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Abstract: 

We have extended the d i spers ion r e l a t i o n ca l cu la t ion 

of the trNN vertex function to include off s h e l l terms in the 

TTN s c a t t e r i n g matr ix . These off s h e l l terms are constrained by 

the current algebra and PCAC r e s u l t s , and cont r ibu te to the NN - TTTT 

s-wave. As such, they add to the kinematic off s h e l l e f fec t s which 

Durso, Jackson and VerWest found in the p-wave terms. The off 

she l l terms increase the ca lcu la ted Goldberger-Treiman 

discrepancy from 0.02 to 0 .03 , b r ing ing i t in to agreement with 

the f ie ld theory value of Jones and Scadron (0 .035) . The 

ca lcula ted discrepancy remains smaller than the experimental value 

of 0.06 + 0 .01 . 
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U INTRODUCTION 

It is well known that the elementary one pion exchange 

potential behaves badly asymptotically, in the sense that the 

amplitude does not vanish in the limit as the momentum transfer 

approaches infinity. One way of correcting this divergence 

problem is to introduce a ''form-factor" r vertex function, F(t), 

which in the first Born approximation for the exchange of one 

pion, has the effect of changing the TTNN coupling G to GF(t). 

Physically F(t) may be probed in a variety of 

processes involving pion exchange, but it is often difficult to 

separate F(t) from other effects. Some success in this program 

has been achieved in the analysis of pn -»• np and pp -+ nn reactions2. 

However the most readily accessible test of F(t) is the Goldberger-

Treiman discrepancy.1 Consider the divergence of the axial 

current between two nucleon states (a neutron and a proton say) 

T 
m n m p C(m -hn )G (t)+tG (t)3 iu'y -£ u (1) 
~EE' P n A P 5 2 

Then writing a dispersion relation for (m +m )G.(t) + tG (t) 
p n A p 

and assuming pion-pole dominance 

r00 

(m 4m )G A ( t)+tG ( t ) = R ir-pole + 1 

" " A P ~ ^ ~ " < 3 ^ « - ' 

dt' ImD(t') (2) 

where R , is the residue of the pion pole evaluated at t = u 2 : iT-pole 

R , = /2Gf y 2 (3) 
7r-pole IT 

and G is the TTNN coupling constant with G = G(p 2) . 

../3 
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At t = 0 , equation (2) becomes 

(m +m )G 4 (0) = /2Cf + 1 d t ' ImD(t') 
P n A " 7 j , p 

(3M)-

and if we assume the cut con t r ibu t ion to be n e g l i g i b l e , t h i s gives the 
1 

Goldberger-Treiman r e l a t i o n 

(4) 

(m +m )G.(0) = /2Gf p n A TT 

The present experimental value of ̂ „ _ D is 
GTR 

Aexp = j. (mp-hnn)GA(0) = Q Q 6 ± Q Q l 

/2Gf 

this difference from the theoretical value being the so-called 

Goldberger-Treiman "discrepancy", usually taken to be a measure of 

chiral symmetry breaking. If however, one replaces the coupling G by 

the full vertex function GF(t), then equation (4) becomes 

(m -ho )G A(0) = /2G F(0) f 
p n A IT 

(5) 

and thus 

(6) 

GTR = 1 - F(0) (7) 

from which one can see that the Goldberger-Treiman discrepancy may also 

be interpreted as arising from the dependence of the coupling on the 

momentum transfer. 

Assuming then, that the t-dependence of the TTNN vertex 

function arises solely from the cut contribution, the pion Born term 

may be le-written as 

/2G(t)f v2 /2G(y2)f p 2 

TT _ TT , J_ 
,2 _ U 2 _ IT, (3u) 

dt' ImD(t') 
2 t'-t 

(3) 

..Ik 



- 4 -

and s u b s t i t u t i n g for G( t ) = G ( u 2 ) F ( t ) w i t h F ( u 2 ) = 1 

F ( t ) = 1 + ( u 2 - t ) 1 d t ' ImD( t ' ) (9) 

' . . r y /•» \ 2 t - t 

ir ( 3 y ) z 

Thi s can be i d e n t i f i e d a s a d i s p e r s i o n r e l a t i o n fo r F ( t ) , o i c e s u b t r a c t e d 

a t t = p 2 and w r i t t e n as 

F ( t ) = F ( p 2 ) + ( t - u 2 ) 
IT 

where the identification 

dt' ImF(t') (10) 
( 3 p ) 2 (f-t)(f-u*> 

ImF(t') J (u2-t') ItnD(t') (11) 
/2f u 2 

TT 

has been made. 

Two different ways of evaluating Im F(t) have been used in the 

literature. One uses field theory to evaluate the unitarity diagrams 

of figure 1. This was pioneered by Goldberger and Treiman1 and for 

the latest results we refer to Jones and Scadron 4 who obtain 

AG?R = °'° 3 5 - U 2 ) 

The alternative, which we follow here, is to introduce the 

TTN -> nN scattering amplitude, to approximate the three pion cut, as 

in figure 2. This approach was introduced by Nutt and Loiseau 6. 

Durso, Jackson and VerWest 6 pointed out that it was essential to 

include off shell effects in the TTN amplitude in order to reproduce 

the field theoretic results for the ptr exchange terms, calculated 

in detail by Braathen 7. Durso, Jackson and VerWest obtained 

7* 
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DIV 
AGTR = °-°2 ( 1 3 ) 

In this paper we point out that the off mass shell effects are 

also important in the TTTT -+ NN s-wave channel. While most off mass 

shell variation is of order q 2/m 2 where m is a typical hadronic mass 

(about 1 GeV), in this channel rapid off mass shell behaviour of 

order q 2/u 2 is required to reproduce the current algebra and PCAC 

constraints. Thus the off shell corrections may be expected to be 

important, and we find that they give an additional contribution 

of 0.01 to A . Our ''inal result is 
GTR 

^ ™ ° ' - 0-03 (14) 
GTR 

which is still only half the experimental value, but is in good 

agreement with the field theoretic value of Jones and Scadron. 

2. IM F(T) IN TERMS OF TTN SCATTERING AMPLITUDES 

Applying the Feynman rules to the diagrams of figure 2, and 

using pseudoscalar coupling for the pion, the method of Nutt and 

Loiseau gives 

U ( P ' ) Y T u(p)ImF(t) (15) 
5 a 

=-2 I Im 
q 

_cTk u(p') Y T G(p'-k)T (p'-k,k;p,,p,-p)u(p)D(k) 

where G and D are the free nucleon and pion propagators, and 

u(p )T. (p ,q ;p ,q )u(p ) is the TTN scattering amplitude for 
2 P a 2 2 1 1 1 

Tr(q ) + N(p ) -*• n (q ) + N(p ) ( s e e f i g u r e 3 a ) . The f a c t o r of two 
1 1 2 2 

omitted in reference 5, arises because there are two Feynman diagrams 

in figure 2, which contribute equally to Im F(t). 

Using the standard CGLN notation for the TTN amplitudes R and 
../ft 
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the kinematics of figure 3b, equation (15) may be reduced to 

u(p')y T u(p)ImF(t) (16) 
5 ^ 

= 2 Im d**k 1 u ( p ' ) V q i Y - k . (+) „ ( - ) . , % v —*-= {T v ' + 2T V ' u (p ) 
J (2^ k 2 + y 2 ( p ' - k ) 2 - H n 2 

(±) which d e f i n e s Im F ( t ) . 

In f i g u r e 2 , i n t e r p r e t e d LS a u n i t a r i t y d iagram f o r t h e 

d i s c o n t i n u i t y of F , i t i s c l e a r t h a t t h e i n t e r n a l nuc l eon and t h e 

e x t e r n a l p ion a r e bo th of f mass s h e l l . Thus as Durso , Jackson and 

VerWest showed, one must g e n e r a l i s e t h e u s u a l CGLN a m p l i t u d e 

T l - ' ( p ,q ;p ,q ) = - A V " ' + i » . Y . ( q +q ) B V - ' (17) 
1 1 2 2 1 2 

to an off mass form, which they choose to be 

,+s r + x (q -q ) . ( q +q ) ( 

T

( ± > = - A

( ± > + h i (4 +< ) - (4 -4 ) 1 I U? C ( - } (17) 
1 2 1 2 W ,<IJ 

1 2 
+ T£{P* (4 +4 )+(* +4 )* } D ( ± ) (18) 

4 m 2 i 2 2 1 1 

Equat ion (18) r educes t o e q u a t i o n (17) on nuc leon s h e l l , w i t h 

(+) (±) (±) 

B = C + D . They then make t h e a p p r o x i m a t i o n of r e t a i n i n g 

only s - and p-wave terms when A,C and D a r e expanded in terms of t he 

NN •> TTTT h e l i c i t y a m p l i t u d e s . Using the Cutkosky r u l e s and c o - o r d i n a t e 

frame r = ( 0 , / x ) one o b t a i n s 

Im F = Im F ( + ) + Im F ( _ ) (19) 

Im F ( O = ^ 

4u 

dr 0 ( t - ( / T + p ) 2 ) I m f + ( x ) m ( t + p 2 " T ) A( t ,T ) 
0 t 3 / 2 ( m 2 - V , . T ) 

(20) 

..II 
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and 

Im FV ' ( t ) = ' di i ( t - ( , T + i . ) ' ) , — - - — T - T { 
i JTI» t (nr - _T) ' 

x { n Imf ( T ) - T-rx lmf~(r) } 
1 1 4 * 2 1 

+ fdi 3 ( t - ( / r + u ) 2 ) _ . y 2 / A ( t , T ) {A^n I m f " ( T ) - I m f + ( T ) } (21) 

4y ' 

where 

and 

A ( t , r ) = - tan 1 - ^ — wi th K = /m^-Sjt (22) 
< [ t -U^-T J 

U-n - * ' ^ ^ / ?^ l ! * < 2 3 ) 

Q = 7 7 t ( t - T - u - ) - - 4TU'- r 

S u b s t i t u t i n g ( 1 9 ) , (20) and (21) i n t o t he once s u b t r a c t e d d i s p e r s i o n 

r e l a t i o n ( 1 0 ) , and w i t h s u i t a b l e c u t - o f f s fo r t h e i n t e g r a l s Durso. 

DJW Jackson and VerWest o b t a i n F( t=0) = 0 .98 l e a d i n g to a A = 0.02 GTR 
as quoted in the introduction. 

In Fig. 4.. we show the result of evaluating ImF(t) and Fft) 

in this wav, using the helicitv amolitude data of Hohler and 

Pietarienen ''. The vector component of ImF (t) (given by the first term 

in equation (21) ) is cut off at t = 75;i'-, to simulate the cancellation 

of linear divergences which occurs between the vector coupled vertex term 

and the r.̂  propagator term. 6 The 'data' points shown in Fig. 4. are the 

result of our earlier, phenomenological analysis of F(t), where a 

Veneziano form for the form - factor F (t) was used to reproduce the da/dt 
n 

data for averaged np •> pn and pp -» nn scattering. (Here the value of 13/2 

has been used for the variable n, which giverj a reasonable fit to the 

scattering data at intermediate energies an.1 a A of .05). 
GTR 

Note that because the helicity amplitude data are given for 

4p ?<t<50p 2, though ImF(t) can be evaluated up to t = 4m (̂ 'lBOy2) some of 
../8 
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the integral will ho missed. Further because of the almost linear 

behaviour of lmF(t>. a once sub trailed dispersion relation still gives 

a cut-off dependent Re F(t) . 

One way of estimating this uncertainty, is to subtract 

Re F(t) again, thus making the tail end of the integrand less important 

and ensuring that the major part of the contribution does come from the 

near t region. The only other reasonable subtraction point is at t = 0, 

with 

~ .CO 

Re F(t) = -̂ r + ^r (u2-t) F(0) + t ( t - t i } P ! Im F(t')dt' (24) 
U V * ( 3J_ 2 ) f(t'-u 2)(f-t) 

To apply equation (24) we must of course now use A (or F(0) ) 
GTK 

as an input to the calculation rather than as a test of its validity. 

While this second subtraction destroys one of the nice features of this 

essentially parameter free calculation, it does indicate to what extent 

the tail of Im F(t) and the omitted parts of the integral, contribute to 

Re F(t). As can be seen from Fig. 4(b), the form factor evaluated in this 

way is highly sensitive to the value of F(0) used in the second subtraction. 

The self consistency of the one subtracted curve giving F(0) = 0.980, and 

the twice subtracted curve where F(0) = 0.980 is used as an input, 

indicates that in fact no significant contribution is lost by having to 

cut off the integrations at 4u'. 

The off shell modifications introduced by Durso, Jackson and 

VerWest were kinematic in nature. They were designed to ensure that terms 

corresponding to the spin-one projection of the p propagator, 

../9 
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(g +k k m '- ) , were retained in the dispersion approach, and that 
* . v ^. \p 

sul I i i- it-iil ! r»-t'ili»m was ivia i iu- i l £»» .ui-onnnul.it «.' \ .uni >' roup 1 i n e s . 
•-v 

In the next section we examine some dynamical off shell 

corrections to the TTN amplitude, which will introduce corrections 

to equation (12) for Im F (t). 

3_. OFF MASS SHELL TERMS IN THE ^N AMPLITUDE 

While the kinematics associated with f , or c meson exchange, 
0 

in equation (12) do not vary in going off mass s h e l l , the amplitude 

r t s e l f v a r i e s rapid ly in order to s a t i s f y the PCAC and cur rent 

algebra c o n s t r a i n t s . This off she l l benaviour has been s tudied by 

Coon e t a l . " who showed t h a t , to crd-. r q- , for the two pions off 

she l l and the nucleons c lose to t h e i r mass s h e l l , the non-nucleon 

pole con t r ibu t ions are given by 

G ( \>, t ;qSq ) = G ( u , t ; - „ ' , - u ' ) 1 2 

(q 2 +q 2 +2u 2 ) (gV 2 +g + ) 
1 2 1 2 

(25) 

where the bars indicate that the nucleon pole term is subtracted out, 
(±) t ± G = A + vB , 

(-) ( + ) 
and v i s the usual CGLN parameter. G and B do not require 
ex t r apo la t ion to th i s order since they are kinematical ly of order 

9 + + 
q̂  a l ready. The parameters g and g are defined bv Liie exnansion 

1 1 
in v and t of the on shell arplitude 

(26) 

:(+) (v, t) = G ( + ) ( v , t ; - M ' W ) = g + + g + t + g V + g V t + ., 
1 2 .1 

(27) 

..no 
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In the evaluation of Im F , the Cutkoskv rules require that the 

internal pion is «>n sin-1 I, ami the resulting laetor >>(l -(,» I+II) • ) 

restricts the nucleon line to about 5\i*- off mass shell. Since we 

expect the off-nucleon mass shell terms to scale as (p2+ra2)M z with 

M a typical hadronic mass of order 1 GeV "- 50u% neglecting :ae 

off mass shell terns for the nucleons should be an excellent 

approximation. Coon et al. estimated that (16) should be good at 

least up to q 2 *v 12y2. 

In order to utilise the formalism developed in the previous 

section we need to develop Che analogue of equations(16) appropriate 

to the helicity amplitude expansion. Noting that G depends on q 2 

i 

and q- implicitly through t = -(q -q ) 2 as well as explicitly, we 
2 1 2 

can Taylor expand G (v,t;qz,q2) about the on mass shell point as 
1 2 

G ( + )(v,t;q 2,q 2) = G ( + )(v,t) + ( q 2 4 q 2 + 2 p 2 ) ( ^ t ) | f < + > ( v' C> 
1 2 1 2 2V 3t 

^ - i 

where we have used — T 
Iq| 

+(q-'+q^2^2)c(+)(v,t) (28) 
1 2 

-t 
2 2- 2 2u' 
1 2 

-(+) o and the whole of the explicit dependence on G on q̂  has been 
included in the as yet undetermined function c (u,t). 

PCAC and current algebra supply two constraints on the off nass 

shell extrapolation 

i) the Adler consistency condition 

G ( + )(0,u 2;0,-u 2) - G ( + )(0,u 2;-u 2.0) = 0 (29) 

which gives . 2 ^?(+) 
G <0,u ) - " 2 ^ + u 7c ( + )(0,u 2) = 0 (30) 

v=0 
t=M2 

../!1 
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ii) the double soft pion limit 

G ( + )(0,0;0.0) = -of~: (31) 

where a is the TNN C term, which gives 

G ( + )(0,0) + 2u 2c ( + )(0,0) = -at'J (32) 

Cheng and Dashen l 3 have shown that 

it 

G ^ O ^ u 2 ) = af~2 (33) 
IT 

which with the approximation 

3G ( + )(v,t). 3 G W ( v . t ) (34) 
>* W >C 

which may be justified in the small v,t region fror the expansion 

of equation (27), allows us to write 

^^O^^Ml^lf^'0 (33) 
as a solution of equations (21) and (23). 

Our final result is 

5 ( + ) (v,t;q 2 ,q 2 ) = C, (+)(v,t) - ( q ^ - ^ ) \ \ d~* - f ^ ^ * 0 ] 
1 2 1 2 I'M * 3t j (36) 

which reduces to equation (25) when the small v,t expansion of 

equation (27) is used. 

Note that terms of order q ?t ~ cancel so that only termr of 
3t 

first order in q 2 remain. 

One could alternatively try to derive an expression for 

c (v,t) using the small t expansion of (27). However, this leads to 

confusion as to whether the f appearing in the final result is 
? 

../!:• 
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> F ( + > 

really a constant or — • The advantage of expanding the on-shell 

amplitude around the Gheng-Dashen point. is that we know that the • 

terns f - i s a constant independent of the momentum transfer for a l l t , 

and in th is way, we have included any t-dependent parts in ?F/*t. litis 

i s important, as we show l a t e r that terns in the scat ter ing aatrix which 

are constant in t give a zero contribution to ImF(t). 

To summarize, the extrapolated relation (36) for 

G (v,t;q^,q*) s a t i s f i e s to crder q' 
1 2 

i) The on-shell condition 

C ( + )(v,t;q 2 = -u 2, q 2 = -i.2) = G ( + )(v,t) 
i ; 

ii) the Adler consistency condition 

G ( + )(0,, :; 0. -. 2) = G ( + )(0,;/; -.:,0) -0 

iii) the double soft pion limit 

G(+)(C,0;0,0) * - at J2 

4_. THE OFF MASS SHELL CONTRIBUTION TO IM fy (T) 

Since to the approximation we are working at, B = 0 ana 

A! = 0, we uiav identify A (v,t;q',q) with G (v,tq,q'). Born ' •; i ; 2 

and setting q = k /, q" = -t we have 
I . 

A(+)(v,t';'K2,-t) = A ( + )(v,t') + \A ( + ) (37) 

where '.A is the off mass shell correction term 

AA ( + ) = (^-t+2^)|-;-2.r- + ^ , (v,t«) (38) 

..l\^ 



n -
This contributes to Im F (t) a term 

T . T,"*"/ X 4 [II I 

ImAF ( t ) = — Im 
t , 'H . 

TT+ k . r AA ( t ) , 7 . 2 "TT (2TT)4 B " " " V L ' k W k 2-2k.p' 

+ . 
The constant term in (38) does not contribute to ImAF ( t ) , since i t 

corresponds to the point interaction of figure 5a which has vanishing 

phase space when the intermediate meson is placed on mass shell by the 

Cutkosky prescription. This can be checked by expanding of 2 as a 

Hilbert transform 

1 1 1 5 L ^ o f -2 P Of 2 = 
TT a > '*> TT 

d i , , a+T i 
TIP" log I — I 

(39) 

(40) 

1 im 
a -> -^T O f 

IT' TT 
~ T log j 1 + M i . f ) (41) 

where f ( T t . ) , 4a(T-t') 
a V T , C ' ( a - T ) ( a - T + 2 t ' ) 

On applying the Cutkosky prescription to 

this gives a term 

of ~2 1 
i+(r-k) z . " 

(42) 

(r-k)< 

log | 1 + f (T, - (r-k) 2 ) | 6 (x+(r-k) 2) 
ex 

= log I 1 + f ( T , T ) I 6 + (T+( r -k ) 2 ) 
a 

= log 1 6 + (T+(r-k)2) = 0 (43) 

so that any term constant with respect to t ' gives a zero contribution to 

ImF(t) (Figure 5). 

To evaluate the remaining term, the dispersion relation for 

A , retaining only the s-wave helirity amplitude 

A ( t } = tott J d T - T i p " (44) 
4 u 2 

, . / 1 4 
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g ives 

i A ( + ) ( t ' ) = ( k - - t + 2 u ' ) 16 I , Imfo(-t) 
^ - t ' ) ? j d T TT 

4 u 2 

+ . 2 >i I dx Imfo(x) r—r( r) 

4 p 2 

where t he term in of 2 h a s been o m i t t e d as i t does not c o n t r i b u t e 

to the f i n a l answer . We can then w r i t e 

(45) 

Im F ( + )(t) = Im F ( + )(t) + Im AF ( + )(t) o 

where Im F (t) is the on mass shell term of equation (20) and 

Im AF (t) is the off mass shell correction term given by equation (39) 

(46) 

AA (t') itself can be separated into the two terms of 

equation (45) 

AA ( + )(t') - AA ( + )(t') + AA ( + )(t') 
1 

(47) 

The c o n t r i b u t i o n due to AA ( t ' ) ( t h e f i r s t term) i s s t r a i g h t forward 

to compute and g i v e s an added term to Im F ( t ) of 

Im A F ( + ) ( t ) = \ -
I 2TT 

i n (<• / / " i m 1 ? \ Im f $ ( T ) ( u 2 - t ) ( t + U 2 - T ) , , 
d i 0 ( t - ( / r + m) ) ; r~—~ A l t , . ) 

4 u 2 
t J / 2 4 ( m : _ i T ) . 

4 
(48) 

The c o n t r i b u t i o n due to AA ( t ' ) i s more d i f f i c u l t to e v a l u a t e s i n c e i t 

i n v o l v e s t h e d e r i v a t i v e of a d e l t a f u n c t i o n , and we now c a l c u l a t e t h i s in 

more d e t a i l . 

We wish t o c a l c u l a t e 

j ^ h k.r (k 2 - t + 2p 2 ) ^ r p " x 

1 

Im AFj ( t ) = — Im 

x | dt im f°(T)ft, j ~ r 
4 p 2 

l 1 

1 
k 2 + p z k 2 - 2 k . p ' 

(49) 

. . /1 3 
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In the following derivation, to keep expressions as brief as possible, 
L 
we use the notation 

~i 
f = — and f (x ) = — x 3x x o 3x x = x 

In order to utilize the Cutkosky rules as before, we note that 

3 
3t' f-U - -^ U ± iTr6t,(T-t') j-t'j at' {i-t\ 

and as we are only interested in the discontinuity across the cut, we use 

the replacement 

(50) 

k 2 + v2 •* 2-TTi6+(k2+p2) and -^r M " i 3t' [r-t 

the derivative of a delta function being defined by 

6 (x) f(x)dx = -f (0) 
X X 

- 27ii5t,(T-t') 

(51) 

Changing the order of integration and applying the Cutkosky rules 

using the above prescription gives 

Im AF+(t) = £*• 
2 t 

di Im f°(T) % ( T , 0 
C2 

where 

C2(r,t) (2TT)" 

k.r(k2-t+2v2)t+

t,(T~t')6+(k2+v2) 

and using t' = -(r-k) 2 

(t-y 2) f 6"J",(T+(r-k)2)6+(k2+u2) 
d**k k.r — 

(2„)T- j a « K " r (4n?+(r-k)2)(-ii2-2k.p') 

We now do a number of changes of variable 

x = 2k /t 

<t> = 2/ t / k 2 + u T 

where d uk = dk k 2dkdn. 

(52) 

(53) 

o k 
and note that the derivative of the delta function has to be handled with 

some care for 

./If, 
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<5 (x-v) = - 6 (x-v) x ' y " 

so that 

6 +,(T+(r-k) 2)5 +(k 2+u 2) = - 6 +(i-t+a-y 2)S +(k 2+y 2) t a 

Using the same co-ordinate frame as in section 2. and noting that 

<5+ (k 2+y 2) = 2t <5+(a - 4.) 

(54) 

(55) 

we have 

*^ C2 < T , t ) 

- ( t - y 2 ) f 
(2ir)--8t dfi, d4>/<j>2-4ty2 

k 

a 5 + ( a - ( y 2 + t - T ) ) « + ( a - ( J ) 
d a 

( a + 4 m 2 - t - u 2 ) ( 2 y 2 - ( H y - / * 2 - 4 t y 2 k . p ) 

Th i s i n t e g r a l ( excep t f o r the t e rms o u t s i d e t h e i n t e g r a t i o n s i g n and the 

i n t e g r a t i o n ove r dfl ) i s now of t h e form 

(56) 

w • dy h ( y ) d x g ( x ) f ( x , y ) 6 ( x - X Q ) 6 ( x - y ) (57) 

wi th A 

x •*-*• a 

hCvl *-y /<*> 2-4ty 2 

g ( x ) ~ 2+4m*-tV 

1 
f ( x , y ) 

( 2 y 2 - 3 + r - / $ 2 - 4 t u 2 k . p ) 7 t 
(58) 

It is easy to calculate (59) in this general case using integration by 

parts and we find that 

y x o ) = g(x o) [h y(x o)f(x o,x o) +h(x o)f y(x o,x o)] 

-h(x ) [g (x )f(x ,x ) + g(x )f (x ,x )] o x o o o o x o o (59) 

../17 
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Using this result and doing the appropriate substitutions we nave 

T-iT (,,t) 

= ( ^ W 7 ) kl^+t-T)^ B(t,T) 

where B(t,x) 1 

and C(t,t) 

u2-t+T+4Qk.p 

1 
p2-t+T+4Qk.p 

Doing the angular integration 

we substitute into equation (32) for T (i,t) 
c2 

Im AF (t) = Im A F | (t) + Im AF*(t) 

-4tQ2 C(t,x)} 

y2-t+T+4Qk.p'J 

(u2+t-i) 
(y2-t+i)+4Qk.p 

, 4m 2-t-u 2 

r ~T~. " ^ 
(4m'-T) 

dSl = 2TT I dz and using k.p = ikz gives when 
k J 

(60) 

(61) 

(62) 

_1_ 
2n di Im f° (T) 0 (t-(/r+u)2) 2 ( u 2 - t ) m 

t 5/ 2 Q(4m2-t) 

{ <U2+t-T) 
1 2(4m 2Q 2+Tu 2) 

(P(t,T)-4tQ2) + 2tQA(t,t) ^63) 

where P (t,x) = (p2+t-t)(y2-t+x). 

Note that a term arises in Im AF 2 (t) which exactly cancels the 
+ 

whole of the contribution Im AFj(t) which is a product of the t' dependence 

of the purely kinematical term -• -g • •, in equation (44). 

Figure 6 shows the results of evaluating Im F (t) and ReF(t) 

using equations (20), (23), (46) and (63), and the helicity amplitudes of 

reference 11. The increased contribution by the dynamic off shell parts of 

the TTN scattering matrix thus increases the value of A ' to .029 with 

GTR 

.015 coming from the an vertex and .014 from the p-rr vertex. The 

contribution from the on vertex particularly, is consistent with the results 
of Jones and Scadron and brings the value of A calculated from a dispersion 
relation approach into better agreement with that calculated from a field 
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theorv approach, showing that, provided off-shell effects are handled 

correctly the Iwo met hods are equivalent. 

5. CONCLUSION 

We have found that the inclusion of the off pion T?ass shell 

terms in the TTN-MTN scattering amplitudes alters the dispersion 

relation calculation of the TTNN form factor significantly. Expressed 

in terms of the Goldberger - Treiman discrepancy, our results change 

the dispersion theoretic value from 0.02 to 0.03, bringing it into 

agreement with the field theory value of Jones and Scadron. 

We would also draw attention to the enhancement we find in 

Im F(t) at t - 42u 2. Because of the long distance from on-shell of 

the virtual pion (and hence once of the pions in the irN scattering 

amplitudes) it is not clear what the origin of this enhancement is, 

(whether physical or pathological in nature) but it may repay 

further study. 
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CAPTIONS: 

t-rhannel u n i t a r i t y diagrams for F ( t ) . 

Fig. 2. 

Contribution to the th ree pion cut term represented by 

the NN->TTIT ann ih i l a t ion process . 

Fig. 3. 

Kinematics of TTN-»-TTN s c a t t e r i n g for the 

a) general case 

b) diagram contributing to ImF(t). Note that 

s' + u' + t' ^ 2m 2 + 2 H
9 since three of the 

external lines are off shell. 

F i & - * • 

Fig. 5. 

a) Plot of ImF(t) evaluated using equations (20) to 

(23) and the data of Hohler and Pietarienen 

The vector part of ImF(t) is truncated at t = 75u2 

to simulate cancellation with the pir propagator 

term. 

b) Solid line: Re F(t) evaluated using the once 

subtracted dispersion relation of equation (10). 

This gives F(0) = 0.980 or 

A G T R =0.020. 

Broken l i n e s : Re F(t) evaluated using the twice 

> subtrac ted dispers ion r e l a t i o n s of equation (24) , with 

i ) F(0) - 0.990 A G T R = .010 

i i ) F(0) - 0.980 A„ T D = .020 

i i i ) F(0) « 0.970 A f < r r D = .030 
uTR 

Contribution to ImF(t) due to terms in T 

a) independent of t ' with zero imaginary par t 

b) which can be expressed as d ispers ion i n t eg ra l s 
over t ' . 



(Contd). 

a) Plot of ImF+(t) = lmF+(t) + Im AF (t) 
o o 

evaluated using equations (20) and (63) 

and one data of Hohler and Pietarienen 

The inclusion of dynamic off-shell effects 

in the s-wave scattering has a sizeable effect 

on ImF (t). 

b) Plot of Re F(t) evaluated using a once 

subtracted dispersion relation with all off-

shell effects included in ImF(t). The value of 

A„ m„ is increased to .029. 
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