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Abstract: An RPA formalism is developed to investigate the existence
and properties of slow collective rotation around a non-symmetry axis,
when there already exists a large angular momentum K along the symmetry
axis built up by aligned single-particle spins. It is found necessary to
distinguish between the collectivity and the repeatability of the
rotational excitations. First the formalism is applied to bands on high-
K isomers in the well-deformed nucleus Hf, where the rotational-model
picture is reproduced for intermediate K-values in agreement with
experiment. At high K there is a suppression of the collectivity
corresponding to the diminishing vector-coupling coefficient of the
rotational model, but the repeatability actually improves. The moment of
inertia is predicted to remain substantially smaller than the rigid-
body value so the bands slope up steeply from the yrast line at spins

where pairing effects are gone. A second application is to the initially
212spherical nucleus Rn, which is believed to acquire an oblate

deformation that increases steadily with K due to the oblate shape of
the aligned orbitals. In this case the repeatable excitations come
higher above the yrast line than in Hf, even at comparable deformations.
Some collective states may occur very close to yrast, but these are more
like dressed singleparticle excitations. The main differences between
the two nuclei studied is interpreted as a general consequence of
their different Srieli structure.
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1. INTRODUCTION

The spin of a nuclear state can in some cases be simply understood

in terms of the shell model as the combined intrinsic spins of one or a

few unpaired nucleons, while in other cases collective rotation around

a non-symmetry axis would seem to be a more appropriate idealisation.

These two limits and the intermediate situations are in themselves

interesting to study, but experimental developments over the past decade

have also shown that the two modes can coexist and interact in a variety

of ways, which are only beginning to be charted and understood. For

example, many phenomena observed in collective rotors show how individual

quasi-particle? may decouple from the ground-state fields in order to

align their spins with the angular momentum of the rotor in the yrast

states.

In the following we will be concerned with a very different

combination of the two modes, where a large angular momentum I=K is

generated by the alignment of single-particle spins along a nuclear
1 2)symmetry axis ' , whereupon a relatively small collective rotation

giving rise-to states I=K+1, K+2, ... may take place around a

perpendicular non-symmetry axis. A priori it may be expected that a large

K-value will influence the properties and ultimately the existence of

such collective bands, for example through changes of the surface and

pairing deformations and because of the limited angular momentum

available among the valence nucleons. This would reflect structure

specific to the nucleus, in contrast for example to an ideal Fermi gas

enclosed in a box with a deformation energy governed by the liquid-arop

model.

For the latter, the large K-value can be introduced by a displacement

of the Fermi sphere in momentum space corresponding to the presence of a

cranking constraint - < o , i" *ne kinetic energy. The moment of inertia
2)around a perpendicular axis can then be extracted as in ref. , which

gives

(1.1)
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where

4/A
-J/3

(1.2)

and the coefficient 6 is about 0.1 for spherical and near-sphericil

shapes. The largest values of u , which would still correspond to

realistic K-values in nuclei, are an order of magnitude smaller than <D .

Thus the rotational moment of inertia in the Fermi-gas model stays close

to the rigid-body value even under the most rapid rotation around another

axis that a nuclear system could hold. The latter rotation may of course

induce deformation changes and thereby influence the rigid-body value

itself.

The RPA formalism of section 2.1 below has been suggested to us by

Bohr and Mottelson ' as a theoretical tool for analysing the deviations

from this behaviour in the nuclei where there are yrast states of single-

particle character at very high spins. The formalism starts from the K-

scheme for single-particle spin alignment along a symmetry axis in the
2)deformed shell model , and a collective rotation around a perpendicular

axis will be found among the solutions of the RPA equations if it exists

at all. The energy, or moment of inertia, and the collective enhancement

of the in-band E2 transitions for such a mode can then be extracted

according to a correspondence with the rotational model which is

clarified in section 2.2. An even more essential characteristic of a

collective band, which is arbitrarily imposed in the rotational model,

is the presence of several, regularly spaced band members. A way of

actually calculating irregularities in the energy spacing from the RPA

formalism is briefly outlined in sect. 2.3, while a more readily

obtainable quantity expressing the repeatability of the rotational

excitations is introduced and discussed in sect. 2.4.

Experimental information could be obtained for example from the

angular distributions ' or the transition-energy correlations ' of

continuum gamma rays, or simply from discrete-line spectroscopy in

appropriate nuclei . A comprehensive theoretical survey over all the
9)

relevant regions of nuclei ! lies beyond the scope of the present paper,

and in particular the results of calculations for the A-150 region willbe deferred to a forthcoming publication 10) In section 3 below detailed
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176 212
numerical results are given for two nuclei, Hf and Rn. They are

8 11)selected because each is known from experiment ' ' to represent a
9)

ciearcut example of a characteristic situation , where single-particle

rotation around a symmetry axis prevails along the yrast l ine at very

high spin. Therefore i t may be possible to draw some general conclusions

from the calculations about the evolution of the collective mode with

increasing single-particle angular momentum.

2 . THE MODa

2.1 The RPA formalism

Rotation around the 1-axis induces a change in the nuclear field ,
to first order

a (2.1)

Let us associate a field operator F, with this variation:

(2.2)

so that

H = (2.3)

can be thought of as a linearisation of a two-body interaction

K- i (2.4)

The choice of the coupling constant will be given some attention (cf.

below). A self-consistent value is obtained by requiring the amplitude
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to be given by the self-consistency condition

(2.5)

where 6© is the change of nuclear density incurred by the rotation,

= - i£s (2.6)

From this it is obtained that

(2.7)

With two modes .rotation around the 1- and 2-axes, and transformation to
spherical components, we obtain

(2.8)

and the corresponding two-body interaction

/ S (2.9)

Here a and F are the spherical components, ,?nd the field operator F can
be written

r — (2.10)

Since the major contribution So the commutator arises from an axially

symmetric quadrupole field in H , the operator F contains a leading order

term proportional to Y-,,.



The Hamilton ian

Fff) (2.11)

is to be treated in the random phase approximation. The interaction is
separable, though into non-Hermitian fields. When the starting point is
a state with a non-zero K-value , the formalism and its physical inter-
pretation ' as presented below thus become somewhat different from the

12)case when K is equal to zero, considered earlier by Hamamoto . Some

of the features of RPA on a K#) state are familiar from earlier work on

gamma vibrations ' , where the symmetry of the field is Y^o instead

of Yo,.

Here the operators

are introduced as creation operators for particle-hole states with JK=+1
and JK=-1 respectively, and

+ > b a -

for the corresponding RPA phonon creation operators. The following

standard relations are imposed

t

AT = Z

F -

(2.12)

(2.13)

F
a-

(2.14)
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O c , A £ x J = (2.15)

,A+1* fr,
r

(2.16)

The frequencies ftj.^ are the unperturbed particle-hole excitation
energies and HOJ are the RPA roots. When pairing is included, the
quantities u. are reinterpreted as a difference between multi-quasi-
particle energies. In general, the AV=0 excitations are most important,
and the corresponding energies u.+ are of the form ±(E -E ). The
operators A"!̂  also create Av=2quasiparticle excitations. The strengths
F. are to be multiplied with the appropriate pairing factor: for AV=0

and 2 the factors are (U Uy-V Vy) and (U Vy+V Uy) respectively. The sign
inside the pairing factor reflects the even time-reversal character of
the operators F and F , viz. they fulfill

-1 ~ Ft
(2.17)

with a time-reversal quantum number ~=+1.

The separability of the RPA relations allows the simplif ication

into the equation

a. (2.18)

where

+ i
2 -

(2.19)

In addition, another equation is obtained by substituting m. and OJ._ by
their negatives yielding a dispersion function which is the mirror image of
(2.19) and thus RPA roots which are the negatives of the solutions to
(2.18).

The normalisation conditions are
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(2.20)

• = + • (2.21)

for the a+ and a- roots respectively. The plus signs of the right hand

side are valid for so-called physical roots and the minus sign for

unphysical roots. Eq. (2.18) gives the physical a+ roots, which are all

positive, and the unphysical a- roots, of which some may be positive, but

most of them are negative.

A realistic example of a plot of G(z) is shown in fig. 1, obtained

from the numerical calculations for the nucleus Hf at K=14 in section

3 below. The figure illustrates the situation that is typical for a

deformed nucleus. Note that the lowest physical root u , does not lie

close to any pole, which is one of the characteristics of a collective

solution. The AK=±1 single-particle excitations with energies u. ,

corresponding to the poles in fig. 1, are marked out in fig. 2. There the

tilted line is the Fermi level of the non-collectively rotating system
1 2)' . The slope corresponds to the rotational frequency w *. Only those

single-particle transitions across the Fermi level are indicated which

have non-zero matrix elements of the fields

enough energies to be seen in fig. 1.

or "̂ and a^so

From the condition

^ % vo r

it follows that the physical a+ roots and unphysical a- roots are well

separated in eq. (2.18), i.e.

< aiSi a, a'
at-

(the symbol flu always denotes a physical root). A solution j »0 is to
3 a

be expected. It corresponds to a mode that simply changes the M quantum

number, i.e. it produces a reorientation of the system as a whole.
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The test for such a zero root is made by evaluating G(0). Using
eqs. (2.2), (2.10) and (2.19) the dispersion relation yields

G 10) = - 2 — < — a
 r TT i (2.22)

and thus

(2.23)

if the self-consistent value (2.7) of < is used. Actually in the
calculations below, the operator F is approximated by i^Y^,, which is not
exactly equal to the F of eq. (2.10) if P. distortions are included and
if the I»i and I2 terms are defined in a stretched basis. Furthermore,
the particle-hole excitations with energies OJ.>10 MeV are not taken into
account explicitly. The corresponding terms in eqs. (2.18)-(2.20) are
roughly constant at the comparatively small energies z where the
interesting roots are to be found, so they can be thought to have been
moved to the right-hand side of eq. (2.18) and absorbed into the coupling
constant K. This changes the selfconsistent value of « by a factor of
about two. In the practical calculations it is a great simplification to
assume that the effective coupling constant < can be determined from
eq. (2.23).

The norm of the oi»0 solution is found to be

(2.24)

assuming that a zero root is obtained from the mirror image of (2.17):

whereas (2.17) would yield a negative value of the norm. Thus the



-9-

reorientation mode is one of the a- roots. It is the lowest of the

physical a- roots unless there exists a AK=-1 particle-hole state with

a negative frequency Hw.. .

The creation operator for the a =0 mode is

AI>>- (2.25)

and thus, as expected, it simply generates a change of the M quantum

number.

For K#) the field F is non-Hermitian, whence the function G(z) in

eq. (2.18) is asymmetric in z. Thus there are no normalisation problems

as when K is zero. In the latter case the occurrence of a zero root is
12)related to the transition to an unstable regime with an imaginary root ',

The lowest a+ root can be a rotational excitation (I=K) -*• (I=K+1).

In fact, to second order in to, we have
a+

(2.26)

where j is the cranking moment of inertia:

i » (2.27)

This is seen by expanding G(co ) around 'JJ.
a+ a+

J +• ui " G " ir >

(2.28)

and since G(J ) = G(0) = -
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= o (2.29)

from which eq. (2.26) follows.

The normalisation (2.20) yields

(2.30)

in the same approximation.

For more complete numerical results eq. (2.18) is to be solved
rather than (2.29). Whereas eq. (2.29) produces only one non-zero root,
acquiring the total strength, the lowest u root of (2.18) may be less

a+

collective. Though no negative physical a+ root can exist, there may be
a non-collective lowest root corresponding to a AK=±1 state of single-
particle character. Such a situation occurs if the field coupling to the
lowest particle-hole state of AK=+1 is very weak. In intermediate cases
such a weak low-lying pole may cause a fragmentation of the collective
mode. The mechanism for such poles will be seen in sect. 3.2 below.

2.2 Connections with the rotational model

The RPA formalism derived in the previous section is based on the
assumption that the first excited state !I+1,K>. „ in a rotational band,
built on the highly aligned band head !IK>r K, can be represented by
means of AK=±1 vibrational phonons. We shall now attempt to discuss
briefly the plausibility of this assumption.

As is well known, the properties of vibrational spectra differ
essentially from those of rotational ones. The energy increases linearly
with angular momentum I in the pure vibrational spectrum, and the only
enhanced electromagnetic E2 transitions are those with a change in number
of phonons n by one unit (An=1). On the other hand, a rotational spectrum
exhibits a quadratic dependence of energy on I, and there are enhanced
E2 transitions with both AI = 1 and <il=2.



-11-

In spite of the essential differences between the properties in the
two kinds of spectra, one may attempt to draw some analogies. This turns
out to be possible for the first few states in the band in the case when
there is a substantial aligned angular momentum K(K>>1). In this case,
the transition energies between the neighbouring members in the band
IIK>T „, |I+1,K>, |I+2,K> ... differ by an amount which is almost
negligible compared to the total magnitude of the transition energy. In
an ideal rotational band the transition energy between two neighbouring
states with angular momenta (I+n) and (I+n-1) is

— fc = —• £ ( I f n )

whose relative variation with n is slow if I>>n. Thus the energy of the
RPA phonon, which was seen above in eq. (2.26) to correspond to the
cranking value for the lowest transition in the band, is also a reasonable
approximation for the first few transitions.

Similarly, the unstretched reduced transition probability
B(E2;I+n,K->-I+n-1 ,K) for a rotor is proportional to the square of the
vector addition coefficient <I+n,K,2,0'I+n-1,K>, which can be shown to
be n times stronger than B(E2;I+1 ,K->-I,K) in the limit I>>n:

I i o j l f o - i Z?~ ( 3 n / I J

6;e2; I*f, K-» 2. KJ j ( i r i n ö l l i ; 2 C 3 /1)

In the case of a vibrational spectrum, where n means the number of
phono we obtain again the same result

B I £ä • n -t n - i )
— - n (2.33)

Furthermore, the stretched E2 transitions,forbidden in a vibrational
spectrum because they change the number of phonons n by two units, come
out to be strongly retarded in a rotational spectrum as well. Indeed, the
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ratio of the stretched to nonstretched E2 transition rates in the case
of an ideal rotor can be estimated in the following way

2 Q

BiEZ; <Ii-vi I i ö |IfV!-1 I>

n _ \

21

This quantity becomes very small for I>>n.

The absolute scale of the E2 transitions in the rotational model are
determined by the intrinsic quadrupole moment Q , and in particular the
reorientation matrix element of the I=K band head gives

(2.35)

The corresponding B(E2) for the correlated RPA band head can be obtained
from the quadrupole matrix element between the band" head and the zero-
frequency reorientation mode by the definition

2 (2.36)

For any numerical solution it is straightforward to evaluate the matrix
element. Furthermore, when the quadrupole operator is proportional to the
field F, this matrix element must be proportional to K" 1^ according to
the exact result (2.24). Since the vector coupling coefficient in eq.
(2.36) is also proportional to K'1/2 for large K, the B(E2) value for
reorientation contains no explicit K-dependence, just as in the rotational
case. Employing the selfconsistent value of < , it can be shown that the
right hand side of eq. (2.36) does indeed contain Q in the same way as
eq. (2.35).

Ratios between transition rates in the band were given in eqs. (2.32)
and (2.33). Let us finally check the B(E2) ratio between the lowest
transition and the reorientation model. In the rotational model it is
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< K Z O i K K > , *

K K Z O I K O '
K (2.37)

Taking the approximate RPA solution from eq. (2.29), the transition and

reorientation quadrupole matrix elements cancel in the ratio according

to eqs. (2.24) and (2.30), and the remaining geometrical factors give

< <»« K :
(2.38)

i.e. the same result as in eq. (2.37) above.

In summary, we can see that the two possible ways of treating the

collective excitation spectrum on the state !Ik>j_., either as a rotation,

or a vibration, both lead to similar results in the first approximation.

The correspondence is shown pictorially in fig. 3.

2.3 A schematic model and higher order corrections

Higher order corrections to the RPA results, and the explicit

calculation of quantities involving the multiphonon excited states, can

be calculated with methods of nuclear field theory outlined in refs. ' .

Actually, we have found that very good collectivity is needed in order

for the corrections to achieve improvements when only the next higher

order terms beyond RPA are included. In the present subsection we shall

therefore concentrate upon a simple model that yields some qualitative

results on the correction terms, and on the multiphonon excitations to

be discussed in the next subsection. The first anharmonic correction

contributing to the energy of the second excited state in the band, or

the two phonon states, is given by the diagrams shown in fig. 4. There

the vertices 1, 2, 3, 4, 6 and 7 are determined by the RPA, while vertices

5 and 8 are connected with the particle-particle or hole-hole matrix

elements of the interaction. The vertices with only one phonon a+

are shown in fig. 5, to which the hermitian conjugates should be added.

The expressions for the four vertices shown in fig. 5 are
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F ;:
 p<

-v (2.39)

i- * '-j F.

V

The magnitude of these vertices and the magnitude of the two-phonon
energy-corrections corresponding to diagrams shown in fig. 4 can be
estimated in a simple model where there are n_ degenerate AK=-1
excitation? of energy e and n degenerate AK=+1 excitations of energy

matrix " +

e+. The elements have the same value: F. =F_, for all the transitions
e_, while F. =F+ for the excitations e+. The graphical solution of the
RPA equation (2.18) is illustrated in fig. 6. The energy ^ of the
collective state can be given in a simple closed form

(2.40)

where

- e, (2.41)

and

•yi ~

Txnressions for the strength of vertices A/A)»

fig. 5 and eq. (2.39) can be obtained, for example
A ( c ) and A ( D ) of
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A, SJ •XL1
1/2 (2.42)

It appears that all the quantities A-, with j=A, B, C or D, are inversely

proportional to /n~. Consequently, they are small for large a+ if the

quantities a and g are of the order of unity and a^8. The contribution

to the diagrams indicated in fig. 4 turns out to be roughly of the

order of

A-
(2.43)

This follows from the fact that the diagrams contain four vertices and

three energy denominators. Consequently, the ratio of 6 to the phonon

energy is

/T Y.
L + g^ (2.44)

r

CO

which is very small for n+>>1. In that case the two-phonon energy should

lie close to 2co, as expected.

A further correction is shown in fia. 7. The diagram illustrates a

possible coupling between the one-phonon and two-phonon states which

contributes to the transition matrix element between them. Because of

conservation of angular momentum projection (K) the phonon in the final

state carries angular momentum A K = 2 . Thus the upper vertex is a coupling

predominantly of type Ypo rather than ¥2*, expressing the fact that all

components of the quadrupole field should be considered at the same time

in a more accurate treatment.



2.4 Repeatability and collectivity

A necessary condition for the establishment of a rotational
band on the high-K state is that the RPA-phonon can be repeated
many times. As the RPA-phonon consist of particle-hole excitations,
cf. eq. (2.12), it follows from the Pauli-principle that each particle-
hole pair can be exploited only once in the creation of the multi-
phonon state. A phonon with good repeatability contains many X:s and Y:s
contributing to the sum in (2.12). This implies that the Pauli-principle
should not have much influence on the few-phonon state. On the other
hand, if the phonon consists mainly of a single particle-hole pair the
exclusion principle is crucial already for the two-phonon state.Therefore
a measure of the boson-character of the RPA-phonon is needed. A simple
recipe for such a measure is given below where a quantity n is defined
whose deviation from unity expresses the loss of norm due to the Pauli-
principle when the RPA-phonon is repeated.

First, let us note that for a boson with creation operator B+ and
annihilation operator B

9, = 2. D (2.45)

Taking the expectation value of both sides of (2.45) in a state such

that <i|BB++B+Bj' i> t 0 gives

•z 1 (2.46)

Guided by this we calculate the corresponding quantity for the RPA-
phonon

which defines r-. The normalisation relations (2.19) and (2.20) are

satisfied if the expectation value of the commutator !A,A+ j in the

uncorrelated groundstate is set to unity:

r ! ' (2.48)
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Taking this uncorrelated ground state 0>as the state <i>in (2.47),

the quantity n is found to be

In deriving (2.49) we have used the normalisation condition (2.19)

and taking the exclusion principle explicitly into account through the

relations

(A,:

e> -- C

e> - O (2.50)

where A*+ and A*_ are creation operators of particle-hole pairs.

It is instructive to calculate n in the two-pole model presented
in the previous subsection. The result, in terms of the parameters
introduced there, is

(2.51)

where a and 3 can be assumed to vary slowly. Thus, i f i is close to

unity the degeneracies r.+ and ?._ are large. In this case the correction

due to the exclusion principle plays a minor role since there are many

different particle-hole pairs available for the creation of the two-

phonon state. On the other hand, i f :.+ and Q_ are small the value of

ri is close to zero.

Supported by the results of the two-pole model i t can be said that

i f n is close to unity the RPA-phonon can be repeated suff ic ient ly many

times for the establishment of a band while a value of " close to zero

means that the multi-phonon state w i l l peter out quickly with an increasing

number of phonons due to the Paul i -pr inciple. The quantity n w i l l in

the following be referred to as the repeatabil ity.

The matrix element between the qround state and a one-phonon state

is the most commonly used measure of the co l lect iv i ty of the one-phonon

state. A large col lect iv i ty indicates that there are many particle-hole

pairs contributing to the transit ion. However, in the calculations i t
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turns out that there may be more than one state with a collectivity
several times larger than the single-pä.ticle value. In such a case
the additional information given by the repeatability helps to select
the most appropriate phonon for generating the rotational band. An
example encountered in the calculations of sect. 3.2 below for the

212nucleus Rn is shown in figs. 8 and 9. In fig.8 two solutions are

seen to have roughly the same collectivities whereas the repeatability
is 0.04 for the solution with lowest energy and 0.85 for the other one.
The origin of the difference can be seen in fig.9 which shows a plot
of the X and Y amplitudes in the respective wave functions. While
the 931 keV solution consists mainly of a single-neutron particle-
hole excitation within the f5/2 shell the 4006 keV solution is built
out of many particle-hole pairs, most of them n i 13/2 - g9/2 and
p hi 1/2 - h9/2. The 931 keV solution may also gain strength from the
Y:s , i.e. the AK=-1 amplitudes. A different case is shown in figs.
10 and 11. The response function of the well-deformed nucleus Hf
considered in sect. 3.1 below has a single pole somewhat below the
others. The smooth overall distribution of poles makes it possible
to have several solutions with good repeatability. Actually, the
second root has larger repeatability, whereas the first one by far
carries the most strength. Comparing the B(E2)-values of the two
roots with the B(E2)- value of the reorientation mode, it is clear
that the first root is the rotational one, though it has smaller
repeatability than the second root due to a larger admixture of the
lowest single-particle mode. Such an admixture cannot contribute to
many rotational excitations, and higher up the band can be expected
to lose its identity, or at any rate a substantial part of its moment
of inertia.

3. CALCULATIONS AND RESULTS

The technique discussed in this paper is used to describe rotational
motion around an axis perpendicular to the symmetry axis and on an
equal footing with the true ±K=1 excitations, starting from a high K
state. It is evident from the results that both exist and contribute
to the spectrum calculated.



3.1 The nucleus 1 7 6Hf

3.1.1 The experimental situation

The f i r s t archetype to be studied, Hf, belongs to a class of

stably deformed nuclei with large number of high-n Nilsson orbitals

close to the Fermi level. Single-particle configurations with several

n-contributions aligned to form a large total K may then become yrast.
176In Hf several two-quasipar t i d e states of this type are observed

near yrast , while a few four- and six-quasiparticle states are
8)known to come below the ground-band levels of the same spin . The

lat ter situation is predicted to persist up to an angular momentum
1 2)of about 40-50. In the terminology of refs. ' ' i t corresponds to

rotation around the prolate symmetry axis, favoured in this case by

special shell effects. Rotation around a perpendicular axis, ./hich

would be favoured for a prolate r igid body, gives rise to the collective
P 1 ft)

ground band. Similar, collective bands are observed ' ; on the

K= 6, 8, 8 ' , 14 and 16 levels, and presumably on many others up to

very high spins. The energy spacings and branching ratios in these

bands, which are the ones of interest in the "present work, have-not

been seen to deviate appreciably from the rotational-model description,

although the moment of inertia may di f fer a b i t from one band to

another. Consequently, in studying the high-K bands of Hf with the

formalism of section 2, we know a pr ior i that this is a case where the

col lect iv i ty should be fu l ly developed, and at lower spins the numerical

results can be checked against measured data. I t is known from earl ier
18)cranking-model calculations that the experimental moments of inertia

are fa i r l y well reproduced.

3.1.2 Details of the calculations

The RPA results below are based on the Nilsson potential at the
9 17)equilibrium deformation for rotation around a symmetry axis '

£=0.25 and e = 0.04, which does not vary appreciably with the angular
u

momentum. The same standard single-particle and pairing parameters
9 17)as in refs. ' are employed, and since the RPA coupling constant is

determined by eq. (2.23) there are no further parameters. The matrix

elements of the f ie ld ooerator F, that creates the iK=1-excitations,

are proportional to the matrix elements of j + , weighted by the single-

particle energy difference (see eq.(2.10)), so the analogue of a

decoupling factor is superficially eliminated, since the corresponding
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matrix element is zero. For a harmonic oscillator the matrix elements
2 12)of F are proportional to those of the operator r Y91 (see ref. ; ) .

2First the single-particle energies and r Y^, matrix elements are

calculated taking the stretching of the basis into account. Next the
12)single-particle occupancies corresponding to the optimal states

are determined by tilting the Fermi level as indicated for K=14 in

fig.2 above. There is a good consensus on the detailed configurations

for the experimentally known high-K levels obtained in the present

model and from other considerations ' ' . For a given
2

configuration the energies and r Y?. matrix elements of the possible
AK=-1 one-particle or quasiparticle rearrangements define the RPA

response function. The low-energy part of the response function for

K=14 is shown in the lower part of fig. 10. Energies greater than

10 MeV need not be taken into account explicitly, as discussed in

sect. 2.1 above, since their effect is absorbed into the coupling

constant given by eq. (2.23). The physical roots of the dispersion

relation (2.18), which is represented graphically in fig. 1, are

determined numerically with an accuracy of 0.0001 MeV. The result for

K=14 is shown in the upper part of fig. 10. The energy is taken to

define a moment of inertia according to (2.26),which may be more or

less meaningful depending on the extent to which the excited state

should be regarded as a member of a high-K rotational band or a dressed

AK=1 intrinsic excitation. It is straightforward to obtain the amplitudes

X. of the AK=+1 components and Y-_ of the AK=-1 components shown in

fig. 11 for the two lowest roots at K=14, and hence all the other

quantities defined in sect. 2. The B(E2) values are calculated under

the somewhat schematic assumption of an effective charge equal to unity

for both protons and neutrons.

3.1.3 Results for 176 Hf

The first square in fig. 12 shows the equilibrium deformation e«

of each optimal high-K level, in this case a constant. The remaining

squares contain information about the first excited RPA state based on

each optimal state whose energy is represented as a moment of inertia D.

One measure of the collectivity is the B(E2) reduced transition rats

from the excited state to the correlated band head, expressed in single-

particle units ', and another is the repeatability - of the excitation,

The aim of the present work is to study the connections relating these



quantities with each other and with the microscopic picture illustrated

in figs. 2 and 10.

In a plot like fig. 2 the curvature of the bows, that connect the

states originating from the same j-shell, follows the deformation in sign

and magnitude. The curvature is large in the present well-deformed case.

Therefore the lowest poles of the response function, which generally

correspond to single-particle transitions within j-shells, have rather

large energies. The response function for K=14 in the lower part of fig.

10 has only one strong pole in the 1-2 MeV range. Above 2 MeV there is

a forest of poles extending up to about 7 MeV. The dense part between 2

and 3 MeV comes mainly from transitions within the valence j-shells,

while the ti.icket at 5 MeV comes from transitions between shells like

p h^-2 and f^/o» n in/2 anc' ^9/2' "^e uPP e r Par^ °^ ^ 9 * ^ shows how

the RPA solutions tend to pick up some collectivity in the low-density

parts of the response function, and especially this is the case for the

lowest solution which comes in the energy gap below the lowest pole.

However, as pointed out in sect. 2.4 and shown by eq. (2.38), this

conventional measure of RPA collectivity contains a 1/K dependence which

emerges as a purely geometrical factor in the rotational model. The

numerical results in fig. 12 for the B(E2) value do indeed conform fairly

well to the 1/K curve, also drawn in the figure. The systematic deviation

is largely due to the hexadecapole term, which is neglected in the RPA

field. Contrary to the B(E2) value, the repeatability n is seen to stay

almost constant, around 0.8, which shows that the collectivity character

of the bands remains intact at the very highest spins. The repeatability

even increases a bit in going from K=14 to 22, because the lowest pole

in the response function (fig. 10) corresponding to a transition within

the iio/p shell is then blocked out. In terms of fig. 2 the Fermi level

is tilted so that it no longer intersects the i 13/0 DOW at the low-energy

transition marked D.

The same mechanism that leads to this increase of the repeatability

also leads to a substantial decrease in the rotational moment of inertia

seen in fiq. 12 between K=14 and 22. There are no more low-energy poles,

and at higher K-values the moment of inertia stays about constant.

For lower K also the experimental moments of inertia are marked out

by crosses in fig. 12. The theoretical value for the K=0 ground band,

which comes only slightly below the experimental values, was obtained in

ref. by cranking the Nilsson potential at the relevant deformation.
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It is indicated by an open circle in fig. 12. The calculated moments of
inertia for K=8 and 14, within the region of the pairing collapse ,
also come slightly below the experimental values but exhibit the correct
trend. For K=8 results are shown for two bands, one with two neutron
quasiparticles and one with two proton quasiparticles. The observed
difference between their moments of inertia is correctly reproduced.
Despite the collapse of pairing, the moment of inertia decreases in going
to K=22, due to the blocking of the low-energy poles exemplified above.
In the absence of low-energy poles neither the moment of inertia nor the
other properties depend very sensitively on the presence or absence of
pairing. This is demonstrated by the results in table I, obtained for
K=14 by varying the pairing gap as though it were a free parameter.

Finally it may be noted that the moment of inertia does not come
anywhere near the rigid-body value, marked by the dot-dashed line in
fig. 12, contrary to the result (1.1) of the Fermi gas model. The
physical implication is shown in fig. 13. At low spins, pairing
correlations affect the slope of the solid curve representing the ground
band, and the slope of the dashed curve connecting the lowest high-K
level's, with the result-that they become about the same as the slope of
the straight lines representing the high-K bands. Therefore the lacter
may help to conduct a gamma cascade roughly parallel to the yrast line,
characterised by Al=1 M1/E2 transitions ' . For high K-values, the
moment of inertia for the continuation of the K=0 ground band, and also
the effective moment of inertia for rotation around a symmetry axis, are
of the same order of magnitude as for rigid-body rotation. The moment of
inertia for the high-K bands, however, is roughly half as large.
Nevertheless, they are predicted to be excellent rotational bands. Instead
of carrying the cascade parallel to the yrast line, they could help to
funnel it down rather rapidly into the high-K band heads. The numerical
results, and our qualitative understanding of the response function,
suggest that the very high-K bands may have similar moments of inertia
and could therefore give rise to coherence effects in transition-energy
correlation experiments.

3.2 The nucleus 2 1 2Rn

Nuclei characterised by closed or nearly closed shells and spherical
shape in the ground-state configuration, and particularly the nuclei in
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the lead region, are generally expected to exhibit yrast rotation around
2 7 20)a symmetry axis ' ' . When there are a few particles outside the

212closed shells, as in g6Rn126' tne most favourable way of generating
angular momentum is for the valence particles to align themselves in
the orbitals of highest spin above the shell. Such orbitals are always
oblate, and the valence configuration will also polarise the core to a
small oblate deformation. Consequently, when core excitations are needed
to increase the angular momentum still further, the most favoured ones
involve spherical rather than oblate holes below the shell gap, and again
oblate particle states above the gap, so the oblate deformation continues
to increase with increasing angular momentum, just as for the rotating

liquid drop. Comparison between theory ' ' and experiment ' indicates
212that this does indeed occur for the nucleus Rn.

In the following we will investigate if the deformation caused by
the spin-aligned orbitals also makes it possible for the nucleus to
rotate collectively. There is no evidence for this in the discrete-line
data , which extend up to angular momentum 30 where the calculated
deformation is £=-0.1. However, the deformation at spin 51 is predicted
to be £=-0.24, s4=0.04, which is as large as in

 1 7 6Hf. In the
calculations we use the DM0 single-particle parameters employed for the

212 7)description of Rn in ref. .

It was seen above in connection with fig. 8 that even at the very
small deformation of a state with spin below 30, there appears an RPA
solution which has the repeatability characteristic of a good collective
rotational mode. It lies at high, energy, about 4 MeV above the band head
and just below the energies of the single-particle excitations across
the shell gap which build it up. The increase of the deformation of the
optimal states with K can be followed in the upper lefthand section of
fig. 14. This figure is constructed in complete analogy with fig. 12 for

Hf except that the excited state marked out for each optimal K is the
lowest state only for K>30. The others are selected because they are
best qualified to represent a collective rotation by having an enhanced
B(E2) and good repeatability. The calculated evolution of the band
properties are shown in the other three sections. For K=48 and 51 there
are three equally good candidates (c.f. the upper part of fig. 15) and
all three are represented in fig. 14. Since -^ is roughly linear in K,
it may be expected on the basis of the rotational model that the B(E2)

2
goes as K , i.e. the square of the quadrupole moment, times the
geometrical factor 1/K which governs the B(E2) in 176Hf (fig. 12). Very
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roughly, the B(E2) values for c ^Rn in fig. 14 conform to such a trend.
212

For K-values around 50, where 'e9 in Rn becomes as large as z0 in
176

Hf, the calculated B(E2) values in both cases lie around 5 single-

particle units. However, the behaviour of 3- and n at large K reveal

important differences between the two cases. Contrary to the situation
17fi 712

in Hf, the very high-K collective rotational RPA solutions for Rn

are fragmented by low-energy poles in the response function. The effect

is seen in fig. 14 above K=30, where the repeatability of the lowest

collective solution drops into the range --0.5 and the so-called moment

of inertia, representing the inverse of the energy, increases in some

cases almost up to the rigid-body value. In other cases the moment of

inertia corresponding to the lowest solution is a somewhat smaller

fraction of the rigid-body value than in Hf.
The microscopic mechanisms can be deduced from the response function

in the lower part of fig. 15, which may be compared with the response

function for Hf in fig. 10. First, the forest which in fig. 10 extends

down to about 2 MeV begins to thin out at somewhat higher energy in
212

Rn. This may be regarded as a reminiscence of the closed shells.

Certainly the deformation brings the occupied and unoccupied levels

closer in energy, but not primarily the ones which differ by only one

unit in 2.

212
Secondly, in Rn there may occur some poles scattered over the

low-energy gap in the response function which fragment the collectivity.

It may be noted for example in the upper part of fig. 15 that the

collectivity is best in the RPA solutions with lowest energy, while the

repeatability is best in the ones closest to the low-energy fringe of

the forest. The lowest pole in fig. 15 corresponds to a single-particle

transition between the ;.=-j orbitals of the proton hg/p and f,.p shells,

and it must be regarded as an incidental item. In fact, the exact
176

analogue of this transition in Hf, but there for ,.=+j and neutrons,

cand be understood from fig. 2 to give rise to a low-energy pole in the

response function for all high-K configurations where one of the levels

is occupied. The second low-lying pole in fig. 15 does, however,

represent a systematic feature which makes fragmentation more likely to

occur in oblate than in prolate nuclei. It corresponds to the transition

between :;=-9/2 and -7/2 within the proton hg,2 shell, and again the

analogue for neutrons and opposite sign on the :.-values can be seen in

fig, 2 to occur for Hf. There, however, it comes 1 MeV higher in
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energy and thus it is not a low-lying pole in for example figs. 1 and
10. The reason for the difference is the hexadecapole deformation,
which is £»=0.04 in both cases. As can be seen for example in fig. 9 of

22)ref. , the energy splitting between the two orbitals of highest ?.

in a j-shell is reduced by a positive t. in the oblate case but enlarged
in the prolate case. Since positive e 4 values are favoured by the liquid
drop in both cases, this oblate-prolate asymmetry will tend to make
fragmentation of the collective high-K bands more common in obiate nuclei.

The collective excitations calculated on the optimal yrast states
212in Rn are represented schematically in fig. 16 by long, medium or short

lines depending on the repeatability. The slope, corresponding to the
inertia parameter, is generally much larger than the effective inertia
parameter of the yrast line for those collective excitations that have

good repeatability and consequently give rise to regular bands.

4. CONCLUSIONS

The random phase approximation is useful for a microscopic treatment
of collective rotation in non-spherical nuclei. Wher the rotation is
based on a high-K single-particle configuration the energy of a strongly
collective RPA phonon can be identified with the cranking moment of
inertia, and it is possible to draw a farreaching analogy with the
rotational model, in addition, the RPA formalism is able to distinguish
and describe the collective rotational mode in situations where there
is competition or fragmentation from <1K=1 single-particle excitations of
low energy.

Numerical calculations based on the Nilsson model description of
1 7fi ? 1 7

the nuclei Hf and Rn indicate that collective rotation around an
axis perpendicular to the axis of symmetry and spin alignment is a
general consequence of deformation. However, contrary to the Fermi gas
model the moment o* inertia for the transverse mode does not; assume the
rigid-body value like the moment of inertia for the primary mode of
rotation, i.e. around the symmetry axis. Therefore, in a plot of E vs.
I the collective bands slope up rather steeply relative to the effective
yrast line, contrary to what is observed in Hf, where the respective
slopes are alir.ost equal. There a special situation arises from a
conjunction of fragmentation, acting to reduce the energy of the lowest
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transverse rotations, and pairing effects which tend to increase the
slope of the yrast line at the relatively low spins involved. At higher
spins, and preferentially in oblate nuclei, such favourable fragmentation
may occur for the collective rotation based on several of the high-K
levels.

We would like to thank Aage Bohr and Ben Mottelson, who have helped

us with this paper dedicated to the memory of Sven Gösta Nilsson.
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TABLE CAPTION

Table 1. The energy of the lowest solution, its B(E2)-value and its
repeatability, n , for the nucleus Hf, K =14 , deformation £2

=0«2
and £,=0.04. The proton and neutron pairing gaps are varied from the
calculated ground-state values down to zero. The latter is the value
obtained for K=14 from a blocked BCS calculation.



Table I

(keV)

874

699

524

370

175

0

(keV)

737

510

442

295

147

0

(keV)

453

425

389

354

327

316

B(E2)

(Bsp)

45.5

44.6

44.2

43.7

43.5

43.5

no

0.88

0.84

0.79

0.73

0.68

0.68



FIGURE CAPTIONS

Fig. 1. A plot exemplifying a dispersion function G ( J ) , as defined in

eq. (2.19), here for the case of excitations built on the 10 = 14" state

in Hf. The quasiparticle poles are denoted by letters A to E

consecutively from left to right. Here A, B and C are uK=-1 amvlvlction

modes and D and E are aK=+1 creation modes. The deformation is e?=0.25,

e4=0.04. The lowest positive root ->,_1 + is strongly collective, while

the first negative root below the zero-frequency root is an example of

a non-collective single-particle excitation.

Fig. 2. Single-particle levels in Hf plotted vs energy and the j ^

quantum number. Levels originating from the same j-shell are connected

into bows. The transitions giving rise to the poles in fig. 1 are

marked here with the corresponding letters A to E. The straight lines

show the tilted Fermi surface that produces the optimal state K-r=14~.

Encircled signs denote single-particle states of indicated parity.

Fig. 3. A picturesque view of the mode under consideration and a

comparison of the rotational rrodel with the RPA results in the collective

limit (K>>0).

Fig. 4. Examples of diagrams contributing to corrections to the 2-phonon

excitations.

Fig. 5. Definition of the four different vertices A-D referred to in the

text (eq. 2.39).

Fig. 6. A plot of the dispersion function G ( M ) for the two-pole modal

(c.f. fig. 1).

Fig. 7. The diagram representing the coupling between the 2-phonon :.K=1

state and another kind of quadrupole phonon built out of iK=Z excitations,

Fig. 8. The response function (lower part) and the solutions (upper part)
212of the RPA equation both plotted on the same scale for the nucleus Rn,

K~=23~, deformation s2=-0.06. Note that the strength after the RPA

diagonalisation is mainly carried by two states at 931 keV and 4006 keV.



Fig. 9. The wavefunctions of the first and fifth root of the RPA

equation for the case shown in fig. 8. The first root is seen to be

mainly a particle-hole excitation, hence with low repeatability, whereas

the fifth root has contributions from many ^K=1 transitions and

consequently good repeatability.

Fig. 10. The reponse function (lower part) and the solutions (upper part)

of the RPA equation for the nucleus 1 7 6Hf, KrT=14~, deformation c2=0.25

and £,=0.04. After the RPA diagonalisation most of the strength is carried

by the 316 keV soltuion. Also the second solution, which lies above the

isolated lowest pole, is somewhat more collective than the others.

Fig. 11. The wavefunctions of the first and second root of the RPA

equation for the case shown in fig. 10. It is seen that the first root

has greater collective enhancement of the E2 matrix element, while the

second one has higher repeatability.

Fig. 12. Results of the calculations for the nucleus Hf as described

in sect. 3.1. The calculated quantities öre shown as functions of the

aligned angular momentum K. The two different K=8- states considered are

labelled n and p. Crosses in the lower left plot denote experimental

values and the circle at K=0 is the theoretical value of the moment of
19)inertia from ref. . The quantity i is the repeatability, defined in

sect. 2.4.

Fig. 13. An E versus I plot for the nucleus Hf, deformation £^=0.25

and C4=O.O4. The solid line corresponds to K~0 rotation around an axis

perpendicual to the symmetry axis. The dashed line is for rotation around

the prolate symmetry axis. Dots indicate individual high-K states and

the straight lines emerging from these represent rotational bands with

moments of inertia as given in fig. 12.

212
_F_2£._14_. Same as fig. 12, but for the spherical-oblate nucleus Rn.

The collective strength at spins 48 and 51 is distributed mainly over

three solutions, all of which are shown in the plot.

Fig. 15. The response function (lower part) and the solution (upper
21? - +

part) of the RPA equation for the nucleus Rn, K =51 , deformation

~2=-0.24 and ^,=0.04. Due to the low-energy poles the strength is

distributed over several RPA solutions.



212Fig. 16. Same as fig. 13, but for the nucleus Rn. The length of the
lines at spin 23, 48 and 51 illustrate the repeatability of the respective

solutions.
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