TAMMA-ИЗЛУЧЕНИЕ ПРИ РАСПАЛЕ 109 SO

В.П.Бурминский, О.Д.Ковригин

В работах /I,2/ показаны варианты схемы распада ^{IC9} Sn. Их авторы наблюдали 75 у -переходов, относящихся к распаду ^{IO9} Sn. В настоящей работе распад ^{IO9} Sn изучался в лучших условиях, в

В настоящей работе распад ¹⁰⁹ S/1 изучался в лучших условиях, в результате чего было обнаружено много новых γ -переходов и уточнены энергии и интенсивности известных γ -линий. Спектры γ -лучей измерялись на γ -спектрометре с Ge(Li) детекторами объёмами 27 и 50 см³ с энергетическим разрешением 3 + 3,5 кэВ во всём диапазоне энергий. Результаты приведены в таблице, где Е γ -энергии, I γ -относительные интенсивности γ -лучей, наблюдаемых при распаде 109S/n.

			ويستعين المحمد والأخوا ومحمد المحمد ويرا المجمور		
Еу, кәВ	Iy	Еу, кев	Ix	Еү, кэв	I۶
II9,0 <u>+</u> 0,6	0,2 <u>+</u> 0,I	521,9 <u>+</u> 0,2	9,6 <u>+</u> 0,6	967,2 <u>+</u> 0,5	I,6 <u>+</u> 0,3
I42,8 <u>+</u> 0,5	0,3 <u>+</u> 0,I	548,9+0,7	0,5+0,2	976, <u>3+</u> 0,2	3,6+0,3
181,8 <u>+</u> 0,6	0,2 <u>+</u> 0,I	560 ,3<u>+</u>0,7	0,3 <u>+</u> 0,I	985,3 <u>+</u> 0,2	I,3+0,3
220,5 <u>+</u> 0,6	0,4+0,2	597,2 <u>+</u> I,2	0,5 <u>+</u> 0,2	1026,4 <u>+</u> 0,2	17,6 <u>+</u> 0,7
229°,2 <u>+</u> 0,4	0,4+0,2	6I4,I <u>+</u> C,3	6,0 <u>+</u> 0,4	1039,0 <u>+</u> 0,2	I5,0 <u>+</u> 0,6
250,I <u>+</u> 0,6	0,4+0,2	623,4 <u>+</u> 0,5	7,2+2,0	1054,2 <u>+</u> 0,3	2,I <u>+</u> 0,2
26I,I <u>+</u> 0,9	I,I <u>+</u> 0,4	649,8 <u>+</u> 0,2	I0I <u>+</u> 4	1072,7 <u>+</u> 0,4	. 0 ,8<u>+</u>0,2
279,4 <u>+</u> 0,4	0,4+0,2	660,I <u>+</u> 0,2	4,8 <u>+</u> 0,6	I083,4 <u>+</u> 0,3	2,0 <u>+</u> 0,3
3I2,0 <u>+</u> 0,3	2,0 <u>+</u> 0,2	686,8 <u>+</u> 0, 3	2,5 <u>+</u> 0,4	1092,2 <u>+</u> 0,6	I,8 <u>+</u> 0,5
33 I,2 <u>+</u> 0,2	32,2 <u>+</u> I,3	7I0,7 <u>+</u> 0,3	I,4 <u>+</u> 0,3	1099,2 <u>+</u> 0,2	100
340,2 <u>+</u> 0,3	0,8 <u>+</u> 0,2	722,I <u>+</u> 0,5	I,9 <u>+</u> 0,3	II07,2 <u>+</u> 0,9	I,6 <u>+</u> 0,3
353,9<u>+</u>0, 2	3,4<u>+</u>0,3	732,5 <u>+</u> 0,6	2,I <u>+</u> 0,3	1119,2+0,3	I0,5 <u>+</u> 0,5
362,9 <u>+</u> 0,2	0 ,8<u>+</u>0,2	745, <u>3+</u> 0,9	I,I <u>+</u> 0,3	II28,2 <u>+</u> 0,3	4,7 <u>+</u> 0,4
373,7 <u>+</u> 0,3	0 ,8<u>+</u>0, 2	780,I <u>+</u> 0,5	0,8 <u>+</u> 0,3	II30,5 <u>+</u> 0,9	0 ,3<u>+</u>0,2
384,5 <u>+</u> 0,3	II,0 <u>+</u> 0,9	785 ,3<u>+</u>0,4	0 , 9 <u>+</u> 0,2	II57,8 <u>+</u> 0,3	I,7 <u>+</u> 0,3
4 07 ,3<u>+</u>0,6	0 ,5<u>+</u>0, 2	790,9 <u>+</u> 0,3	5,2 <u>+</u> 0,4	II66,6 <u>+</u> 0,3	I,5 <u>+</u> 0,3
422,6 <u>+</u> 0,2	3,2 <u>+</u> 0,4	804,9 <u>+</u> 0,5	0,7 <u>+</u> 0,2	II74,6 <u>+</u> 0,3	0,6 <u>+</u> 0,2
437,4<u>+</u>0,3	8,6 <u>+</u> 1,3	828,8 <u>+</u> 0,2	2,9 <u>+</u> 0,3	II87,8 <u>+</u> 0,5	0,8 <u>+</u> 0,3
448,7 <u>+</u> 0,8	0 ,3<u>+</u>0, I	835,7 <u>+</u> 0,2	2,9±0,4	I205,6 <u>+</u> 0,6	I ,3<u>+</u>0,2
465,8 <u>+</u> 0,9	0 ,5<u>+</u>0,2	857,9 <u>+</u> 0,2	I,8 <u>+</u> 0,2	I2II,4 <u>+</u> 0,4	3,3 <u>+</u> 0,4
473,2<u>+</u>0, 7	0,6 <u>+</u> 0,2	869 , 3 <u>+</u> 0 , 5	2 ,3<u>+</u>0,3	1220,9 <u>+</u> 0,6	0,5 <u>+</u> 0,2
478,5 <u>+</u> 0,5	0 ,4<u>+</u>0,2	879,2 <u>+</u> 0,7	2,0 <u>+</u> 0,5	1227,4 <u>+</u> 0,4	I,I <u>+</u> 0,3
482,7 <u>+</u> 0,8	0,4 <u>+</u> 0,2	888,7 <u>+</u> 0,2	2,I <u>+</u> 0,5	1231,0 <u>+</u> 0,3	1,9 <u>+</u> 0,4
496,I <u>+</u> 0,3	I,3 <u>+</u> 0,3	897,5 <u>+</u> 0,2	3,2+0,4	1239,9 <u>+</u> 0,7	I,3+0,3
50I,2 <u>+</u> 0,3	0 , 9 <u>+</u> 0 ,3	90 3 ,4 <u>+</u> 0,5	0,6 <u>+</u> 0,2	1250,1 <u>+</u> 1,0	0,8+0,3

(продолжение)

Еу, кэВ	I۶	Еу, кэВ	Iy .	Еу, кэВ	Iy
1271.5+0.4	I.6+0.3	1700.7+I.3	0,4+C,I	2137,8+0,8	0,2 <u>+</u> 0,I
1300.7+0.3	I.7+0.4	1709.3+0.6	0.3+C.I	2158,9+0,5	2,4+0,3
1307.1+0.3	I.I+0.2	1713,5+0,2	3,3+0,4	2I95,6 <u>+</u> 0,2	4,7+0,3
1321.3+0.2	39,4+2,3	1722,2+0,2	3,5+0,3	2218,5 <u>+</u> 0,6	0,73+0,07
1350,I+0,2	3,0+0,3	1734,3+0,6	I,0 <u>+</u> 0,2	2235,8±0,4	0,36+0,05
1375,2+0,2	I,2+0,2	1759,5+0,6	3,7 <u>+</u> 0,2	2437,5+0,4	0,47 <u>+</u> 0,05
1388,2 <u>+</u> 0,5	0,8 <u>+</u> 0,2	1770,8 <u>+</u> 0,2	I,2+0,2	2541.8+0,3	8,7 <u>+</u> 0,5
I408,9 <u>+</u> 0,2	2,3+0,2	1792,0 <u>+</u> 0,3	0,8+0,2	2564,2 <u>+</u> 0,8	0,34+0,07
I429,7 <u>+</u> 0,4	I,0 <u>+</u> 0,2	1819,0 <u>+</u> 0,6	0,6+0,2	2574,8 <u>+</u> 0,3	0,37+0,06
1442,7 <u>+</u> 0,2	2,4+0,2	1825,I±0,3	2,I <u>+</u> 0,2	2591,6 <u>+</u> 0,4	2,04+0,14
I455,3 <u>+</u> 0,6	2,2+0,3	1837, <u>3+</u> 0,7	0,8+0,2	2602,7 <u>+</u> 0,4	0,26 <u>+</u> 0,04
I464,I <u>+</u> 0,2	30 ,8 <u>+</u> I,5	1843,7 <u>+</u> 0,7	2,4+0,2	2617,0<u>+</u>1, 0	0,2 <u>+</u> 0,I
I482,3 <u>+</u> D,4	I,4+0,3	1850,I <u>+</u> 0,6	I,7 <u>+</u> 0,3	2785,4 <u>+</u> 0,3	5,8 <u>+</u> 0,6
I488,7 <u>+</u> 0,2	I2,0 <u>+</u> I,I	1858,7 <u>+</u> 0,3	I,3 <u>+</u> 0,2	28I3 ,2 <u>+</u> 0,4	I, <u>3+</u> 0,2
I492,6 <u>+</u> I,0	6,I <u>+</u> 0,8	1889,8 <u>+</u> 0,3	5,I <u>+</u> 0,5	2858,6 <u>+</u> 0,2	3,4<u>+</u>0,4
I5CI,7 <u>+</u> 0,5	0,5 <u>+</u> 0,2	1911,1 <u>+</u> 0,2	19 ,3<u>+</u>0,8	287I,2 <u>+</u> 0,9	0,27 <u>+</u> 0,05
I507,6 <u>+</u> 0,5	0 ,4<u>+</u>0, I	1930,5 <u>+</u> 0,3	I,7 <u>+</u> 0,2	2885,I <u>+</u> 0,9	0,I4 <u>+</u> C,04
I524,9 <u>+</u> 0,5	I,7 <u>+</u> 0,2	1943,5 <u>+</u> 0,3	3,6 <u>+</u> 0,4	2919,8 <u>+</u> 0,8	0,05 <u>+</u> 0,02
1546,6 <u>+</u> 0,8	0,4 <u>+</u> 0,I	1956,9 <u>+</u> 0,3	I, <u>3+</u> 0,2	2923 ,6 <u>+</u> 0,8	0,06+0,02
1557,9 <u>+</u> 0,2	0,8 <u>+</u> 0,2	1962,2 <u>+</u> 0,5	0,5 <u>+</u> 0,I	294I,8 <u>+</u> 0,5	0 ,3 7 <u>+</u> 0,05
I565,6 <u>+</u> 0,5	0,8 <u>+</u> 0,2	2007,I <u>+</u> 0,3	0,3 <u>+</u> 0,I	3013,4+0,3	0,42+0,05
1574,4 <u>+</u> 0,2	I8,2 <u>+</u> 0,8	2049,6 <u>+</u> 0,6	I,0 <u>+</u> 0,2	3034,8+0,4	0,4I <u>+</u> 0,06
1580,2 <u>+</u> 0,5	3,8 <u>+</u> 0,4	2055,2 <u>+</u> 0,4	5,9 <u>+</u> 0,3	3050,7 <u>+</u> 0,2	I,2+0,2
1603,3 <u>+</u> 0,4	I,3 <u>+</u> 0,2	2074,8 <u>+</u> I,0	0,3 <u>+</u> 0,I	3065,7+0,3	0,26+0,05
1621,7 <u>+</u> 0,5	I,5 <u>+</u> 0,3	2078,8 <u>+</u> 0,7	0,2 <u>+</u> 0,I	3316,7 <u>+</u> 0,4	0 ,30+ 0,05
I655,7 <u>+</u> 0,6	I,6 <u>+</u> 0,3	2099,2 <u>+</u> 0,8	0 ,3<u>+</u>0,I	33 60,9 <u>+</u> 0,8	0,07+0,02
1674,1 <u>+</u> 1,2	0,7 <u>+</u> 0,2	2I06,2 <u>+</u> 0,7	0,I <u>+</u> 0,I	33 95,6 <u>+</u> 0,3	0,37+0,05
1686 ,3<u>+</u>0,3	2,5 <u>+</u> 0,3	2I25,9 <u>+</u> 0,2	4,6 <u>+</u> 0,3	34 26 ,9<u>+</u>0 ,8	0,06 <u>+</u> 0,02

I. S. Shastry, H. Bakhru, I.M. Ladenbauer-Bellis, Phys. Rev., C1, 1835, 1970.

2. В.Р.Бурмистров и В.А.Шилин, Изв. АН СССР, сер. физ., 36, #12, 2499, 1972.

ВОЗЕУЖДЕНИЕ ИЗОМЕРНЫХ СОСТОЯНИЙ ^{II5}In и ²³⁸U БЕТА- И ГАММА-ИЗЛУЧЕНИЕМ, ИСПУСКАЕМЫМ ПРИ РАДИОАКТИВНОМ РАСПАДЕ

Ю.П.Гангрский, М.Б.Миллер, Л.В.Михайлов, И.Ф.Харисов

Измерялись сечения возбуждения изомера со спином $I/2^-$ в 115 Ln ($T_{I/2} = 4.5$ час., E=0.335 МэВ) и спонтанно делящегося изомера 238 U ($T_{I/2}$ =300 нс, E=2.5 МэВ) при взаимодействии с ядрами β^+ и У-излучения высокой энергии (до 6 МэВ), испускаемого при радиоактивном распаде изотопов, удаленных от долины бета-стабильности. Характеристики этих изотопов (период полураспада и полная энергия β -распада), получаемых в реакциях с с -частицами и тяжелыми ионами, а также сечения возбуждения изомерных состояний, отнесенные к полному числу распадов, представлены в таблице.

Изотоп	Tr to	0. MoB	6 _{возб.} ,см ²		
moorom	-1/2	y Bom 3D	115 _{In}	238 T	
⁶⁰ Czz 66Ca 74 _B r	23 мин 9,5 час 25 мин	6.I 5.2 6.9	- 3 10 ⁻²⁸ -	10 ⁻²⁹ 10 ⁻²⁷	

Полученные сечения оказались значительно выше, чем наблюдаемые при возбуждении изомеров У-квантами или позитронами более низких энергий (при распаде изотопов ⁶⁰Co, ²⁴ Na, ⁶⁴Cu). Обсуждается механизм возбуждения изомерных состояний.

83

ПЕРИОД ПОЛУРАСПАДА 11945n

К.В.Макарюнас, А.К.Драгунас, Э.К.Макарюнене

Проведены новые измерения периода полураспада ядерного изомера ^{119м}Sn. Использовались источники, приготовленные из олова, обогащенного изотопом ¹¹⁸Sn, долго (около 4-х лет) выдержанного после облучения в реакторе. Отсутствие в таких источниках примесей других радиоактивных изотопов олова было проверено у -спектрометрическим анализом при помощи сцинтилляционных Nal (T1) рентгеновского и у спектрометров и полупроводникового Ge(Li) у спектрометра. Измерение активностей источников проводилось рентгеновским Nal (T1) сцинтилляционным спектрометрическим счетчиком. Временная база измерений активностей, в течение которой были обеспечены тождественные условия измерений, была около I года.

Получено значение $T_{I/2} = 293, I \pm 0, I$ дн. (средний результат измерений с 7-мью источниками). Оно сильно отличается от значений 245 дн. и 250 дн., приводимых почти во всех литературных источниках (напр., /I,2/), и практически совпадает со значением 293,0 дн., рекомендованным недавно в /3/.

I. Nuclear Level Schemes A=45 through A=257 from Nuclear Data Sheets. Ed. by Nuclear Data Group. New York and London, Academic Press, 1973. そうしていた

- 2. Н.Г.Гусев, П.П.Дмитриев. Квантовое излучение радиоактивных нуклидов. Справочник. М., Атомиздат, 1977, с. 114.
- 3. R.L.Auble. Nuclear Data Sheets, 26, 207, 1979.

УРОВНИ ¹²¹ S_n, возбуждаемые при радиационном захвате тепловых неитронов.

И.Ф.Барчук, В.И.Годышкин, Е.Н.Горбань, А.Ф.Огородник

Ha ochose \mathcal{J} -chektpa, Hamepehhoro B peakuum ¹²⁰S_n(n, \mathcal{J})¹²¹Sn Ha tennobuk heütpohax /1/ нами составлена таблица уровней изотопа ¹²¹S_n, которая приводится жихе (энергин уровжей даны в каВ): 0; 8; 59.9; 868.9; 908.4; 925.3; 948; II0I.9; II2I.2; I408.4; I658.1; I708; I864; I870; I9II.9; I9I9; I974.5; I986; 2066.8; 2109; 2170; 2225; 2242.7; 2290; 2498.7; 2558.1; 2651.0; 2712.0; 2849.8; 2960.7; 2990.6; B076.5; 3187.8; 3381.6; 3517.9; 3762.5; 3982.5; 4059.0; 4518.5; 4589.9; 5051.1; 6170.5.

Данная таблица уровной согласуется с данными, полученными из (n,r)-реакции на резонансных нейтронах /2/. Улучиена точность определения энергии захватного состояния. Найдено, что энергия захватного состояния равна (6170.5<u>+</u>0.7) изВ.

Обнаружено I8 новых уровней. Энергин новых уровней и точности их определения (в ков) даны ниже: I974.5+I.7; 2498.7+I.0; 2558.I+I.2; 265I.0+I.I; 27I2.0+0.9; 2849.3+I.4; 2960.7+I.8; 2990.6+I.3; 3076.5+I.5; 3I37.8+I.5; 338I.6+I.3;35I7.9+I.0; 3762.5+I.7; 3932.5+I.7; 4059.0+I.5; 45I8.5+I.5; 4589.9+I.0; 505I.I+I.6.

I.И.Ф.Барчук и др.Тезиси докладов 29-го Совещания по ядерной спектроскопии и структуре атомного ядра, I., "Наука", 1979, с.76. 2. R. F. Carlton et al. Phys. Rev. C14, 1439, 1976.