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ABSTRACT

We find numerical evidence for the phase transition between the confine-

ment phase and free Coulomb phase of 5U(2)Yang-Mills theory with lattice cut-
off.

AHHOTAUMA

YucnenntM pacvyeToM Hafzmesa TOYxa $a’0BOro nMepexofla HA pelleTxe Mexny yaep- '
xHBameR M KYyJNOHOBCKOR ¢a3zof SU(2) Teopun flura m Munnsca.

KIVONAT

Numerikusan megtaléljuk a f&zis&tmeneti pontot récson az SU(2)Yang~-Mills
elmélet rez8rd fhzisa és szabad Coulomb-fhzisa kiSzStt.




ABSTRAC?

Wo £ind numeriocal evidence for the phase transitiom detween the
oonfinement phase and free Coulomdb phase of 8SU(2) Yang-Rille
theory with lattioce cut-off, The search for the critical temper-
ature 1is based om a Nomte Carlo study of the string temsion
bdetween & heavy Q3-pair in heat bath, The arbitrary normalisation
0.2 GoV2 1 used for the string vension at sero temperature vhen
s smooth extrapolation of the lattice theory to the continuws
limit 18 carried out. Our numexical estimate for the critiocal
temperature is 23~160 £ 30 MeV in the absence of quark degrees
of freedom, It is suggestive that the phase transition 1is of
seoond-oxder,




A fow weeks ago we announced (1] the first mumeriocal evidence
for the existmoes of a phase transition between the confimement
phase and free Coulomd phase of the SU(2) Yeang-kills theory with
lattice cut-off,

There has been 2 long-standing conjecture that a phase tran-
sition sust take place bdetween the high temperature and low temper-
ature phates of & non-Abslian gauge field theory [2] . Polyakov [3]
and Susskind (4] gave convincing argmments for the pressnce of this
phase trensition in the strong coupling limit of the lattice model.

Our lonte Carlo calculation confirms the existence of a phase
trangition between confined and lidersted phases in the stromg coup-
ling limit of SU(2) lattice gauge theory. Besides, we find the tw
phases and the oritical point in the region of intermediate coupling
where & smooth extrapolation of the lattice model to its continuum
limit exists.

It adid not escape our attention that the results presented here
may be useful for the early universe, for quark matter search in
heavy ion collisions, and for a broader view and better understanding
of the confinement problea in Quantum Chromodynamics. It is resark-
able that an environment can be simulated inside the computer which
corresponds to thermal quark liberation at & few hundred MeV temper-
ature,

The physical properties of a quantum field theory at finite
tempexature can be calculated in terms of the partition functiom,

2 = (.-/“) : (1)
and the thermal aversges of physical observables,

0> = %”@.-pu) ’ (2)
whers /3 = 1/? is the inverss tesperature with kp=1 .

The partition function of the 8U(2) gmuge theory in the
sbsence of quarks may be written ss & Buclidean path integrel

Z e jn?, oxp [- -zﬁ,iat jc’: e 3,1, ] (3)




over periodic gauge fields,
‘,.I(/’I ;) - l/u( o, ;) ’ 4)

with period /J in the fictive imaginary time direction. The standard
notation 5_ - A}‘ €%/2 1is used throughout the paper. The index a
runs from 1 t0o 3 in SU(2) end 68 Aenotes the standard Pauli
matrices. The trace tr operates on SU(2) matrices.

In oxder to study the string tensiom in a heat bdath we have to
introduce an external color source Q@ at location R and a color
wink § at the origin. The free emergy V(4, R) of this hesvy
QG-pair 1s related to the corrslation function of thermal Wilson
loops by the formmla[5]

{trw(0) trw(H)) - o AVpR) (5)

The thermal Wilson loop W(R) 1s defined as & closed path in
the fictive imaginary time direction,
A
¥(R) = Poxp[ijdt Ao (8, i’)] , ()
o
where P denoctes path ordering in the standard fashiom,
Tke free energy V(/S, R) 1s a measure of the potential
energy botween the heavy QG-pair at finite temperature. In the
confinement phase we expect the behavioxr

{rw(0) ¢tr W*(E)) ~ const o'/JG(/’)B (1)

at large distances, The free Coulomd phese is characterised dy
a screened Coulomb potential, and accordingly,

{tr W(0) tr w+(i’)> ~con-t(1 +/34f-xl§o"“) . (8)

R oo

The effective string tension € (/5) at finite temperuture is




defined by Eq.(7). The Debye screening length K" in Eq.(8) is known
to be Kz - 52- 32132 in the iowest order of perturbeation theory.

The two phases are clearly distinguished by the different
behaviors of the correlation function in Eqs.(7) and (8) . The
trace of the gauge invariant thermal Wilson loop may be regarded as
en order paremeter in SU(2) gauge theory at finite temperature. The
thermal aversge of tr W(K) measures the free emergy of an iso-
lated quark with respect to the vacuum. It vanishes in the comn-
finement phase, since the infinite free energy of the isolated gquark
is in the exponent of Bq.(5) . The ord.r parsmeter trW(R) 1s some
non-vanishing constant in the Coulomb phase where it is related to
the finite self-energy of an isolated free quark on the lattice,

Por the mmmerical evaluation of the functional integral on the
left-hand side of Eq.(5) a lattice cut-off is ivtroduced in the
model following the standard procedure [6] . The periodic boundary
condition in the imaginary time direction is required by the finite
temperature of the heat bath, To eliminate surface effects in the f
three-dimengional physical space we also impose periodic bounacry ‘
conditions in the three spatial directionms. ‘

The lagrangian formulation of the continuum theory requires
s symmetric lattice with equal lattice spacing in the spatial and i
imaginary time directions. The Hamiltonian method starts directly !
from Eq.(1) and operates with the transfer matrix [9] . A dense
slicing is required then operationally in the imeginary time direc-
tion for fixed epatisl cut-off & [1] o The two methods yield
compatible results for the phase transition., Pirst, we study the

symuetric lattice,

The inverse temperature /3 1s given in lattice spacing units
a Dby the relation [ = ntea vwhere ng is the number of lattice
sites in the imaginery time direction, The spatial volume n%-a’
sust be reasonably large for the calculation of thermodynamical
quantities, There is no other restriction on the spatial size and
the nuzber of sites, n,, in the three spatial directions is limited
only by the performance of the computer,




The partition function
) j (g & &) (9)

defines now the therwr dynamics of SU(2) gauge theory. The Jinite
dimensional integrel in Eq.(9) includes all independent link veri-
ables Uﬂ and dUij designates the invarisnt group measure of
SU(2) . The action S 19 a sum over all elementary plaguettes,

° - Plaquettes (1 i % * (U“UijklUu) ) '
where 1, Jj, k and 1 reprcsent the labeling of the sites around a
plaquette. The connection between the link variable Uiy end the
exponeniiated gauge field varieble exp(i. *a:A) 1is well-known [6]

The Konte Carlo method [1 8] wag applied for the caloculation
of the order parameter ¢r W(R) and for the evaluation of the
correlation function tr W(0)-tr W(R) . In our program the heat
bath method of Creutz [8] was implemented for sweeping through all
lattice site3s in each step ol the iteration towards thermal equi-
librium,

The order parameter is shown in Fig,la for the inverse temper-
ature ﬂ = 3a at different values of the coupling constant 32 o
At 4/32 = 1.9 the order parameter drops to zero and a phase
transition occurs in the system., The same behavior of the order
parameter is seen in Pig.lb for a fixed value of the coupling con-
stant at 4/32 = 2,5 as the inverse temperature ﬁ varies. The
thermel average of tr W drops to zero at about 8 = 1.0a ,

It is easy to show that the action 3 is invariant under the
global symmetry transformation U + ~U in a selected spacelike
hyperplane on each link in the imeginary time direction. The
transformation f1lips the oxrder parameter tr W < «tr W ,

In the symmetric disordered phase {tr W) vanishes and the
free enercy of an isolated quark is infinite., Therefore, this phase
confines quarks and the ssymptotic form {trW(0) tr¥W(R)> ->
> constooxp( -3 6'(/3) R) ig observed, In the free Coulomd phuo a




spontaneous symmetry breaking occurs and the behavior <\ trw(0) tr,l(a))-
-> (tr!) #£ 0 1is expected, This implies finite free energy for
isoclated free quarks on the lattice,

The observation of symmetry breaking in the Coulomb phase is
influenced by the finite sige of the spatial lattice. The order
parameter develops & constant expectation value for long time periods
and the probability that it flips sign graduelly decreases with
growing ns .

In Pig.1lb only cold starts are shown where all U's are set to
the saue constant matrix at the beginning of the iteration. The run
with 3 = 63 actually sterts at the positive value {tr¥)> = 41 and
we haéd to chenge the sign of the points on the plot throughout this
perticular run for convenient comperison with other values of /4
Similarly, in Fig.la we changed the sign of {trWw) for the run at
4/32 = 3,5 with hot start. The U variatles are set to random
matrices at hot starts and the runs begin with {trW)>= 0 . The runs
at 4/g2 = 3.5 with hot and cold starts reach the seme thermodynsmical
limit within one hundred iteration steps.

The behavior of the correlation function is shown in Pig.2a at
[3 = 42 end g% = 2 in the confinement phase. We find the numericel
value 6'(/3)~32 = 0,54 for the tension as extracted from the expo-
nential shape of the correlation function, Creutz measures 6'(0)-32- 0.6
at 52 s 2 , His result corresponds to zero temperature within some
technical limitations,

Pig.2b depicts the correlation function in the free Cou.omb
phase at 3 = 4a and 4/32 = 2.3 . The arrow marks the value of
{tr¥)? which is the asymptotic limit of the correlation function.

In our search for the phase transition point the order parameter
never exhibits a discontinuous jump at T, and a second-order
transition is suggested, It is also supported by the observation of
large fluctuations near the critical point,

The critical coupling constant is shown in Fig.3 at various
temperatures. The interpretation of these results requires a smooth
extrapolation to the continuum limit of the theory. The scale is set




on the lattice by the lattice A parameter in lattice spacing
units as

b
A -und g éw) 252w sdar) (10)

in the continuum limit. The coupling constant g(a) 1is used
throughout the Monte Carlo calculations. Por SU(N) gsuge groups

the cosfficlents in Eq.(10) eve . = 32-1-%2 and

-3 (%) .

The lattice ,/ parameter is related to in the
continuum limit theory by a recent calculation of hasenfrats and
Hasenfrate [m] o Creuts calculated in his Monte Carlo progrem the
tension at zero temperature in terms of the A parametsr in the
SU(2) gsuge theory. He finds [11]

Aml

A = (31%.2)x102 ¢¥2) . (12)
The arbitrary normelization 0,2 CeVZ 1s used for the string
tension at gero temperature in our numerical estimate of the critical
point in the continuum limit. This would correspond to ANOK = 330 Nev
in continuum SU(2) gasuge theory [10] .

Our calculated Monte Carlo points in Pig.3 follow the renor-
maligation group relation

_ sl 2
T = const (gz(a)) ?.?f.oxp(— ﬁ%{.—)) (12)

for 4/322 2 . The otherwise arbitrary constant in Eq.(12) is
determined by the Monte Carlo points. The best estimate of the
eriticsl temperuture with the presented extrapolation to the con-
tinuuz limit is

Te = (0.352 .05) 60 3or 75 = 16020 V. (3

The error bar on the critical point in Eq. (1)) is two-fold.




There is a statistical error im Creuts’s relation of Eq.(11) .
Our statistiocal inaccurscy is represented in Pig.3 by the hori -
zontal error bars of the critioal coupling for a given value of
Tea .

There are finite temperature corrections to the relation between
the lattice spacing a and coupling constant g which we calculated
in Coulomb gauge on the one-loop level. These corrections are small
for 4/g° >2 where !c&-:- .

Our estimate for the renorwmalisation of the coupling at finite
temperature is as follows, We calculate the Coulomd force on the

scale a at temperature T on a superfine lattice a

g(a,n) . &2(a;) o)
IBZ' %2 32" mo(po'ov $2v 82(.&- !)

where the right-hand side is also taken at P2 = 1/a2 , The
polarization tensor ’IT“ is given by

]Too"% "‘Q“ + %"-Q-«- s LN .

“Tho (301 B0 (), 10) 4 P00) FT (15)

for SU(N) gauge theory, in the limit 32>y 12

Eq. (14) is obtained by the dubdble summation of the one-loop
dlagrams in cbulo-b gauge [5] .

Eqs. (14) and (15) relate the coupling constant 32(3,1' ) on two
diffarent -eain and different temperatures as

§2(s1, 1)

(a2,12) =

: b (oarmy[ e e 2 38 (afed - )]

The dashed line in Pig.3 includes this finite temperature correctioa.




The dotted line in Fig.3 is an estimate of the critiocsl
temperature [5] in the strong coupling limit:

- C(o
[+ ]_n5 .

Its derivation is based on the observation that the partition func-
tion develops & singularity at the critical point dy the condensation
of chrowo-electric vortices.
At about 4/32 = 1,9 the Monte Carlz points break away from the
corrected curve (dashed line in Pig.3) and gradually approach the
strong coupling estimate, '
It is icterasting to search for the critiocal point of the phase
transition in the Hamiltonian foxmulation of ths theory., It also
provides a consiatency check of the overall picture.
Our starting point is Eq.(l) with the lattice Hamiltonian of
Kogut and Susskind [12] o The partition funetion can be approrimated |
through the transfer matrix [9] by |

=L;'E] du,, exp | - Sgg Z (1 "’“'(Uj.j Uy kluh))

spacelike ;
plaguettes }
Gse)
g7 E (1 -—tr( U, 394V
timelike
plaquettes

where T 1s a esingle slice of the interval ﬁ » Bqs(16) bevomes
exact in the limit T/a » 0 for fixed lattice spacing a of the
three~dimensional space, The coupling constent g (a) appears in
the original lattice Hamiltonian [12] . The expestation velues in
Eq.(2) can be calculated in a similar way,

Tho phase transition is shown in Pig.4 far & fixed coupling
4/5 =2 , The oritical tomporature was found at T.e8 = 0,32 ,
Por snaller coupling 4/sn = 2,15 we find 1 .8 = 0.22 « The two
points fit the continuum limit¢ ronomlization scheme with




- 10 =

T, = 0.35 | GCo) provided that the lattice scale parameter
in the Hamiltonian formulation is approximately the same as in the
Lagrangian method.

Our numerical calculation may be regarded as the first direct
determination of the Hamiltonian scale parsmeter AH in terms of
the Lagrangian A parameter, If the applied tranvfer matrix approx-
imation with our dense slicing of the finite time interval /3 1s
adequate, we predict AB < A .

After the work reported here was complete and presented [1],
sinilar work [13] came to our attention.
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PIGURE CAPTIONS

The evolution of the order parmmeter <{tr W) is
shown at B = 3a for various values of the coupling
constant .as the number of iteration steps increases,
The value of the order parameter averaged over 10
iterations is plotted, Cold starts from {tr W)« 1l
are indiceted and the corresponding runs are more
densely populated for the first few iterations. FPor
the black triangle points the plot is interrupted
between iteration steps 50 and 80 for the clarity of
the figure.

Runs are shown for fixed coupling as the temperature
varies, All runs are selected with cold starts, The
order parameter disappears in the noise for /5)103 .

The correlation function with exponential decay at 52-2
determines the tension 6 (/3) in the confinement
phase at /3 = 4a near the critical point. R is

given in lattice spacing units.

The correlation function is shown at the same temper-
ature but for weaker coupling 4/g2 = 2.3 . The point3
follow the Debye screened Coulomb law with screening
length ¥ -1l | determined by the temperature and coupling,

Our Monte Carlo points for the critical temperature
follow the renormalization group relation (solid line)
in the intermediate coupling region. Points for the
eritical coupling are given at f3 = 8, 28, 3a, 4a, 5s,
éa, 7a, 8a, 98, 10a ,

|
f
|
f

The order parameter is shown for runs at 3;2; =2 1in
the Hamiltonian formulation. Typically, twelvs to
sixteen time slices were adequate for inverse temper-
atures around 4 = 3a , The order parameter disappears
in the noise at about 7T.a = 0,3 .,
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