [ 78) , would be desirable. Very accurate measurements 
for A =2,3 and 4 nuclei, for which calculations are almost exact, 
would be extremely helpful! to push further the comparison between 
theory and experiment. 
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5. Some conclusions. 

To end up, let us make some general observations : 
- the dipole strength is now well known up to around 

140 Hev. However, very accurate measurements for the 
few-body systems are needed. Although our analysis 
strongly suggests that data from photoabsorption 
of light nuclei and photoneutron emission of heavy nuclei 
are consistent (discussion of o and a ), a direct expe-
rimental check would be desirable. 

- the dipole enhancement factor K should be used as a 
systematic tool to test nucleon-nucleon potentials and 
different many-body theories (Bethe-Brueckner and 
variational) . The sensitivity of K to medium range 
correlations makes it especiallly suited to test theo
retically founded nucleon-nuoleon potentials. 

- from the experimental values of o one obtains, model 
independently, very large values for the zero-point 
Goldhaber-Teller motion of light nuclei. It is suggested 
that the study of the deexcitation of the giant dipole 
resonance of light nuclei may provide information on 
neutron-neutron correlations and/or, eventually, may 
be used to search multineutron bound states. 

- the HP-RPA theory is a reasonable general scheme to study 
the strength distribution of collective modes. Complete 
calculations of S(E) and moment evaluations of the 
strength (sum-rules) are complementary, the later being 
in some cases especially adequate because they give 
better physical insight. 



36. 

- the experimental knowledge of a provides a direct mea
sure of ground state two-body correlations. Selfconsis
tent RPA calculations are successful in reproducing 
them. 

- the present situation concerning isoscalar quadrupole 
and monopole strength is experimentally, despite recent 
major progress, at a much more primitive stage than for 
the dipole strength. Effort to critically review the 
analysis of hadron inelastic scattering is needed, in 
particular to give reliable estimations of the percen
tage of the EWSR exhausted by the giant resonance. 

- the knowledge of dipole, monopole and quadrupole strength 
puts severe constraints on the parameters of effective 
forces. 

- our analysis indicates that from the present knowledge 
of isoscalar quadrupole strength a value of the nuclear 
matter effective mass m /m=0.7S-0.85 can be inferred. 

- similarly, from the present knowledge of isoscalar 
monopole strength a value of the nuclear matter compres
sion modulus K , - 200-240 Mev can be inferred. This 

nm 
value is consistent with that obtained in the liquid 
droplet model, by studying nuclear binding energies. 

- in addition to the traditional quantities (Fermi momen
tum kp = 1.36 fm*1 and binding energy per particle 
E/A =15 Mev), we feel that nuclear matter theorists 
should add m*/m = 0.8, K = 200-240 Hev and K « 0.8-1.0 nm 
as relevant parameters that a many-body theory should 
reproduce. 
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Table Captions 

Table 1 Many-body character of operators whose ground-state 
expectation value gives the low positive moments. Q 
is assumed to be 1-body and the hamiltonian is 
H = T( 1-body) + V(2-body). 

Table 2 Experimental values of o_, and a.,: (a) from ref.[171 j 
<b) from ref. [18] ; (c) from refs. [19-20] . 

Table 3 First column : experimental values of a (see table 2). 
Third column : experimental charge root mean square radii 
from ref.[ 57]. See text for further explanation. 

Table 4 Comparison of experimental values of o and a (see table 2) 
~————- -1 -2 

with selfconsistent RPA calculations using different 
forces. Last column : lower bounds of o . Last two 

— 2 
lines : results obtained with eq.(4.2l) using the corres
ponding value of nuclear matter symmetry energy coef
ficient a.. 

Table 5 Values of the dipole enhancement factor K. The experi-i 
mental values are extracted from a by integrating the 

o 
photoabsorption cross-section up to plon threshold. See 
text for further explanation. 



Q isovector 
Q x - [H, Q] - 2-body 

Q isoscalar 
[V, Q] - 0, Q x - [T, Q] ~ 1-body 

m 
0 

m . 

m 
2 

m 
i 

2-body * 

2-body * 

4-body 

4-body 

2-body 

l-body * 

2-hody 

2-body * 

Table 1 

*» 



0 A / s 

-1 <mb) 

I I I 

' L i 0 . 4 2 ° 0 . 0 9 a 

B C 0 . 3 2 ° 0 .067* 

* 0 0 . 3 6 c 0 . 0 4 4 a 

"Ca 0 . 3 3 c 

"Zr 0 . 1 7 5 b 

Sn 0 .20 b 

Ce 0 .19 b 

Sm 0 .21 b 

" A » 0.21 b 

*»Pb 0 .19 b 

-V. 0 A ' (pb -Mev" ) 

I I I 

1 0 . 6 e 2 . 8 a 

5 . 0 ° 1 . 2 * 

5 . 8 ° 0 . 7 4 * 

4 . 8 e 

2 . 3 ° 

2 .7 ± 0 . 2 b 

2 . 5 * 0 . 2 b 

2 . 8 ± 0 . 2 b 

2 . 6 i 0 . 2 b 

2 .6 * 0 . 2 b 

Table 2 



o ( exp . ) 
(rab) 

<°U*n!<» lA 
(fin) 

<r*> / 2 ( exp . ) 
(fm) R R ^DR 

7 L i 4 .64 ° 1.28 2 .41 0 .53 0 .51 0 .68 
5Be 5 . 1 9 ° 1.05 2 .51 0 . 4 2 0 .43 0 .54 

, a c 3 .81 C 1.01 2 . 4 5 0 .41 0 .36 0 .53 
w 0 14 .50 ° 0 .97 2 .72 0 .36 0.29 0 .46 
W C a 45 .S " 0.69 3 . 4 8 0 .20 0 .16 0 .26 
« „ z r 7 0 . 6 " 0 .39 4 .28 0 .09 0 .09 0.12 

Pb 229.2 b 0.31 5.50 0 .06 0 .05 0 .07 

Table 3 



a A"' /» fob) a A n (yb .Mev ) 
•a 

Exp. 

Theory l re f . [ 56] ) 

S I I I [ 42] 

Exp. 

Theory 

Exp. 

Theory l re f . [ 56] ) 

S I I I [ 42] 

Exp. R e f . l 5 6 l 

S I I l l 42] SkH [46] Skal 44] SII[ 42] 

R e f s . [ 3 2 , 55] 

S I l ! 42l 

"0 

"Ca 

»Zr 

2 "Pb 

0 .36° 0 . 0 4 4 a 

0 . 3 3 ° 

0 . 1 8 b 

0 . 1 9 b 

0.33 

0 .22 

5 . 8 C 0 . 7 4 a 

4 . 8 C 

2 . 3 b 

2 .6±0 .2 f c 

5.0 5 .6 7 .7 5 .0 

3 .9 4 .3 5 .8 3 .8 

2 . 8 2 .9 4 . 0 2 .7 

2 . 6 2 .8 3 . 6 2 . 5 

4 . 8 

3 .4 

2 . 6 

2 .1 

Table 4 

1 .9 1.7 1 .6 1 .6 

28 .1 3 1 . 0 3 2 . 9 34 .1 

*• o (Migdal) z 

<- a (Mev) 

00 
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Table S 

2 H 'He 'He 
K o ">Ca Heavy n u c l e i Nuclear matter 

T 
H 
E 
0 
R 

Y 

HJ 
0:52 [ 661 1.2 [71] 1.4 [71] 1.17 [69] 1.35 ( 69] 

0.7 - 0.9 [ 72] 

T 
H 
E 
0 
R 

Y RSC 0.50 167] 0.79 [64] 

0.76 (681 

1.14 [71] 

1.27 [70] 

1.3 [71] 

1.26 [70] 1.15 [70] 

1.1 - 1.4 [72] 

Exper. 0 .35 ± 0 .10 I 73] 0 .75 ± 0 . 1 0 [74] 0.63 [75] 1 . 1 2 * 0 . 0 5 [20] 1 . 1 5 * 0 . 1 0 [20] O.75±0.15 [21,22] 

Lz-_ _ 



5 0 . 

Figure cap t ions 

y 
F i g . l Energy of the GDR as a funct ion of A ; a) EA / 6 = c o n s t . 

b) EA '* = cons t . ( f rom r e f . [ l 8 l ) . 

Fig.2 a) Experimental values of the widths T (FWHM) of the GDR 

as obtained at Saclay for 90<A< 238 (from ref.fl8]> ,-

b) values of the integrated cross-section obtained by 

extrapolating the measured cross-section in the GDR 

region with Lorentzlan shapes (from ref.[ 17]). 

Fig.3 Photoneutron cross-section of lead measured with mono

chromatic photons (from refs.[2l, 22]). 

Fig.4 Values of 1 + K.as a function of mass number extracted 

from measured a up to pion threshold (taken from I 22), 
o 

see refs.t 20-22]). 

Fig.5 Isoscalar giant quadrupole resonance : a) energy as a 

function of mass number ; b) width ; c) percentage of 

EWSR exhausted by the resonance (from ref.[24]). 

Fig.6 Isoscalar giant monopole resonance : a) energy variation 

EA ' 3- const. ; b) width ; c)>. percentage of EWSR exhausted 

by the resonance (data taken from refs.I 25-28]). 

Fig.7 Monopole and quadrupola isoscalar strength distributions 

for ̂ 0 and z œPb given by the RPA calculation of ref.[39,40], 

with the Skyrme SIII force. 

Fig.8 Sketch of proton and neutron distributions for light 

nuclei : (a) ground state, (b) giant dipole resonance. 



*h EA"(MtV) 
*o -

5 5 -

%o • 

15-

V> • 

»o 

to 

So 

ETA' /3(MeV) 

,̂ 1.-V" 
so 10O »50 l o o 

F i g . l 



r 
r iNtvii 

h w 
; % 

Hr I. if V * 
4 4$ ' 
t î Î 

INsSOl |Z=M) IN=»2I 

4 
TV 

î 
(N = l2t.I = M> 

* 

I" 
J at 
s 

w 
„ • . i f . " . 

• * 
•» 

. . ! - . . . 1 

•tfctrmra 

•Ctncrat M M Î C 

KO i » iso in 
M m Runibtr 8 

300 I » 3 » 

Pig. 2 



r - • ! 

t 
b " cm 

«00 
j % • LEAD 

SOC . f ISO 1 ff(Y.xn) 
too • j j .10 

30C • f J .30 

200 

100 

I I 

: W H ^ ( ( H | t 1 

W 20 30 40 SO 60 70 SO °0 NO « 0 120 130 
Photon energy (MeV) 

i 

Fig . 3 



1 — 1 > 1 

2.5 

2 -V 
2 1.5 

• * 
¥ -i-U-q; 

+ 

"""' 1 

• 

0.5 -

• i , i 
100 200 

Pig. 4 



f 
> 
s« A 

C
M

T
 

I u A V 
E50SCAUU 0 0 » 

a 
\ (a) 

S k M 

L •N % 
' 

1 * # -*-sL s. UL t . 

« 
* 

M» ^f^t-f t l 
9 

_ »' 

— isosc ftLAR 60R 

> • 
5 

_ »' 

!" 
(b) 

3 X 

* - • " M 

1 

• • t . j 

" m l 
1 

I » » 

& • • t . j 

" m l 
1 

-Jr * \ i » " T I T > T 

w 

ï , 

"à, 

• • t . j 

" m l 
1 '""'.1 

* \ i » 

•o 
-"V.I-Î-

^ 

s 
ï j , 

«c. 
" T . 

IW 

"*Ti" 

h-
1 «D -1 

— ISO 

l u i . h 
«D 

* 
— ISO 

W —h ,| 
' j 

LI
TW

N
 

S fi 1 
1 

• 

8 
t 

' 
T ! 1 1 

fcrn 

C 40 1 JI 1) . 
• > 

C -NI 

1. 

K l 
1 I 1. 

0 W 40 M U «09 120 t«0 t » t » ZOO 120 
NUCLEAR MASS 

Fig. 5 



Z . - i I f * 
f 

ft) : 

SEW5R ri IT] j—
1—

•—
i_j. 

j ! i : : 

i 

! 
- S O i 

« ' 

• : f ! 
• 

, K 2r.Sa.Sm A. ft j 
a 

M 
« 

uc 
0 

IMS iA 
»» M 

Pig. 6 

http://2r.Sa.Sm


s 

[,i"»,.Aew](3)S 



c c 

6. 

o 


