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ABSTRACT 

We modify 0(n) models (n>2) in two dimensions so as to 

compare different theories with identical local properties and 

different global ones. 

Our 0'(3) model with a particular interaction has vortex-like 

configurations (TT,(P )=ZJ though it is locally equivalent to an 

0(J) model (tfj(S2)=0) 

Our results have been obtained by means of strong coupling 

methods. The Pade extrapolants show a critical value x =11.8, 
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Phase diagrams of two dimensional lattice spin models (2DS) 

with SU(n) x SU(n) global symmetry Calso named "0(n + I V models) 

were intensively studied in the last years . (for updated reference 

1-35 
lists see '. The reason for the interest of the high energy 

theorists in this statistical mechanics problem is its common 

2-71 
properties with the SU(n) four-dimensional gauge mc-aels (4 DG) '. 

The simplest examples of the two classes of the aforementioned 

models are the 0(2) 2DS and the 11(1) 4DG '. Neither of them are 

asymptotically free and both of them possess vortex-like configurations. 

9-111 
The vortices are shown to induce in both of them, phase transitions 

For n 5 2 the SU(n) 4DG and the 0(n+l) 2DS are nonabelian 

and asymptotically free ~ ' However there is'a difference: 

The SU(n) 4DG have singular topological objects for any n 

while the 0(n) 2DS do no present vortices for n > 2 . To 

push the analogy further it will be useful to construct models that 

are locally isomorphic to 0(n) but such that their global structure 

allows for the appearance of singular topological objects (vortices). 

We call these models 0'(n). 

In principle the appearance of topological objects in these 

systems could induce phase transitions analog to the one shown by 

the 0(2) model. First we sketch the Kosterlitz - Thouless 

91 argument '. Each vortex has an energy 

E Q = TTJ In - (1) 

where R is the linear dimension of the two-dimnsional world and a 



is the l a t t i ce spacing. The entropy i s : 
\2 

50 - ' in[7j (2) 

So the free energy of a vortex is 

FQ = (JTJ - 2KT) ln| CJ) 

Therefore for all temperatures greater than T = 2_ w e expect 

vortices to mix into the ground state. One can therefore state: 

"T is the temparature of the phase transition towards vortex 

condensation". 

In the case of (a slightly modified) 0(2)2DS ' the positions 

of the vortices describe completely the state of the system -1. 

This allows rewriting the integral over configurations in terms of 

vortex variables and to obtain the logarithmic energy of the 

vortices rigourously. (:-or the analog 4DG work ^ ) . In the case of 

the 0"(n) models Cwith n > 2) writing an effective action for the 

vortices requires an integration over all the other degrees of 

freedom. This is impossible to do exactly. However, this 

integration may lead to an effective action where Eo doesn't diverge 

logarithmically and consequently the vortices are always (at any 

finite temperature) mixed into the ground state. One says in such 

a case that the phase transition towards vortex condensation is 

renormalized to T = 0 by the (nontopological) fluctuations around 

the vortices." 

Another way to argue for such a scenario is to relate it to 

the known weak coupling behaviour of the 0(n) models . Since 
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an O'(n) model has the same local structure with 0(n) (by construction) 

their low temperature properties are the same. But the 0(n) is known 

to be even at low temperatures in its high temperatures phase of 

total disorder (exponential decay of the correlation function). 

Therefore the presence or the creation of vortices cannot induce 

any further disordering in the system '. 

A third observation that makes the appearance of phase 

transitions in the 0'(n) models unlikely is the following. A 

phase transition is characterized by a zero of the g-function. 

Now the high temperature limit shows that B(«°)>0. Asymptotic 

freedom means g'(0}>0, and B(0)=OThe conclusion is that g has 

an even number of zeros at finite temperature. Since it is difficult 

to find reasons for the existence of two or more phase transitions 

one is left with the conjecture of no phase transitions as a highly 

plausible one ^° 

The possibility of a phase transition poses a potential 

difficulty to the program of extending the lattice results to a 

meaningful asymptotically free continuum theory . In the light 

of the above analysis the results reported below suggesting a 

phase transition in an 0'(3) .model are both intriguing and 

troublesome. 

First let us give a few recipes of constructing 0'(n) models. 

In two dimensional spin systems the appearance of vortices is related 
17) 

to a nontrivial topological group ill of the parameter ipace J, 

19) 
Since it,(G/H) = 1 ,

0 (
H ) R t n e procedure for constructing an 0'(n) 

model is to begin with a non abelian (asymptotically free) model 



with parameter space G and to choose an interaction that is 

invariant under a discrete group H. 

For example one may begin with a 3 component unit vector 

n[s] on each lattice site s and to construct a lagrangian that 

is invariant under the following local (gauge) transformation: 

T(Sj: n(3) ->• n(3) if 3 i % 

n(£) +-n(.t) if t = t 
W 

Such a Lagrangian is for instance: 

L = I I (n(3) n( 2 + i ) ) 2 (5) 

S 6 [sites ) I e{S2,u2} 

where u. , u_, are the unit vectors that generate the l a t t i ce . 

Another such lagrangian is obtained by the introduction of a ' gauge" 

auxiliary field c(S,S + I ) defined on links: 

I ' l l - n&c i t , t + i) n ( 5 + t) (6) 

SI 
This is equivalent to 

L = I I | n(3) n(S + t)| m 

2 t 
Continuous models can be constructed using the group 

identity 

U(N)/U(1) = SU(N)/Zn (8) 

One takes an interacting model of unitary matrices and introduces 

a complex auxiliary field that compensates Crends unphysical) the 

overall phase degree of freedom: 



5 

L(x) = (op- iA,p UM Ca^lA ) Ufc • i Amn (x)(Um. U , * - ^ ) (9) 

Also since SO(3) E SU(2)/Z2 

a model with 3x3 orthorgonal matrices is an 0'(4) model 

L{x) = 3,. a. . 3„ a. . + A. .(a a. - <S..) 

where i , j , #1,2,3} 

For the dilute gas of vortices of the above models the naive 

Kosterlitz-Thoulessargument goes through with minor modifications 

required by the finiteness of nl associated with each of them. 

Let us take a closer look at the model (5)*. 

The configurations of fig la (which the model shares with 0(3)) 

are not stable since they can decay to the vacuum fig. l.c 

(remember the spins are three dimensional). However the 

configurations of fig. lb, which have in the 0(3) model, a 

linearely divergent infrared energy, have in this model a logarithmic 

divergence exactly like the vortices of the 0(2) model. They are 

also (relatively) stable against decay into the vacuum. (This 

means more precisely: There is no existing continuous family of 

configurations that have the following properties: 

1) It interpolates continuously between lb and lc 

2) The energy of each of the configurations in the family 

is at most logarithmically divergent). 

* Study of the other models and other methods will appear in 

a longer paper. 

(10) 

(11) 



In order to study the model (S) we used a transfer matrix formalism ' 

that leads to a strong coupling expansion for the B- function 

(and other interesting quanti t ies) . I t consists in compactifying 

one direction of the l a t t i ce . This reduces the problem to the 

study of the f i r s t excited s ta te of an one dimensional la t t ice 

quantum system with hamiltonian: 

H * ~& 2 ( j 2 {°° _ x IC-lA^MOjCm + D) (12) ' 

where g is the coupling constant, a i s the l a t t i ce constant, 

x = ~2, J is a three component angular momentum operator, 

"if") = / — y2iC6W,*(>n)) (13) 

m is the lattice site, y,. are the spherical harmonics associated 

2 
with J and J . The ground state is characterized by 

J2|0 > = 0 (14) 

while a first excited state is characterized by 

J2|l > - 6 

Jz|l > = 2 (15) 

We computed the difference ( ui - o^) of the energies of the 

states ;|1 > and 10 > to the sixth order in x. 

Since not all the selection rules that simplify the 

diagramatic calculations for 0(3) and 0(2) models hold here, the 

number of nonvanishing diagrams in this modified model is much 

larger. Consequently the programme that would produce & relevant 

number of terms in a limited amount of time is more cumbersome. 



We have checked our own programme carefully by applying it to 

0(2) and 0(3) models and then comparing the output with known results.* 

For our model 0* (5) the Pade' approximants •* give very good 

convergence (fig 2,3). They indicate a critical coupling x = IIS 

(tables 2 and 3). In order to make sure that the phase transition 

2 
is not an artifact of the high value of J (=6) we computed a few 

terms for the J = 2 state of the 0(3) model. They have a very 

different structure (table 4) than the |l > of 0'(3) and show 

no sign of phase transition.(no zeros in the Pade's). In fig. 4 

we plot some of the Pade's of the u,- u>. in the 0(2) model. 

The tendency to vanish is weaker than in 0'(3) model fig. 2,3. 

This work would not have been completed without the help and 

encouragement of Adam Schwimmer. We also acknowledge T. Banks, 

A Faibish, Y. Kedmi, L.P. Kadanoff, H.R. Rubinstein, K.G.Wilson and 

E. Witten for discussions. 

7 
* As a byproduct we obtained Che coeficient of x for a>, - UJ „ 

in the 0(3) model:it is - 0.18756 x 10" . Detailed discussion 

of following numerical results will appear in a forthcoming paper. 
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TABLE 1 

Coeffients for Xn in the 0'(3) model 

<VN 

0.16667 x 10 

0.39683 x 10" 

0.88183 x 10 

0.27975 x 10" 

0.239* x 10" 

-1 

-6 

u l 

-

-
+ 

-
+ 

+ 

- 0) 
0 

0 

0 

0 

0 

0 

0 

6 

4 

217U 

17752 

85988 

18126 

82098 

X 

X 

X 

X 

X 

10 

10 

10 

10 

10 

-2 

-5 

-6 

TABLE 2 

Closests zeroes of the M/N Pade's of 0'(3)energy 

N M 

1 

2 

3 

4 

5 

1 

8.2 

16.7 

8 .63 

11.93 

13.97 

2 

11.36 

11.89 

11.69 

14.09 

3 

12.02 

11.75 

11.87 

4 

11.53 

11.94 

5 

11.00 
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TABLE 3 

Closests zeros of Pade's for B(g) of 0'(3) 

E 

N M 

1 

2 

3 

4 

5 

1 

5.7 

88 

1.5 

37 

X 

2 

7.12 

13.57 

10.6 

X 

3 

X 

11.7 

12.7 

4 

6.6 

X 

5 

6.5 

TABLE 4 

Coefficients of x for the second excited state 

energy of the 0(3) model 

n 

0 

1 

2 

3 

4 

5 

6 

V o 
6.0 

0 

0.38333 

0 

- 0.01754 

0 

0.00164 

K 
1 

0 

2. 

0 

- 0.8 

0 

1.1 
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Pade' approximants for the ^-function of the 0 ( 2 ) model 

M=2 N=3 
J all others 
M=3 N=3 

>o 

Fig. 5 

x = l.6 


