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ABSTRACT

A physical model is proposed to describe the
ground motion pattern resulting from an
underground nuclear explosion in an idealized
homogeneous medium. Irregular behaviors in the
observed ground motion are assumed to be
perturbations caused by the local inhomogeneity
of the ground medium. Our model correlates the
ground motions at any point in the spalled zone
to the initial acceleration pulse at the ground
zero. Interestingly, the model predicts that the
ground motion first comes to a stop at a definite
radius about the ground zero, and the region
expands both outward and inward as time goes on.
We believe that tin's result is closely related to
a phenomenon observed at NTS. In the far field
approximation, we also calculate the overpressure
in the lower atmosphere generated by the ground
motion. We demonstrate that the irregular
component of the ground motion does not affect
the overpressure history in any significant way.
Consequently the model ground motion can be used
as a good approximation in generating the
atmospheric overpressure.

I. INTRODUCTION

The ground motion (GM) associated with an underground nuclear explosion

is thought to be powerful enough to generate an acoustic wave in the

atmosphere. The pattern of the GM, as measured by acceierometers, varies with



the yield of the device, the depth of burial, the distance away from ground

zero, and, finally, the type and the composition of the ground medium.

Loosely speaking, the GM can be said to have two components, one regular and

one irregular. The regular component has a time and spatial correlation which

can presumably be understood by physical considerations of a homogeneous

ground medium. The irregular component, which is the perturbation resulting

from the local inhomogeneity of the ground medium, evidently is quite random

in nature. The irregular component causes the apparent complexity exhibited

in the measured GM pattern. Fortunately for us, it is the regular component

that plays a dominating role in generating the characteristic pulse shape of

the overpressure in the air. In this report we present a physical model for

the regular component of the GM. The model provides us a coherent picture of

how the GM pattern depends on various parameters. Furthermore, it possesses

the essential structures so that an approximate overpressure pulse can be

simulated in the lower atmosphere.

In the next section, we first discuss the physical considerations which

form the basis for modeling the GM. We formulate the GM in terms of a time-

and position-dependent acceleration function, which can be specified

completely if the initial acceleration pulse at ground zero is known. In

Section III, we analyze when the GM comes to a stop as a function of distance

and time. We arrive at an interesting conclusion that it occurs first at a

definite radius about the ground zero, and the region subsequently expands

both inward and outward. The result is used to explain a phenomenon observed

in several NTS events. In Section IV, we first calculate the atmospheric

overpressure generated by a 6-function acceleration pulse, in the far field

approximation. The result is compared with the one obtained in the piston

model. We then proceed to calculate the overpressure due to a general

acceleration pulse coming from a point source. We discuss why the irregular

component of the GM does not affect the overpressure in a significant way,

thus establish that the model GM can be a good approximation in generating the

overpressure in the air.



II. MODEL FOR GROUND MOTION

To consider the regular component of the GM, our starting point is to

assume that the ground medium is homogeneous. It follows that the shock front

is spherical and the GM is therefore circularly symmetric about the ground

zero. Since only the vertical component of the ground acceleration

contributes to the atmospheric overpressure, it is sufficient for our purpose

to describe the GM by the vertical acceleration as a function of time and

location. Simply put, our model for the GM consists of a sharp initial

acceleration pulse (IAP), followed by a period of free fall, finally ended

with another sharp upward acceleration pulse. As the subsequent discussion

will show, the model enables us to specify the acceleration history at any

point once the IAP at ground zero is known.

The IAP starts at the arrival of the ground shock originated from the

explosion center. We assume that the duration of the IAP does not vary with

the slant distance (SD). In the elastic zone this is indeed the case. The

amplitude of the IAP, however, is expected to scale down as the SD increases.

In the absence of energy loss, we know that the amplitude of a spherical

pressure pulse should be inversely proportional to the radius. One can argue

as follows: Let r be the width of the acceleration pulse, then cr is the

thickness of the spherical shell that is set in motion, where c is the sound

velocity. The energy carried by the pulse is then « 4Trr^(cr)pV^, where p is

the density, v the peak velocity, and r the propagation distance. When r

remains fixed, the amplitude of the acceleration pulse is proportional to the

peak velocity, hence varies as 1/r. In reality, the energy carried by the

pressure pulse does diminish as it propagates in a realistic medium. The

inelastic effects also tend to make the pulse width broader as it travels out.

This means in general that the amplitude of the acceleration pulse scales down

as 1/r or faster.* Furthermore, since only the vertical component contributes

to the overpressure, projecting in the vertical direction adds another inverse

power^ dependence on the SD.

In the spalled zone, the top surface layer, once spalled by the IAP, will

be in a free fall state. The duration of the free fall motion at a given SD

is in principle related to the amplitude of the IAP. In an idealized picture,

the free fall would end when the spallina layer returns to its original

position. A sharp acceleration pulse will result from the impact. Since the



elasticity of the surface soil or rock is quite low, no significant bouncing

wil l occur after the coll ision. The collision time is so short that

practically we can approximate the second acceleration pulse by a 5-function.

The coefficient of the 6-function is fixed by the condition that the time

integral of the pulse should be (nearly) equal to the impact speed.

Following the above discussion, we are now in a position to specify the

ground acceleration as a function of time t and distance r, denoted by A(t , r ) .

I t is more convenient to define A(t,r) through a function B(t,r) in which the

time variable is retarded by the propagation time of the ground shock, i .e . ,

A(t,r) - B(t - t g ( r ) , r ) (1)

where

t g ( r ) = (b2 + r2)1 / 2 /cg , (2)

and

b = depth of burial of the source,

Cq = velocity of sound in ground.

A schematic drawing to i l lustrate the geometry is given in Fig. 1.

The function B(t,r) is then defined as3

B(t,r) =0 t < 0 , (3a)

B(t,r) = S(r)A(t) 0 < t < o , <3b)

B(t,r) = -g o < t < g(r) , (3c)

B(t,r) = V(r)6(t - B(r)) t > p(r) , (3d)

where g is the gravitational acceleration, and S(r) is the SD scaling
function/ namely

Sir) = (1 + r2 /b2)"n / 2 , n Jt 2 . (4)
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Fig. 1. The schematic geometry describing ground motion.



Aft) is the acceleration function of the IA at ground zero. The free fall

duration e(r) - a and the impact speed V(r) can be derived from S(r) and A(t).

With B(t,r) specified, we can calculate the time-shifted velocity function

V(t,r) and displacement function D(t,r) as

t
V(t,r) = / B(t',r)dt' (5)

o

and

t
D(t,r) = / V(t',r)dt' . (6)

o

From our earlier discussion p(r) should satisfy the condition

D(B(r),r) = 0 , (7)

and the impact speed is just

V(r) = - V ( B ( r ) , r ) . ( 8 )

To solve for e(r) and V(r), we notice that in the time interval between a and
the motion is free fall. Therefore, we have the relations

V(r) + V(o,r) = g[0(r) - J (9)

and

V2(r) - V2(c,r) = 2g[D(a,r) - D(B(r),r)J
* 2gD(a,r) . (10)

These lead to

V(r) = [V2(a,r) + 2gD(a,r)]1/2 (11)



and

6(r) = a + l/g[V(a,r) + V(r)] . (12)

Thus both V{r) and 6(r) can be expressed in terms of V(a,r) and D(a,r). So

A(r,t) is completely determined by the IAP at ground zero.

If the IAP A(t) is symmetric about its peak, it is straightforward to

show that V(<*,r) and D(<*,r) are further related by

D(a,r) = l/2<*V(a,r) . (13)

Equation (11) can be written as

V(r) = V(a,r)[l + ga/V(ct,r)]1/2 . (14)

Experimentally the observed initial acceleration pulses are approximately
symmetric about their peaks, so the relation in Eq. (13) actually holds very
well for the measured data. It should be stressed that Eq. (14), together
with Eq. (12), imply that the GM after the IAP can be completely specified by
the peak velocity V(a,r) alone, and ijj_ independent of_ th_e_ shape of_ the IAP.
The significance of this observation will be discussed in Section IV.

Having presented the idealized description of the GM, we would like to
compare it with the real-world observation. We plot a typical acceleration
history in Fig. 2(a) and the corresponding velocity history in Fig. 2(b).
Their typical observed counterparts are shown in Fig. 3(a) and Fig. 3(b).
Generally speaking, the measured GM exhibits a sharp IAP, followed by an
identifiable period of free fall which usually ends with a pronounced
acceleration pulse. The duration of the IAP normally remains fairly constant
as the slant distance changes. In addition to these regular features, the
observed GM displays the irregularity that at one point the free fall is
uninterrupted while at another it may be interrupted by one or two
(occasionally more) very narrow acceleration pulses, presumably due to
collisions among the multi-spalled ground layers. Whenever the interruption
is absent, we find, not surprisingly, that the length of the free fall period
agrees quite well with the value g(r) - o calculated by Eq. (12). In case
there are interruptions such as shown in Fig. 3(a), the duration of free fall
tends to be longer than calculated, but not much.
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Fig. 3(a). A typical measured ground acceleration.

Fig. 3(b). A typical measured ground velocity.



Another point worth mentioning about the observed GM is that the
acceleration pulse at the end of the free fall generally has a damped
oscillating tail such as shown in Fig. 3(a). Although the acceleration
patterns shown in Figs. 2(a) and 3(a) seem to have marked differences, their
velocity patterns as displayed in Figs. 2(b) and 3(b) are quite similar. It
will become clear in Section IV that the velocity pattern has a closer
semblance to the overpressure than the acceleration pattern itself. This is
why we claim that the model, which includes only the regular component of the
GM, can be a good approximation to the real data in generating the
overpressure.

As far as we can tell, the interrupting acceleration pulses which occur

in the measured GM do not exhibit any systematic spatial or temporal

correlations. For the purpose of calculating the overpressure generated by

the GM, the net effect of these interrupting pulses contributed from the

entire spalled surface is equivalent, in an average sense, to having a lower g

value during free fall. So the model can be "fine-tuned" simply by using an

"effective" g value if so desired.

III. GROUND MOTION PHENOMENOLOGY

From their explicit expressions

V(o,r) = S(r)/ A(t)dt (15)
o

and

a t
D(a,r) = S(r)/ dt/ A(f)df , (16)

0 0

we see that V(<*,r) and D(a,r) are linear in the scaling function S(r). This

implies that the duration of the free fall, Blr) - <*, decreases as r

increases. As it turns out, within a certain radius, the decreasing rate of

p(r) - a is faster than the Increasing rate of tg(r), as r is increasing.

This leads to the interesting implication that even though the Initial shock

10



arrives later in time for larger r, the GM could stop sooner. Let us
elaborate this point by the following analysis:

Let t(r) be the slap-down time ( i . e . , when the free fall ends) at a point
r; we have

t(r) = tg(r) + 0(r) . (17)

As shown 1n the Appendix, we can derive

dt ( r l = r L ( r ) . n(V(a ,r)+V(r))2 j # ( 1 8 )

dr (rz + bz) L9 2gV(r) J

Since tg(r) 1s monotonically increasing whereas [V(a,r) + V(r)]2/V(r) is
monotonically decreasing with r, I t is evident that

>< R , ( 1 9 )

where R is the solution of r for

(20)

Equation (19) implies that the GM will stop first at a fixed radius R. Inside

R, the slap-down process rapidly moves inward, whereas outside R, the opposite

1s true. Experimentally we have Indeed observed the following phenomenon in

the aerial TV pictures taken over many NTS events. A couple of seconds after

the zero time, there would appear a dark ring (sometimes irregular in shape)

rapidly shrinking in toward ground zero. It is compelling to relate this

phenomenon to the conclusion implied by Eq. (19). The observed initial ring

size and rapidity with which the ring shrinks are In fair agreement with the

calculated values.

Numerical solution Is needed to obtain an accurate value of R. However,

It 1s informative to take a look at the approximate analytic solution in Eq.

(A-7) derived In the Appendix,

11



R - b{[5nV(a,o)/2gtg(o)]2/(n+1) - l } 1 / 2 . (A-7)

Normally the depth of bur ial , b, is chosen to be proportional to Y1/3, where Y
is the yield of the device. Consequently, we have t_(o) « Y1/3. The peak

velocity at ground zero, V(a,o), in general depends on Y as well as the ground

medium. For a given type of medium, however, one can argue from energy

consideration that V(a,o) is essentially independent of Y provided b « Y*'3.

In this case, the square root quantity in Eq. (A-6) is rather Insensitive to

the variation of Y, and we conclude that R « b « Y1/3. In passing, we like to

stress that the type of ground medium can affect V(a,o) substantially and also

the value of scaling power n.

IV. ATMOSPHERIC OVERPRESSURE.

Let A{t,r) be the function describing the vertical ground acceleration,

in the far field approximation the overpressure at a given point x and time t

is given by*

P(x,t) = £ - / A(t - t a , r ) | x - r|"1d2r , (21)

where p is the air density and ta = |x - r|/c with c being the sound velocity
in air . In particular, i f A(t,r) is circularly symmetric with respect to the
ground zero, and x is vertically above the la t ter , then Eq. (21) can be
reduced to a one-dimensional integral. Let x = (0,0,h) in a coordinate system
with the ground zero being chosen as the origin, we have

P(h,t) = P / A ( t - t ( r ) , r ) (h 2 + r2 ) "1 / 2 rdr , (22)

where t a ( r ) = (h2 + r 2 ) 1 / 2 / ^ . Many essential features of the overpressure
generated by the GM can be learned by studying the above integral. In the
following, our discussion w i l l be based entirely 01 i t .

12



It is worthwhile to mention at this point that, if the acceleration
function A(t.r) is identical and synchronous everywhere within a radius r =
r0 , then the overpressure is simply the velocity integral.5 In this "piston"
model, we can write

A(t,r) - A(t)

and

ro
P(h,t) = P/ A(t - t > ) ) ( h 2 + r2)"1 / 2rdr

= Pc / A{t - t (r))dt.(r)
ta(o)

a

= Pc / A(f)dt '
t - t ( o )

a
= P c [ V { t - t j o ) ) - V ( t - t f r ) ) ] ( 2 3 )

a a U

The last equality stated that P(h,t) is the difference between the
velocities at retarded time t - ta(o) and t - t a ( r 0 ) . For large enough r0 so
that V(t - t a ( r 0 ) ) is zero for all practical t values of interest, the
overpressure is simply proportional to velocity function V(t - t a (o) ) .

In particular, if A(t) is a 6-function, then P(h,t) is simply a square
pulse with a non-zero value between t - ta(o) and t - ta^o* a n d p(h»t)
becomes a step function for rQ •»• «.

It is useful and illuminating to work out f i rs t the overpressure
generated by a 6-function ground acceleration due to a point source
underground. Since the shock will arrive at the surface at different times
for different: SD, we write the acceleration function as

A(r,t) = 6(t - tg(r))S(r) , (24)

13



where t q ( r ) i s def ined i n Eq. (2) and S(r) i s the sca l ing f u n c t i o n . Using Eq.

( 2 2 ) , we have

P (h,t) - pj 6(t
s o

t ( r )
9

t ( r ) ) S ( r ) ( h 2 + r 2 ) ~ 1 / 2 r d r
a

(25)

We can rewrite

6(t - tlr) - tlr)) = 6(r ~ x ( t ) )
9tg
— 7 +

3r ar
= x(t)

(26)

where x(t) is the solution of the equation

t - (h2+ x ) 1 / 2 / c - (b2 + x ) 1 / 2 / c g
 = 0 • (27)

It is straightforward to solve the above equation and find

x(t) = "T ^ " < 7
/b2 - h2

-I • T
where Q = -y - —n- .

c cg

Substituting (26) into (25) and integrating over r , we obtain

PJh.t) = pccnS(/5T)(b
2+x)1/2/[cn(b

2+x)1/2 + c(h2+x)1/23, for t1<t<t2o g g -1 c

and

PJh.t) = 0 otherwise.
o

(28)

14



Where

and

t2 . (h? • r / l ^ /c * rf * r?)W /c, .

We note that the propagation time of the wave along different paths

causes a smearing of the 6-function acceleration through r-integration. Thus,

the overpressure is nonvanishing over a f in i te period determined by rQ. Since

x(t) increases with t , so P6(h,t) is monotonically decreasing with t between

t j and t2> Compared with the overpressure resulting from a synchronous 5-

function acceleration, we have two factors contributing to the difference.

The scaling function, Sir), is the one most responsible for the decreasing of

P6(h,t) with t . The other factor, (b2 + x) 1 / 2 / [c g (b 2 + x ) 1 / 2 + c(h2 + x ) 1 / 2 ] ,

decreases with increasing t ^/ery s l ight ly. In the l imi t b -- «, the result of

Eq. (28) approaches the one in the piston model, as i t should.

After working out P6(h,t5, we can easily obtain the overpressure due to

an acceleration pulse of the general form

A(r,t) = A(t - t (r))S(r) . (29)
9

Without loss of generality, the function A(x) can be assumed to have a finite

support in [ O , A ] . We first put A(r,t) into a representation

A
A(r,t) = S(r)/ A(T)«(t - T - t(r))dT . ' (30)

15



It follows that

P(h.t) = P/ °A ( r , t - t ( r ) ) ( h 2 + r 2 ) ' 1 / 2 r d r
9o 9

= P/ A(T)dT/ °S(r)«(t - T - t (r) - t ( r ) ) (h2 + r 2 ) ' 1 / 2 rd r
oo 9

A
= / A(T)P6(h,t - T)dT . (31)

o

If the pulse A(T) is such that A « (t2 - tj), it is easy to see from the

convolution integral above what is the general shape of P(h,t). For tj < t <

t̂  + A, it rises from zero to the maximum steeply; for tj + A < t < t£, it

decreases monotonically just like Pfi(h,t); and, finally, for t2 < t < t2 + A,

it drops off steeply to zero.

We have discussed in Section II that the model GM provides a close

representation of the actual one in terms of velocity history. As implied

most clearly in the piston model, the overpressure history is simply

proportional to the velocity history of the GM. In the general case, this

relationship still holds approximately. This fact supports our earlier

assertion that the model GM can be a good approximation to the real data in

generating the atmospheric overpressure.
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APPENDIX

To derive the Eq. (18), we use the fact that both V(a,r) and D(atr) are

linear in S(r), therefore

dV°(a,r) _
dr

and, similarly,

dD(a.r) _

dr

ds
dr

(

(r

3Y0(a,r)

as
nrS

nro

r* + b*)

nr p
2 + bz)

3Vl

3S

!a,r) , (A-l)

D(a,r) . (A-2)

Using Eqs. (A-l), (A-2), and (17), we have

dt(r) dtg(r) l/fiv(a,r) dV(r)

or dr

^ ( r 2 + b 2 } - l / 2 nr L ( a > r ) + V2(a,r) • gD(a,r)|

cg g(r +b^)L V(r) Jc g g( )L

L 2
V ( r ) ] ] ̂

J
yj ]

( r Z + b Z ) L 9 2gV(r) J

We have used Eq. (11) in obtaining the last step of Eq. (A-3).

To obtain an approximate analytic solution for the equation dt(r)/dr = 0,
we use the fact that in a typical NTS event, (B{o) - a) is usually much larger
than a. Dividing Eq. (10) by Eq. (9) and using Eq. (13), we get

V(O) - VU.o) = aY(o,o)/(B(o) - a) , (A-4)

17



which Implies V(o) Is just slightly larger than V(a,o). Therefore, we can

approximately write

(1 • r 2 / b 2 ) n / 4 . (A-5)

We note that, to within an accuracy of 20$, we can set (x + yfi/xy = 5 for 1/4

< x/y < 4. Now I f V(R)/V(o,R) < 4 1s valid, a posteriori, we can approximate

the equation dt(R)/dR = 0 by

tg(R) - 5nV(a,R)/2g . (A-6)

This leads to

R - b{[5nV(a,o) /2gtg fo)]2 / ( p + 1 ) - 1 } 1 / 2 , (A-7)

to within an accuracy about 20/(n+l) per cent. With R given by the above, we

have

- [5nV(a,o)/2gtg(o)]n/2(n+1) .

For all the NTS events for which we have GM data, the quantity
[5nV(a,o)/2gtG(o)] never exceeds 20, or equivalently V(R)/V(a,R) < 3.1, even
if we take n = 3. Therefore, the approximation used in writing Eq. {A-6) is
justified a posteriori.
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