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Abstract : The Ward identity is derived for non-

relativiatic fermions with two~body spin-indecpen-
dent interaction., Using this identity for the one-
dimensional Ferm, gas with backward scattering the
equations of the perturbation theory are golved
for the effective interaction and the collective

excitations of the particle density fluctuations
arc obtatlaed.,



[. Introduction

Recently there has leen considerable interest in the one-
dimensional Fermi gas model in commection to the unusual properties
of the quasi-one-dimensional conductors /1/. Experimental and theo-
retical investigations have been devoted to the Kohn-Peierls insta-
bility and to the sudden change of their conductivity with decrea-
sing temperature.

The one-dimensional Fermi gas model consists of spin-1/2
interacting fermions that are allowed to move on a straight line.
The Fermi sea is reduced to a segment with the ends at the points
hd kp,kF being the Fermi momentum. As the dynamics of the system
is governed at low temperature mainliﬂéyzlow excited states we
shall restrict ourselves to these stat;s only. Their wavevectors
P Tun within the ranges -kr - kc < p < =k

F' kc and kP - kc <p

“ kF + kc' where kc is the bandwirth cut-off, much smaller than kP.
The energy levels cp of these single-rarticle states can be line-
arized as follows : e, = fp * vp(lpl - kp), where e is the Permi
velocity (Planck's constant has been taken equal to unit). Much
theoretical work, recently reviewed by Solyom /2/, relied on this
sumple, linear p-dependence of the unperturbed energy levels,which
is the essential feature of the model.

Mainly, there are two different approaches to the Fermi
gas model. The first one is the perturbation theory approwach where
the fundamental quantity is the vertex part which describpes the
scattering of two fermioms and accounts for tise instabilities of

the system. The perturbational treatment originstes in a paper by



Bychkov et al./3/ who obtained a finite expression for the vertex
part by summing up the most singular contributions (the so-called
logarithmic approximation). Higher crder corrections have been
calculated by means of the renormalfation group technique /4/.
Scaling equations have been perturbationally solved for the res-
ponse functions and various types of instabilities have been ob-
tained for the ground state of the system /5/.

The second approach is a bosonization technique that can
be traced back to a paper by Tomonaga /6/. Here the fundamental
quantities are the operators of the particle density and spin den-
sity Tluctuations that satisfy bosoa commutation relations. Uni-
tary trapsformations have been devised to diagonalize the hamilto-
nian expressed in terms of these operators. The bosonization tech-
nique has been applied to the one-dimencional two-fermion model
proposed by Luttinger /7/. This model differs slightly from that
formulated above. The eigenvalues of the hamiltonian and the in-
frared behaviour of the response functions have been calculated
/8/. A remarkable exact solution has been produced by Luther and
Emery /9/ who allowed for a special type of spin-dependent inter-~
action. This solution has been obtained for certain values of the
coupling constants. Much subsequent work has been done within the
framework of the bosomization epproach /2/.

In the Fermi gas model as formulated above there are two
types of spin-independent interaction processes. The first one is
the forward scattering procesc that involves a small momentum
transfer. This process excites one particle-hole pair in the neig.-
bourhood of + kr and aaotimer ome ia the meighbourhood of -kr. The

second one is the backward scattering process, with momentum trans-



fer near 2k, that excites two particle-hole pairs across the Fermi
sea. Let us suppose that a particle with momentum Py and 2 hole
with momentum p, eare exclited near +kr and a particle with momentum
Pz and a hole with momentum py ars excited néar to the opposite
end -kF. In the forwarc scattering process the momentum transfer

is k = Py-P, = Pg4Pg ™ 0 =and the excitation energies of the two
particle-hole pairs are A£1 = vF(pl—pz) and At2 = vF(p4—p3), cor-
respcnding to the two Fermi ends, respectively. It appears that
Ael = Asz = ka. in the backward scattering process the momentum
transfer is k = PPy = Py~Pg ™ 2kP and the excitation energies

are Ael = VF(pl+p4) and Ae2 = vr(-pz—pg), whence one can see that
ae # Ltz.
two processes is different and this gives rise to different kine-

Due to this fact the density of states available in the

matics of the two processes. Indeed, assume that an excited state
with energy € and momentum zéro is aciieved by creating particle-
hole pairs with momentum transfer k. By straightforward calcula-
tion we obtain that the density of states in the forward scat-
tering process (0 < k < 2kc, £ = Ael + Aez = ZVFk) is (k/w)2 =
(e/2mv)? for 0 < k < k, and (2kc—k)2/1r2 = (4kcvp—c)2/(2ﬂvf)2
for kc < k < 2kc, while in the backscattering process
(ZkF—kc < k < 2kF + kc' £ = Ael + Ac2 = vF(p1+pA— pz-ps)) the
density of states is (kc+k-—2kp)/1r2 for 2kp-k, < k < 2kp and
(kc-k+2k?)/n2 for 2kp < k < 2kp + k_ (a unit length of one-di-
wmeasional space available to the system is supposed). It is shown
in the body of the present paper that this differerce in the ki-
nematics of the two interaction processes produces a completely
different dynamical behaviour of the system.

The forward scattering interaction has been treated

within the Tomonaga-~Luttinger model /7,8,11/. The backscattering



interaction has been studied by means of both bosonization tech-
nique /9/ and renormalization group approach /4,5/. However, as
Haldape /12/ pointed out recently, the particle - and spin-den-
8ity degrees of freedom are not completely decoupled in the boso-
nization technique and, consequently, this method camnot be used
for treating the backscattering interactiom. Instead, the very
interesting solution given by Luther and Bmery applies to a more

general model with spin-fl1ip forward scattering interaction. As

concerned the renormalization group approach the vertex part
(scattering amplitude) is approximately calculated here for a
particular choice of the external variables (see, for instance,

-k

Ref.2). With our notations this means either p]=k g for

P’ P3”
the Cooper palr diagrams or p2=kp, P3= —kF for the zero sound
channel. When the system is excited by creating two particle-bhole
pairs coupled to a given momentum transfer the backscattering
process allowed by this particular choice of the vertex part
leads to a density of states equal to 4,a figure which comes from
the spin degrees of freedom only. Therefore, when one restricts
oneself to this particular form of the vertex part the kinematics
of the backscattering process is completelv distorted.

It is the air of this paper to give an adequate treatment
cf the backscattering process in the onme-dimensional Fermi gas
model with two-body spin-independent interaction. We should men-
tion here that backscattering effects have been calculated with-
in the Tomonaga-Luttinger model with forward scattering when the
responsz of this system has been studied to an external field

with momentum transfer near ZkF /13/.
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Our approach relies upon the Ward ideotity which is derived
for the geseral case of noa-relativistic fermioms interacting
tbrough a two-body spin-independent force. In the one—iimensional
case this ideatity enables us to obtain the irreducible polariza-
tions aad the effective interactions both for the forward and back-
ward scattering processes in the limit of weak coupling strenghts.
The dispersiocs relations of the pmtd.-h.ity excitations are
readily obtained. Our pecturbation theory fellows the general lines
of Dsisloshiosky and Larkia /11/. The perturbation theory is out-
11sed 1a Section 3. In Section 3 the Ward identity is derived. Re-
sults are givea in Section 4 asd comclusicms in Sectiom 5.

II. Perturbetion theory

: Lot ws asoums that the systsm consists of n fermioms o
the umit lesgth (k, = w™/3) iatergcting through s two-body spis-
indepesdeat potential v( {=~y|), = and y Deimg spatial coordinates.
Using & plane =272 wnm br <hé fisld oporuton.

ipx
¥w(x) - Ic,o , (1)

p’ .

the hamilitonian of the system can be oxpreased as

E-E+E1

8, - [ ¢ (3).

» %
1 "} I vmeg ot‘»,-t’n,’b,
kpyPg
where c;to,) is the' creation (amnihilatiom) operator of the
p~feruion '.l.t-b. cv-pzlh'(l being the formita mass) aFe the un~



perturbed single-particle energy levels and v(k) is the spatial
Fourier transform of the potential (the spin index is omitted for
simplicity). The time dependence of the field operators in the in-

teraction picture will be takeu as

¥(x,t) = exp [1(H -uN)t] w(x)exp L1(H -ul)t] , (3)

N being the operator of the total number of particles and u- the
chemical potential. Using Eq.(3) and the linearized form of the
energy levels given in Sec.l (the Fermi velocity being taken equal
to unit) the free Green function in the momentum space can be di-

rectly written down /11/ :

o -1
G,(p.e) = [e-p+kytinsgn(p-kp)] , kpk <P <Ky +k_,

o -1 (4)
6_(p,e) = [cpshprinsgn(p-ip)] . -kpk < P < -kp 4k,
where n = o' is a convergence factor and the subscripts + and ~
stand for the fermion states near +ky and -k, respectively,
Throughout this paper the subscripts + and - of the Green
functions will mean that the momentum variable p of these functions
is restricted to either +kr‘- k e SP < +kr + .kc or -kr-k c<p<—k1,+k¢,
respectively,

The Dyson equations for the Green functiom G(p,e) of the
interacting system and for the effective iuLteraction V(k,w) are

G(p,e) = A(p,e) + °(p,e) I (i_n,‘z) Wp.e) ,
V(k,n) = v(k) + v(k) ¥ (k,») V(k,'l) ’ )
where I(p,c) and R (k,w) denote the proper -elt; epergy part and
the irreducidble polarization, respectively, The diagrammatic struc-
ture of £(p,c) and 1 (k,s) is shown in Pigure 1 where the three-



legged vertex function TI(p,c; k,w) is introduced (the loag-range
componeat k=0 of the interaction is tsken equal to sero so that

the tadpole disgrams are excluded). ™he vertdx function T(p,c;k.w)
represents all irreducible diagrams with three external legs. Ac-
cording to the perturbatiom theory rules the analytic expressioas
of the diagrams shown in Figure 1 are

-2
£ (p,e) = 1(2%) [ dkde V(k,w) G(p-k, c-w) I'(p,c; k,w) ,

(6)
~2
I (k,w) = -21(3%) /Jdpde G(p,c) G(p-k,e-w) I'(p,c; k,w) .
Looking at Eqs,(5) and (8) one can see that there are five unknown

quantities but four equations only. As for fith one the Ward iden.
tity, as derived in Sec.III, will .be used,

II1. Ward identity

As known from quantum electrodynamics the Ward identity re-
lates the vertex function to the Green function. We shall derive
herxe the Ward identity for non-relativistic fermiops interacting
through two=-body spin-independent potsntial making use of the gauge
invariunce of the system /14/.

Let us perform a gauge transformation of the field opera-

tors
N 16x(x,t)
Wx) = ¥(x,t) = Wx) e 2 w146z, ],
| (1
~18x(x,t)
v(x) - V(5,0 = v’ (x) e 2 ot (x[1-18x(x, )],

where §8x(x,t) is a real, infinitesimal function of space-time

variables which generates the gauge transformation. This trans-



formation destroys the space-times homogeneity of the system so
that the Green fumctioa in the momsntus space will dspead on two
momentum variables, Startiag from the definition of the Green
function it is easy to see that the gwuge trsasformation given by
Eqgs.(7) leads to the following first-order variatiom of the Green
function :

$6(p+k,e+w;p,c) = 18x(x,») [G(p,e) - G(pxeow) | (8)

where §x(k,ov) is the space-time Pourier transform of the func-
tion 8y(x,t). The VWard identity will be derived by requiring that
the variation of the Green function given by Eq.(8) be equal to
that obtained from the perturbatiom theory.

Under the gauge transformation the creation and anmihila-

tion operators of the one-fermion states acquire the form

N
cp = cpt £ x(k,t) e .

. . (9)
cy = 1 I Sx(k,t) c,,y .

6x(k,t) being the space Pourier transform of the Sy(x,t).
Up to the first order in 8y(k,t) the original operators cp and

c; can be obtaimed from Egs.(9) as

] A
cp = € -4 I sx(x,t) Cox

k -
+ Vs "Nt (10)
c, = cy i E dx(k,t) Coix

Using these expressions of the creation and annihilation opera-
tors one can see that the form of the interaction hamiltonian Hl
given by Eqs.(2) and the form of the operator N of the total

number of particles sre left unchanged under the gauge transforma-



tion while the kinetic hamiltonian “o becomes

=Vec'e
ot Tppp
P

~

A4
- i - Ex(k,t
i ] (ep-ep )Xk, t)c) S

p k

(11)

Obviouvcsly, the new operator gp and Z; given by Fqs.(9) depends

on time through the &y(k,t) function. It is convenient for the
perturbational approach to assign this time-dependence tc tne ha-

miltonian and to consider the creat.on and annihilation operators

E; and gp as time-independent. One can think of this time-de-

pendence as arisirg from an external field given by a term of the

form

_ Iy 3 A7
! T Sx(k,t) cp cp—k . (12)
P Kk

It follows from Eqs.(11) and (12) that the gauge transformation
procedures an additional term in the hamiltonian which, with the

original notations, can be written as

. . . 3 .. +
8k = -1 § ( -3 3?—)ax(k,t) €5 Cpok

P Kk

€_-¢ 13
p P~k (13)
The effect of this term on the Green function will be evaluated
by means of the perturbation theory. Using the interaction pic-
ture given by Eq.(3) the first-order variation of the free Green
function is

+o

166Q(p t P, ,t,) = -1 S dt< olT[}H(t)c (t )c+ (t illo >
1’"1°%2° "2 - Py 1 Po 2 c

(14)

where | 0 > denotes the ground state of the non-interacting

system, T 18 the time~ordering operator and the subscript c



-

stands for the connected diagrams. By Fourier transforming botb

sides of Eq.(14) we get

86%(p+k e tuip )= ~ile - —w)EX(K,@)G (pok,cvw) GO(p.e). (15)

Equation (14\;represents the first order of the perturbation
theory. Ffwitchricgon the full interaction and evaluating the coan-
tributions of all the terms of the perturbation series to the
Creen function amounts to aressing up the free Green functions
in Bq.(15) and to introducing here the vertex function. This pro-
cess is shown in Figure 2. Then Fq.(15) beccmes
EG(p~k,ctw; p,c) =
(16)

= -i(ep,k—ep-w)éx(k,w) T(p+X.ctw;k ,w) G(p+k,c+u) G(p,e)

Comparing this result with that givep by Eq.(8) we obtzin imwme-

diately the Yard identity

-1 -1
Mp.e:k,w) = S (P,€) -G (p-k,c-w) a7
Cp_k - Cp + W

We ercphasize here that this is an exact result in the
quantum field theory of the many-iermion systems with two-body
spin-independent interacticn. This identity will bc used here
for treating the forward and backward scattering processes in
the one-dimensional Permi gas model.

In the case of forward scattering processes there are

two vertex functioms, r“ (p,e; k,u) =sad l'l_(p.t; k,w), cor-



responding to +kp - kC <p < +kr + kc ard kg - kc < p <=-k_ ¢k

P c’
respectively. In this case the ¥ard . .cov.ty can be writtem as

-1 -1
G, (p,e) - G, (p-k,e -w)
T (p,eik,n) = : . ,
1+ w-5k
-1 -1 (18)
G_ (p,e) - G_ (p-k, e-w)

r (p,e;k,w) =
1- w + k

where the linearized form of the unperturhed energy levels has
been used. These relation. have been derived in Ref. f11/ by dia-
grammatic methods, They have.been.aleo obtained using the equa-
tions of motion of the vertex function /15/, The Ward identity
given by Eq.(17) allows the backscattering vertex functions to

be written as

-1 -1
G, (p,e) -~ G_ (p—2kF-k, €~u)
I (p,eik,w) = ,
2+ 2(kg-p) + k +u
(19)
-1 -1

G_ (P,€) - G, (p*2Kkptk, €-u)

T (p.,e;k,w) =
2- 2(kr+p) +k +

where tne momentum transfer k occurring in PFq,(17) has been re-
placed by 2kF + k and -2kP -k, respectively. This i» convenient
for keeping the variable k in the range -2kc <k <2k, a8 it
the case of Egs, (18).

Ve should mention here that a generalized ¥ard identity
has been recently derived by Solyom /16/ for the Fermi gas model
with forward scattering subject to an external field with momen-

tur transfer near ZkF' This identity relates a three-legged vers



tex function to a four-legged vertex function, both of them having
an interaction line which corresgonds to the external field.
Therefore, there is no relation bhetween the three~legged vertex
function introduced by Soiyom and that used by us in the present

paper.

IV, Results -

Using the vertex functions given by Eqs.(18) for the for-
ward scattering we get from Lgs.(6) the polarization parts for

this process

-2 1
T (k,s) = -21(2%) fdpdc[G*(p-k,c-w)-G (p.t)] -
1:_ w:_ k - _“_’
-1 1 + :
s % S dp (n© ~-n ), (20)
w+k p-k p

b

where n; is the momentum distribution pear +k, and -k,, res-
pectively. The Dyson equation frr the effective interaction of

the forward scattering (Egqs.(5)) reads as

Vi(k,w) = v(k) + v(K) [1!1+(k,m) + ﬂl,-(k,u)]\’l(k,u) . (31)

Assuming in the first approximation a step form of the momentum
distribution corresponding to the non-interacting system /17/ we

get

-1
vk [trzvaondrmadady)  , Il<x,,
Vl(k,w) = (23)

g1
v(o) [1-2v(x) [k (3 - [k /(2] T, -3 keox,
and Kk <k<2k,.



The singularities of the effective interaction provide us with
the dispersion relation f the collective excitations of the

density fluctuations :
]
ok) =k [1+2vm)p] , 0 <k < K, (23a)
2 |
w(k) = [k . 2v(k)k(2kc-k)/t] ., k< k<3, . (23b)

These relations are symmetric with respect to k ~ -k. e the
limit of ssall kc (as compared lo kr) the interactiom v(k) may
be taken as coastamt, v(k) = v, The relations given by Eqs.(33a,b)
hold for v > -v/3, Bguation (23s) represents the well-kmown dis-
persion relaties of thd density fluctmatioas obtaised for the
firet time by Teamnagn /6/.

Using the Ward ideatity gives by Eqs. (19) for the back-
scattering iateraction we @get the polarisatioa parts

-2 G_(P*Ikyk,.c-u) - Gy(D.c)
I (k,w) = -31(3¢) [ apds X bl - -
2+

Aky TPy +k e

: n:
n -
- - p
-%fdp Rkt~ (24)

2(ky¥p) + % + @

let us calculate explicitly 1 (k,s). As the momentum variables
2+

are restricted to +kr-kc <p < +kr¢k c and -kr-kc< p < -2kr-k <

< -kr+k° we obtain for 0 <k < kc

kytk, -

+

- n -
N (k,0)= % dp ._r"‘h“ 3!— (25)
2+ Kk ok Akyp) +k e
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Using the step form of *“ie momentum distribution we get

2
1 (k,w) 1, (2k°‘-lk;) s x| <X (26)
,#) = - —== 1n - < .
2+ ar K - w ¢

In the same way we get 0 (k,w)= 0 for k_ < x| < 2k, . By
2+
straightforward calculation we obtain also that I (k,w) =
2-
=0 (k,s). It results that the effective iateraction in the back-

2+
scattering process is

2 -2
3
(2k -|k|) ~v
Vy(x,0) = om[l . Ezﬂ:l 12 ——:,—-:,——‘ . Ixi<k,,
(27)
where u(k) = v(ll.'#k) - v(-lt,-k) is the baskscatteriag coupling
streagth that cas de taken as coastant, w(k) = u. It results immms-

diately from Bq.(27) the dispersica relation of the collective ex-
citations induced by the backscattering iateractios :

w(k) = [t’ v K) /(1T -)J , 0<k<k_, (28)

where o = exp(-2w/u) > 0., For repulsive imteractiom u > 0 the a
parameter is smaller than unit and the frequency given by Eq.(25)
exhibits a gap at k=0 of magnitude nc(ﬁu)- . One can see that

this gap is praportional to kc, a fact that is suggestive of the
finite density of states available in the backecattering inter-

action with momentum transfer 2kr (see Bec.l). In the case of at-
tractive iateraction, u < 0, a exceeds the unit and the branch of
the frequescy givea by Eq.(28) costaising (1-a) becomss imagisary
at vavevectora smaller thas lke(fo-l)/(o-l). This resalt -poists

out an instability of the groumd state of the systea agaiast at-
tractive backscattering isteraction. Therefore, one sees that the



Mmﬂu‘ interaction produces s completely differeat
bihvlo-r of the system »s compared to the forward scattering in-
teormcticn.

V. Conclusions

The VWard identity bas been deriwved for non-relativistic
sany-fermion systom¢ with two-body spim-independeni imteractiom.
Using this identity the backscattering interaction has been
treasted in tae one-dirensional Fermi gas model. The dispersion
relatica of the density fluctuations ic the case of backward scat-
tering (Bq.(28)) exhibits some interesting features. Asong. theese
we Esntion the occurrence of a gap at 'l.wvactor 2kr (k=0 in Eq.
(28)) for repulsive interaction and the iraginary valuss taken by
the frequency at wavevectors smaller thas a finite value for at-
tractive interaction. This is an indication of an instability oc-
curring in the ly’lten with attractive backward interaction. The
nature of th;. instability and its comnection to a possible phLase

transition requires further investigation.
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Figure 1. The diagrammatic structure c® L(p,e) and N(k,w).

The three-le, jed vertex function ‘s dengotec %y T(p.e1 k,wl.
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Flgure 2, Cressing up the firsteorder variation of the Freen function with

Interactlion, The tight llires represent free Creen functlons,
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