ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИфВЭ 80-22

242011

ОЭИЛК SERP-E-77

1. 1. 1. 1. 1. 1.

М.С.Левицкий, А.М.Моисеев, С.Г.Силинская, В.В.Бабинцев, Д.И.Паталаха, С.В.Чекулаев, Дж.Мак-Ноттон

СЕЧЕНИЯ ОСНОВНЫХ КАНАЛОВ С ОДНОЙ НЕЙТРАЛЬНОЙ ЧАСТИЦЕЙ В К⁻р-ВЗАИМОДЕЙСТВИЯХ ПРИ 32 ГэВ/с

• •

٠

Серпухов 1980

М.С.Левицкий, А.М.Монсеев, С.Г.Силинская, В.В.Бабинцев, Д.И.Паталаха, С.В.Челулаев, Дж.Мак-Ноттон^ж)

1

СЕЧЕНИЯ ОСНОВНЫХ КАНАЛОВ С ОДНОЙ НЕЙТРАЛЬНОЙ ЧАСТИЦЕЙ В К⁻р-ВЗАИМОДЕЙСТВИЯХ ПРИ 32 ГэВ/с

.

Hаправлено в Zeitschrift für Physik C.

ж) Постоянный адрес: Институт физики высоких энергий Австрийской АН, Вена, Австрия.

ABHOTALLES

Левникий М.С., Монсеев. А.М., Склинская С.Г., Бабинцев В.В., Паталаха Д.И., Чекулаев С.В., Дж.Мак-Ноттон,

Сечения основных каналов с одной нейтральной частицей в Кр-взаимодействиях при 32 ГэВ/с. Серпухев, 1980.

20 стр. с рвс. (ИФВЭ СЭИПК 80-22, SERP-E-77). Бабластр. 8.

В статье призедены результаты методических исследовалий по выделению каналов с одной нейтральной частицей в Кр-взаниодействиях при 32 ГэВ/с. Получены оценки сечений реакций с то, К_{невид} и N и приведева их зависимость от энергии.

Abstract

Levitski M.S., Moiseev A.M., Silinskaya S.G., Babintsev V.V., Patalakha D.I., Chekulaev S.V., J.Mac-Naughton.

Cross Sections of Channels with one Neutral Particle in 32 GeV K⁺p Interactions. Serpukhov, 1980.

p. 20. (IHEP 80-22, SERP-E-77).

Refs. 8

In this paper the results of a methodical investigation of the separation of channels with one neutral particle in 32 GeV K^{*}p interactions are presented. Values of the cross sections for reactions with one π° , K°_{unseen} or neutron are obtained, and their energy dependence is shown.

1. ВВЕДЕНИЕ

Ряд актуальных проблем в физике высоких энергий связан с изучением конечных состояний с одной нейтральной частицей ^{/1,2/}. Возможности выделения таких состояний на основе законов сохранения всегда широко использовались при обработке данных с пузырьковых камер при малых и средних энергиях. Однако в отличие от эксклюзивных реакций, приводящих к конечным состояниям с одними заряженными частицами и выделяемых на основании четырех кинематических условий связи (4с-фит), реакции с одной нерегистрируемой нейтральной частицей выделяются на основании лишь одного условия связи (1с-фит). Поэтому с ростом энергии выделенике каналов с одной нейтральной частицей становится все менее надежным из-за увеличения ошибок в определении параметров треков заряженных частиц. В К⁻р-взаимодействиях выделение таких конечных состояний проводилось при энергиях до 16 ГэВ^{/2/}.

В экспериментах на камере "Мирабель", проводимых при энергиях >30 ГэВ, выделение 1с-фит состояний (т.е. состояний с одной невидимой нейтральной частицей) заведомо более сложно как из-за более высокого импульса первичных частиц, так и из-за меньшей точности восстановле-

ния событий в рабочем объеме камеры, обусловленной ее конструктивными особенностями. Моделирование методических возможностей этой камеры, предпринятое для **рр**-эксперимента при 69 ГэВ/с^{/3/}, показало, что при этой энергии можно выделять только 4с-фит состояния.

В настоящей работе приводятся результаты более детального изучения возможности выделения 1с-фит состояний в К р-эксперименте при 32 ГэВ/с. В процессе обработки этого эксперимента в ИФВЭ в программе GRIND просчитывались как 4с-фит, так и 1с-фит гипотезы для малочастичных конечных состояний. Для получения несмещенных кинематических параметров заряженных частиц, восстанавливаемых в программе геометрической реконструкции, перед их обсчетом по программе GRIND вносились поправки на систематические искажения, определяемые с помощью метода, описанного в работе ^{/4/}. На основании результатов обсчета по GRIND было предпринято выделение следующих эксклюзивных реакций:

$$\vec{\mathbf{r}} \rightarrow \vec{\mathbf{k}} \mathbf{p} + m(\pi^+ \pi^-) + \pi^{\circ}, \tag{1}$$

$$\mathbf{K}^{-}\mathbf{p} \rightarrow \mathbf{\widetilde{K}}^{o}_{\mathbf{B}\mathbf{K}\mathbf{I}} p \pi^{-} + \mathbf{m}(\pi^{+}\pi^{-}) + \pi^{o}, \qquad (2)$$

$$\mathbf{K} \mathbf{p} \rightarrow \pi^{-} \mathbf{p} + \mathbf{m}(\pi^{+}\pi^{-}) + \mathbf{K}_{\text{HeBHZ}}^{"}, \qquad (3)$$

$$K p \rightarrow K^{-} \pi^{+} + m(\pi^{+}\pi^{-}) + N_{r}$$
 (4)

где m = 0,1,2.

Ниже будут изложены некоторые методические вопросы, связанные с выделением этих реакций, такие как анализ неоднозначно разделенных событий и определение основных источников примесей, а также даны экспериментальные оценки сечений этих реакций. Для простоты изложение материала будет проводиться на примере реакций (1), которые являются основным объектсм исследований.

2. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Исходным материалом для методических исследований послужили 1с-фит события, полученные в ИФВЭ при обработке ~50000 первичных взаимодействий^{N)} в К⁻р-эксперименте при 32 ГэВ/с. События измерялись на НРД и прецизионных проекторах и обсчитывались по стандартным программам H-GEOM-GRIND-SLICE. Подробности обработки данных в К⁻р-эксперименте можно найти в предыдущих публикациях Объединения^{/5/}.

При записи событий на DST отбиралось не более четырех лучших 1с-фит гитотез со значением $\chi^2 \leq 10$, отношение вероятностей для которых не превышало 3 и которые выстраивались в порядке уменьшения вероятности $P(\chi^2)$.В дальнейшем гипотеза, вероятность которой $P_1(\chi^2)_B$ три раза превышала $P_1(\chi^2)$ остальных прошедших гипотез, считалась выделенной однозначно.

На рис. 1 приведены распределения $P(\chi^2)$ для событий, у которых лучшая гипотеза соответствует реакции (1) при m = 0,1,2. Как видно из рисунка, эти распределения практически равномерны в области $P(\chi^2)>0,1$ и имеют максимум при меньшей вероятности, который может быть связан с примесью из других каналов. Поэтому ниже мы будем рассматривать только те события, для которых лучшая 1с-фит гипотеза имеет $P(\chi^2)>0,07$ (эти границы обрезения показаны на рис. 1 стрелками).

На рис. 2 (верхний ряд) представлены распределения $M_{\text{нед}}^2$ для событий, у которых лучшая гипотеза соответствует реакции (1) (пунктирной линией показаны соответствующие распределения для событий, отнесенных к реакции (1) однозначно). Для всех топологий отчетливо видны несмещенные сигналы от реакций с π° , при этом для больших топологий распределения по $M_{\text{нед}}^2$ становятся уже, что связано с большей точнось то измерения более медленных треков. В целом разрешение по

^{н)}Полная статястика эксперимента ~150 000 события.

Рис. 1. Распределения P(χ^2) для реакций (1) при m = 0,1,2. Стрелками показаны границы обрезания,

Рис. 2. Распределения М² для лучней 1с-фит гипотеем (Р(х²) > 0,07) с з⁶-месоном (реакция (1) для реальных (верхний ряд) и тестовых событий с одним (средний ряд) и двуми (заситрихованная честь в жижнем ряду) з⁶-месонеми, Штриховой ликией показакы соответствующие распределения для одновачно промедших реальими событий.

 M_{Heql}^2 для этого эксперимента существенно не отличается от разрешения, полученного в Kp-эксперименте при 14,3 ГэВ/с (отношение ширин на полувысоте dN/d (M_{Heql}^2) при 32 и 14,3 ГэВ/с равно для 2-лучевых событий от реакции (1)~1,3). Но даже для 6-лучевых событий с π° ши-рина распределения M_{Heql}^2 перекрывает область недостающих масс $2\pi^{\circ}$ -и K^o-мезона, так что часть событий, отнесенная к реакции (1), может быть от соответствующего процесса с $2\pi^{\circ}$ или от реакции (3). Как видно из рис. 3 (верхний ряд), где представлена статистика событий, для которых прошла одна или несколько 1с-фит гипотез, соответствующих реакциям (1), (3), (4), действительно имеется значительное количество неоднозначно интерпретированных событий. Особенно много событий, для которых близкую вероятность имеют гипотезы с π° и K^o. С ростом топологии доля неоднозначно интерпретированных событий.

Как показали исследования, при более низких энергиях основным источником неоднозначно интерпретированных 1с-фит событий являются как взаимная "перекачка" каналов (1), (3), (4), так и примесь от каналов с большим числом нейтральных частиц^{/6/}. Эти эффекты могут давать вклад также в 1с-фит события, отнесенные по критериям данного эксперимента к однозначно интерпретированным. Поэтому для оценки качества выделения 1с-фит событий нами были тщательно проанализированы основные источники примесей (ошибка разделения II рода) и потерь (ошибка разделения 1 рода) на событиях, кинематически достаточно близких к выделяемым 1с-фит событиям.

С этой целью нами были использованы 4с-фит события, соответствующие реакциям

$$\mathbf{K}^{-}\mathbf{p} \rightarrow \mathbf{K}^{-}\mathbf{p} + \mathbf{m}(\pi^{+}\pi^{-}), \qquad (5)$$

где m = 1,2,3. Отбрасывая в этих событиях одну или несколько заряженных частиц разного вида, мы создали, "тестовые" события с одной (π° , K° , N) или несколькими различными нейтральными частицами в конечном состоянии. При этом множественность заряженных частиц в тестовом событии могла на одну частицу превышать множественность соответствующего моделируемого 1с-фит канала.

Рис. 3. Распределение событий по числу принятых для них 1с-фит гипотев (Р(X²) 0,07) с «⁶, К⁶и N для реальных событий (верхний ряд) и в отножении х полному числу событий для тестовых событий (средний и инжинй ряды) для трех топонский.

На рис. 2 приведены распределения $M_{\text{нед}}^2$ для тестовых событий с π° (средний ряд) и $2\pi^\circ$ (нижний ряд). Распределения $M_{\text{нед}}^2$ для событий с одним π° дают представление о реальном разрешении по $M_{\text{нед}}^2$, достижимом в \bar{K}_{p-} эксперименте при 32 ГэВ/с.

Для каждого тестового события вычислялись величины D² для 1сфит гипотез с *m[°]*, K[°] и N по следующей формуле:

$$\mathbf{D}^{2} = \left(\frac{\mathbf{M}_{\text{Heg}}^{2} - \mathbf{M}_{\text{Heätp}}^{2}}{\Delta \mathbf{M}_{\text{Heg}}^{2}}\right)^{2},$$

где $M_{\text{нед}}^2$ - квадрат недостающей массы к оставшимся заряженным частицам; $M_{\text{нейтр}}^2$ - квадрат массы восстанавливаемой нейтральной частицы; $\Delta M_{\text{нед}}^2$ - ошибка квадрата недостающей массы. Как известно, для 1с-фит гипотез величина D^2 близка к χ^2 , так как в этом случае остается только одно уравнение связи. Далее, как и в реальном эксперименте, отбирались четыре лучшие гипотезы, отношение вероятностей и сама величина D^2 не превышали 3 ($P(D^2) > 0.07$).

На рис. З для иллюстрации представлена статистика для тестовых событий с одним (средний ряд) и двумя (нижний ряд) 7 -мезонами, для которых были приняты одна или несколько 1с-фит гипотез. Из рис. 3 видно, что для тестовых событий с одним 7° в большом числе случаев (от 50% в 2-лучевых до 20% в 6-лучевых) проходили две 1с-фит гипотезы (с π° и K°). Кроме того, из того же рисунка видно, что тестовые события с 2 п° достаточно часто удовлетворяют 1с-фит гипотезе с одним π^{o} , хотя в основном они проходят с двумя гипотезами (π° и K°). Для того чтобы сократить примесь от каналов с $2\pi^{\circ}$. в каналы с одним п° в дальнейшем анализе было сделано дополнительное обрезание по M_{Heff}^2 (-0,3 ГэВ² < $M_{Heff}^2(\pi^\circ)$ < 0,2 ГэВ²). Как видно рис. 2, на котором границы обрезания указаны стрелками, для тестовых событий с одним п°-мезоном (средний ряд) и 2п°-мезонами (заштрихованная часть в нижнем ряду), у которых лучшая гипотеза оказалась из реакций (1), это обрезание оптимально, что позволяет провести детальный анализ примесей. Соответствующие обрезания были сделаны и для в реакциях (3) и (4) $(0,0 < M_{Hon}^2(K^\circ) < 0.5 \Gamma_{3B}^2, 0,0 < M_{Hon}^2(N) < 2.0).$

В табл. 1 показаны относительные вероятности прохождения (в процентах) тестовых событий для реакций (1), (3) и (4) в 1с-фит каналы с π° , K° и N при использовании описанного выше метода разделения 1с-фит гипотез с соответствующими обрезаниями по D^2 и $M_{\text{нед}}^2$ (верхняя цифра соответствует отбору по лучшей гипотезе, а нижняя – однозначно выделенным гипотезам). Видно, что для событь..., имеющих после разбора по описанным выше критериям истинную гипотезу в качестве единственной, примесь от конкурирующих каналов существенно уменьшается, хотя такой отбор ведет к значительной (до 50%) потере статистики в исследуемом канале. Вероятности прохождения в различные каналы тестовых событий с одним π° и парой $K^{\dagger}K$ были рассчитаны для определения примеси в рассматриваемые 1с-фит каналы от соответствующих каналов с $K^{\dagger}K$ -парой.

В табл. II приведены относительные вероятности прохождения в конечные состояния (1)-(4) состояний с несколькими нейтральными частицами (верхние и нижние цифры означают то же самое, что и в табл. 1).

3. ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ

Естественно, что для получения абсолютных величин примеси необходимо знать хотя бы оденки сечений каналов реакций с несколькими нейтральными частицами. Такие оценки мы получили из нашего эксперимента для каналов с π° , K° , N и $K_{BHZ}^{\circ} \pi^{\circ}$, а для каналов с двумя в более π° -мезонами – на основе распределений вероятности образования нескольких π° в событиях с данной множественностью заряженных частиц в $\pi^{\pm} p$ -экспериментах при 10,1 и 15 ГэВ/с^{/7/}. В последнем случае делалось предположение, что форма распределений вероятности образования нескольких π° совместно с фиксированными конечными состояниями, соответствующими каналам (1)-(4), примерно подобна форме результноующего инклюзивного распределения. На основе эксперимен-

тальных полуинклюзивных распределений по множественности π° в π^{+} рвзаимодействиях при 15 ГэВ/с среднее значение π° -мезонов $< n_{\pi^{\circ}} > \sim 1,8$, что хорошо согласуется с соответствующей величиной при 32 ГэВ/с и, учитывая тенденцию к росту вероятности появления нескольких π° -мезонов с энергией, было предположено, что

$$\sigma (\mathbf{A} + 2\pi^{\circ}) / \sigma (\mathbf{A} + \pi^{\circ}) \simeq 1,0,$$

$$\sigma (\mathbf{A} + 3\pi^{\circ}) / \sigma (\mathbf{A} + \pi^{\circ}) \simeq 0,7,$$

$$\sigma (\mathbf{A} + 4\pi^{\circ}) / \sigma (\mathbf{A} + \pi^{\circ}) \simeq 0,3,$$

где A - конечное состояние реакции без "-мезонов.

Оценки сечений каналов с несколькими нейтральными частицами, использовавшиеся в этой работе, приведены в табл. II.

Очевидно, что если отвосительный коэффициент прохождения для некоторой конкурирующей реакции достаточно мал, то выбор величины сечения не особенно критичен для вычисления примесей и потерь при выделении 1с-фит гипотез. Поэтому недостаточно точное знание сечений некоторых конечных состояний с несколькими нейтральными частицами, учтенное при оценке ошибок в определении сечений каналов (1) и (2),не привело к значительному их увеличению. Отметим также, что если в реакции присутствует нейтральная частица, которая может быть зарегистрирована, то в том случае, когда она будет ассоциирована с событием, это событие не может дать примесь в 1с-фит каналы. Поэтому большинство сечений тестовых каналов умножались на коэффициенты (β_k), которые учитывали невидимую моду распада (только для V°), средний потенциальный вес и эффективность прохождения V° или у через систему обработки.

Для вычисления реального сечения исследуемых 1с-фит реакций решались следующие системы уравнений:

 $\sigma_{i} = \beta_i = a_{ii} \beta_i \sigma_{ip} + \sum_{j \neq i=1}^{N} a_{ij} \beta_j \sigma_{jp}$, N ГДО $\sum_{ij} a_{ij} \beta_j \sigma_j$ — воличина примеси в *i*-й 1с-фит канал (ошибка раз*j* = 1 года; ВШ); (1 - a_{ii}) $\beta_i \sigma_{ip}$ — потери (ошибка разделения I

рода; E1); σ_{i9} – экспериментальное значение сечения i-го 1с-фит канала при данном методе разделения гипотез; σ_{ip} – действительное значение сечения i-го 1с-фит канала; a_{ij} – относительный коэффициент прохождения j-го канала реакций в i-й. В качестве относительных коэффициентов прохождения брались данные из таблиц 1 и II и делались некоторые дополнительные упрощающие предположения.

В табл. III сведены результаты по сечениям реакций (1)-(4). Для сравнения в этой же таблице приведены сечения тех же каналов, полученные из 7с-фит событий (например, каналы с видимым К^о-мезоном) и 5с-фит событий (события, к которым ассоциирован один у-квант от π° -мезона, а второй У-квант от π° восстанавливается при наличии дополнительного уравнення связи $M_{\nu\nu} = m_{\pi^0}$). Из табл. Ш видно, что результаты вычисления сечений по описанной нами методике с коррекцией на потери (Е1) и примеси (ЕП) довольно хорошо согласуются с сечениями, полученными из 7с-фит и 5с-фит событий. Исключением является канал К[¬]р→К[°]рπ[¬]π[°]. Отметим, что сечение для 5с-фит событий определялось для первой гипотезы с ограничениями -1,5 $\Gamma_{3}B^{2} < M_{Heg}^{2}$ (γ) < 1,5 $\Gamma_{3}B^{2}$ и $P(\chi^2) > 0,001$. Из табл. III видно, что для каналов $K^- p \rightarrow K^- pm(\pi^+\pi^-)\pi^\circ$ при т >1 описанная выше методика обеспечивает достаточно чистое выделение (с примесью < 25%), однако выделение аналогичных каналов С Ко-мезоном представляет большие трудности ввиду их меньшего сечения.

В дальнейшем анализе в качестве оценок сечений реакций (1), (2) будут использоваться величины, полученные для 1с-фит событий. На рис.4 и 5 представлена зависимость сечений реакций (1) и (2) как функция Р_{лаб}. Сплошные линии на рисунках объединяют экспериментальные точки, принадлежащие одному каналу. Пунктирной и штрихпунктирной линией показано поведение сечений близких 4с-фит каналов. Наклоны этих кривых взяты из работы^{/8/}.

Как следует из рис. 4, при $P_{na6} > 10$ ГэВ/с сечения каналов К р + К р + К р + К р + К р + π^{-n} близки в имеют сходную энергетическую зависимость. Для аналогичных состояний с двумя парами ($\pi^{+}\pi^{-}$) сечение

Рис. 4. Энергетическая зависимость реакции (1) для и = 0,1,2. Сплошными линизми показан общий ход зависимости от р_{исс} конкретных 1с-фит каналов. Пунктирной и штрихнунктирной линией показано победение 4с-фит каналов без п^о-мевсиа (наилоны соответствуют работе^{(8/}).

Рис. 5. Энергетическая зависныесть реакция (2) для м = 0,1,2. Сплошные, пунктярные и штрихнунктирные линки означают то же самое, что и на рис. 4, только для других реакций.

состояния с дополнительным π° -мезоном при 32 ГэВ/с в три раза превышает сечение 4с-фит канала. Такая разница в отношениях сечений 4си 1с-фит каналов в 4- и 3-лучевых событиях может быть объяснена большим вкладом в реакцию $\mathbf{K} \mathbf{p} \cdot \mathbf{K} \mathbf{p} \pi^+ \pi^-$ процессов с одновершинной дифрахцией. В реакциях с нейтральным каоном сечение процессов (2) существенно (в 2-4 раза) превышает сечения соответствующих процессов без π° -мезонов.

Таким образом, при энергиях в области 30 ГэВ/с выделение многолучевых 1с-фит состояний дает новые возможности для исследования структуры эксклюзивных состояний, так как сечения эксклюзивных 4сфит каналов при этой энергии оказываются существенно меньшими, чем соответствующих 1с-фит каналов.

4. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Как показала наша работа, точность измерения кинематических параметров частиц в К⁻р-эксперименте при 32 ГэВ/с позволяет достаточно надежно выделять эксклюзивные каналы с одним невидимым π° при множ ественности заряженных частиц больше 2. Выделение каналов с невидимым К[°] затруднено большими примесями от кинематически неразличимых процессов с одним или двумя π° -мезонами и относительно малым сечением таких каналов.

Приведенные оценки примесей в выделенные 1с-фит события с п_с ≥ 4 и одним π^o показывают, что полученную статистику по этим 1с-фит каналам можно использовать для физических исследований. Энергетическая зависимость сечений каналов с одним π^o-мезоном в 4- и 6-лучевых событиях аналогична поведению сечений соответствующих каналов без п^o-мезона при р_{лаб} > 10 ГэВ/с. Результаты физических исследований по некоторым 1с-фит каналам будут приведены в следующих работах.

Таблица 1

Вероятности	(в %) попадан	ия тестовых	к 1с-фит с	обытий в	исследуемые
1с-фит канал	ы при условии,	TTO P(X ²) > 0.07 и -	-0.3 <m<sup>2en</m<sup>	$(\pi^{o}) < 0.2$
$0.0 < M_{\rm Herr}^2$ (1	(°) < 0,5, 0,0	² нед (N) < 2,	0. Верхня	я цифра с	OOTBETCTByet
отбору по лу	чшей гипотезе	нижняя -	по одн	означно	выделенной
					1

1с-фит гипотезы Тестовые камалы	К ⁻ р+ т [°] + заря- женные <i>т-</i> ме- зоны	π [−] р+К [°] + заря женные π- мезоны	К ⁻ π ⁺ + N + заряжен- ные <i>п</i> -ме- зоны
	67 <u>+</u> 2	15 <u>+</u> 1	1 <u>+1</u>
κ μππ	48 <u>+</u> 2 6 <u>+</u> 1		1 <u>+</u> 1
	6 <u>+</u> 1 65 <u>+</u> 3		1 <u>+1</u>
<i>π</i> ρ π' κ	l <u>+</u> 1 49 <u>+</u> 2		1 <u>+1</u>
	7 <u>+</u> 1	6 <u>+</u> 1	49 <u>+</u> 2
K π ⁺ π ⁻ N	3 <u>+</u> 1	0	48 <u>+</u> 2
	67 <u>+</u> 3	15 <u>+</u> 1	4 <u>+</u> 1
Κ ρπ ⁻ ππ ⁻ π ⁻	48 <u>+</u> 2 5 <u>+</u> 1		2 <u>+</u> 1
	11 <u>+</u> 2	65 <u>+</u> 6	3 <u>+</u> 1
$\pi P \pi^+ \pi^- \pi^+ K$	3 <u>+</u> 1	44 <u>+</u> 4	2 <u>+</u> 1
	8 <u>+</u> 2	9 <u>+</u> 2	58 <u>+</u> 5
Κ π ⁺ π ⁺ π ⁻ π ⁻ Ν	2 <u>+</u> 1	2 <u>+1</u> 2 <u>+1</u>	
N⁻ 0 ()) + 0	71 <u>+</u> 5	13 <u>+</u> 2	6 <u>+</u> 1
K pZ($\pi^+\pi^-$) $\pi^+\pi^0$	52 <u>+</u> 4	5 <u>+</u> 1	3 <u>+</u> 1
$-2(+-)+k^{\circ}$	15 <u>+</u> 4	63 <u>+</u> 10	7 <u>+</u> 3
<i>π</i> Ρζ (<i>π</i> ' <i>π</i>) <i>π</i> Ν	6 <u>+</u> 2	42 <u>+</u> 7	θ<u>+</u>3
$k^{-}2(+-)N$	9 <u>+</u> 3	9 <u>+</u> 3	66 <u>+</u> 11
Ν 3 (<i>π η</i> μγ	3 <u>+</u> 1	0	56 <u>+</u> 10
K ⁻ -K ⁺ K ⁻ ± .	12 <u>+</u> 2	20 <u>+</u> 3	13 <u>+</u> 2
ΓΡΚ Γ π ⁰	7 <u>+</u> 2	9 <u>+</u> 2 .	10 <u>+</u> 2

Таблица II

Вероятности (в %) попадания тестовых событий с несколькими нейтральными частицами в 1с-фит каналы с π° , К[°] и N при тех же условиях отбора, что и в табл. 1. Верхние и нижние цифры означают то же самое, что и в табл. 1

Іс-фит гипотезы Тес- товые каналы и оценки сечений (мкб)		Кр + л° + за- ряженные л-ме- зоны	π [−] р+К°+зеря- жеяные π- мезоны	К ⁻ π ⁺ + N + заряжен- ные <i>т</i> - мезоны(%)
1	1		3	4
К [¯] р2 л°	250	12 <u>+</u> 1	14 <u>+</u> 1	1 <u>+</u> 1
F =0		6 <u>+</u> 1	11 <u>+</u> 1	1 <u>+</u> 1
"∼¤K°"°	250	10 <u>+</u> 1	5 <u>+</u> 1	0
• • •		9 <u>+</u> 1	5 <u>+</u> 1	0
 Κ_π ⁺ Νπ ^ο	300	0	0	14 <u>+</u> 1
		0	0	14 <u>+</u> 1
~ x ⁻ to o	150	1 <u>+</u> 1	2 <u>+</u> 1	3 <u>+</u> 1
Κρπ-3π°		0	1 <u>+</u> 1	3 <u>+</u> 1
· · · · · · · · · · · · · · · · · · ·	250	4 <u>+</u> 1	0	1 <u>+</u> 1
2π pK 2π ³		4 <u>+</u> 1	, O	1 <u>+</u> 1
	300	00	0	3 <u>+</u> 1
Κ Ζη ΝΖη		• 0	0	9 <u>+</u> 1
v-, + -2 .	450	10 <u>+</u> 1	14 <u>+</u> 1	4 <u>+</u> 1
Κ Ρ <i>π' π Ζ π⁵</i>		5 <u>+</u> 1	10 <u>+</u> 1	3 <u>+</u> 1
	°π° 240	12 <u>+</u> 1	5 <u>+</u> 1	2 <u>+</u> 1
•		10 <u>+</u> 1	5 <u>+</u> 1	2 <u>+</u> 1
K ⁻ -+-+N -0	lπ° 300 -	1 <u>±</u> 1	1 <u>+</u> 1	16 <u>+</u> 1
		1 <u>+</u> 1	0	15 <u>+</u> 1

1		2	3	4
2(_+)K ⁰ N	80	2 <u>+</u> 1	0	4 <u>+</u> 1
$Z(\pi^{+}\pi^{-})$ is a	00	1 <u>+</u> 1	0	<u>3+</u> 1
K ⁻ n_+ <u>+</u> 3_0	330	0	0	4 <u>+</u> 1
		0	0	4 <u>+</u> 1
<i>π</i> ⁻ p <i>π</i> ⁺ <i>π</i> ⁺ <i>π</i> ⁻ K [°] 2 <i>π</i> [°]	230	6 <u>+</u> 1	0	8 <u>+</u> 1
-		4 <u>+</u> 1	0	3 <u>+</u> 1
2(_+)K°N -9		2 <u>+</u> 1	0	5 <u>+</u> 1
$S(\pi,\pi) \in \mathbb{N}^{n}$	00	1 <u>+</u> 1	0	5 <u>+</u> 1
$K^{-}p2(\pi^{+}\pi^{-})2\pi^{\circ}$	430	9 <u>+</u> 1	14 <u>+</u> 1	10 <u>+</u> 1
		6 <u>+</u> 1	8 <u>+</u> 1	7 <u>+</u> 1
$\pi^- \mathfrak{p}2(\pi^+\pi^-)K^\circ\pi^\circ$	130	19 <u>+</u> 2	3 <u>+</u> 1	8 <u>+</u> 1
		17 <u>+</u> 2	2 <u>+1</u>	8 <u>+</u> 1
K ⁻ a ⁺ 2(a +a ⁻)Na ^o	150	°+1	3 <u>+</u> 1	11 <u>+</u> 2
·· · · · · · · · · · · · · · · · · · ·		2 <u>+</u> 1	1 <u>+</u> 1	11 <u>+</u> 2
3(_+_⁻ÌK° N	50	8 <u>+</u> 3	2 <u>+</u> 1	5 <u>+</u> 2
<i>σ(π π)</i> Ν Ν		8 <u>+</u> 3	2 <u>+</u> 1	5 <u>+</u> 2

ļ

n	КАНАЛ		1с-фит				5с-и 7с-фит		
		Число соб,	_{് 9} (ഫർ)	Примесь ЕП(мкб)	Потери Е1(миб)	о _р (мхб)	Число соб.	ø. (мжб)	
2	К⁻рѫ⁰	567	218 <u>+</u> 9	92 <u>+</u> 9	44 <u>+</u> 8	169 <u>+</u> 19	48	122 <u>+</u> 17	
	К° р <i>π</i> т _# °	196	258 <u>+</u> 19	38 <u>+</u> 4	61 <u>+</u> 9	286 <u>+</u> 27	41	599 <u>+9</u> 2	
	K° p#	117	52 <u>+</u> 4	91 <u>+</u> 5	19 <u>+</u> 6	41 <u>+</u> 13	36	51 <u>+</u> 8	
	Κ ⁻ π ⁺	726	245 <u>+</u> 0	103 <u>+</u> 8	62 <u>+</u> 12	205 <u>+</u> 23	-	-	
4	К ⁻ рπ ⁺ π ⁻ π ⁰	1117	. 496 <u>+</u> 14	1 <u>32+</u> 10	115 <u>+</u> 11	478 <u>+</u> 26	140	439 <u>+</u> 37	
	К°р _π +2 _π -	192	102 <u>+</u> 7	42 <u>+</u> 8	70 <u>+</u> ;2	190 <u>+</u> 22	66	102 <u>+</u> 11	
	К [°] р _π +2 _π ⁻ π°	129	217 <u>+</u> 19	36 <u>+</u> 4	54 <u>+</u> 10	238 <u>+</u> 27	15	212 <u>+</u> 54	
	K ⁻ 2π ⁺ π ⁻	719	277 <u>+</u> 10	137 <u>+</u> 12	68 <u>+</u> 11	227 <u>+</u> 26	_	-	
6.	K ⁻ 2 ₁₁ +2 ₁₁ -11°	972	455 <u>+</u> 14	98 <u>+</u> 10	104 <u>+</u> 14	461 <u>+</u> 28	134	433 <u>+</u> 97	
	K°2π+3π ⁻ π°	71	122 <u>+</u> 14	27 <u>+</u> ≰	27 <u>+</u> 7	122 <u>+</u> 21	14	178 <u>+4</u> 7	
	K°p2π+3π ⁻	125	71 <u>+</u> 6	27 <u>+</u> 4	65 <u>+</u> 14	109 <u>+</u> 22	24	50 <u>+</u> 7	
	K ⁻ 3# ⁺ 2# ⁻	350	142 <u>+</u> 7	108 <u>+</u> 8	19 <u>+</u> 7	56 <u>+</u> 17	-	-	

Сечения реакций (1)-(4), полученные описанным в работе методом из 4с-фит и 2с-фит событий. Для 1с-фит каналов приводятся экспериментальные сечения (σ_3) потери (EI), примеси (EII) и поправленное сечение (σ_n)

ЛИТЕРАТУРА

- 1. D.Hansen et al. CERN Preprint /D/Ph. II/Phys, 74-44.
- 2. D.R.O.Morrison et al. CERN Preprint /EP/Phys. 77-3.
- 3. П.Ф.Ермолов и др. Препринт ИФВЭ 72-68, Серпухов, 1972.
- 4. М.Ю.Боголюбский и др. Препринт ИФВЭ 76-108, Серпухов, 1976.
- 5. C.Cochet et al. Nucl. Phys., B124, 61 (1977).
- G.Pietrzijk. Etude de la dissociation diffractive du proton dans les interactions K⁻p a 14.3 GeV/c. These presentee a l'universite de Paris VI (1974).
- 7. J.R.Elliot et al. Nucl. Phys., B133, 1 (1978).
- 8. A.Givernaud et al. Saclay Preprint, DPhPE 79-08 (1979).

Рукопись поступила в издательскую группу 17 декабря 1979 года.

Цена 10 коп.

О – Институт физики высоких энергий, 1980.
 Издательская группа И Ф В Э
 Заказ 433. Тираж 270. 0,9 уч.изд.л. Т-03767.
 Март 1980. Редактор Н.В. Ежела.