

FR 81 00147

COMMISSARIAT A L'ÉNERGIE ATOMIQUE

DIVISION DE LA PHYSIQUE

SERVICE DE PHYSIQUE THÉORIQUE

ON DEFORMED TENSOR POTENTIAL FOR INELLSTIC DEUTERON SCATTERING

by

Jacques RAYNAL

5. International symposium on polarisation phenomena in nuclear physics. Sant Fe, NM, USA, August 11 - 15, 1980. CEA - CONF 5359

CEN-SACLAY - BOITE POSTALE Nº 2 - 91190 GIF-S/ YVETTE - FRANCE

ON DEFORMED TENSOR POTENTIAL FOR INELASTIC DEUTERON SCATTERING

by

Jacques RAYNAL

DPh-T-CEN-Saclay, B.P. N°2, 91190 Gif-sur-Yvette, France

Tensor analysing powers for inelastic deuteron scattering have been measured since a long time around 12 to 15 MeV^{1.2}). The aim of such measurements for elastic scattering was to obtain informations on a tensor potential which comes from the interference³) between the S and D parts u(r) and $\omega(r)$, of the deuteron in ε crude folding model:

$$V_{T}(r_{d}) = f_{T}(r_{d})T_{r} \qquad T_{r} = \frac{\sqrt{8\pi}}{3} [Y_{2}(\hat{r}_{d})T_{2}]_{o}^{o} \quad (1)$$

$$f_{T}(r_{d}) = \int \frac{18\omega(r)}{r^{2}\sqrt{2}} \left(u(r) - \frac{\omega(r)}{\sqrt{8}}\right) [V(r_{p}) + V(r_{n})]P_{2}(\cos \hat{r_{d}}r) d\vec{r}$$

where the deuteron wave function is :

$$\varphi_{\mathbf{d}}(\mathbf{r}) = \frac{1}{r\sqrt{4\pi}} \left[u(\mathbf{r}) + \frac{\omega(\mathbf{r})}{\sqrt{8}} S_{\mathbf{np}} \right] \qquad S_{\mathbf{np}} = 3(\vec{\sigma}_{\mathbf{p}} \hat{\mathbf{r}}) (\vec{\sigma}_{\mathbf{u}} \hat{\mathbf{r}}) - 1 \quad (2)$$

There is a similar term generated by the spin-orbit nucleon-nucleus potential.

There is no problem to use such a tensor potential for the excited states in coupled channels calculations. However, for transition potentials, form factors are very different if $f_T(\vec{r}_d)^4$ or $V(\vec{r}_p)$ is assumed to be deformed : in the last case the form factors of $[Y_L T_2]_{\lambda}$ for $L = \lambda \pm 2$, λ are different.

Using a nucleon nucleus potential $V_c(\vec{r}_p) + \vec{\nabla}_p V_{1S}(\vec{r}_p) \wedge \frac{\vec{\nabla}_p}{i} \cdot \vec{\sigma}_p$, the contribution of the central potential to the folded one is:

$$V_{c}(\vec{R},\vec{S}) = \int \varphi_{d}(r) V_{c}(\vec{r}_{p}) \varphi_{d}(r) d\vec{r} = \frac{1}{4\pi} \int V^{c}(\vec{r}_{p}) \left\{ \frac{u^{2} + \omega^{2}}{r^{2}} + \frac{\omega}{r^{2} \sqrt{2}} \left(u - \frac{\omega}{\sqrt{8}} \right) S_{np} \right\} d\vec{r}$$
(3)

Using $\vec{\nabla}_p = \frac{1}{2} \vec{\nabla}_r + \vec{\nabla}_r$, the contribution of the spin-orbit potential is splitted into a spin-orbit term :

$$\begin{aligned} \mathbf{v}_{\mathrm{LS}}(\vec{\mathbf{r}},\vec{\mathbf{s}}) &= \frac{1}{2} \vec{\nabla}_{\mathrm{R}} \int_{-}^{\omega} \omega_{\mathrm{d}}(\mathbf{r}) \mathbf{v}_{\mathrm{LS}}(\vec{\mathbf{r}}_{\mathrm{p}}) \wedge i\vec{\sigma}_{\mathrm{p}} \varphi_{\mathrm{d}}(\mathbf{r}) d\vec{\mathbf{r}} \cdot \vec{\nabla}_{\mathrm{R}} \\ &= \frac{1}{8\pi} \vec{\nabla}_{\mathrm{R}} \wedge i \int \mathbf{v}_{\mathrm{LS}}(\vec{\mathbf{r}}_{\mathrm{p}}) \frac{1}{\mathbf{r}^{2}} \left\{ \left(u^{2} - \frac{u\omega}{\sqrt{2}} + \omega^{2} \right) \vec{\sigma}_{\mathrm{p}} + \frac{3\omega}{\sqrt{2}} \left(u - \frac{\omega}{\sqrt{2}} \right) (\sigma_{\mathrm{n}} \hat{\mathbf{r}}) \hat{\mathbf{r}} + \frac{9\omega^{2}}{4} (\sigma_{\mathrm{p}} \hat{\mathbf{r}}) \hat{\mathbf{r}} \right\} d\vec{\mathbf{r}} \cdot \vec{\nabla}_{\mathrm{R}} \\ &= \frac{1}{8\pi} \vec{\nabla}_{\mathrm{R}} \int \mathbf{v}_{\mathrm{LS}}(\vec{\mathbf{r}}_{\mathrm{p}}) \left\{ \frac{1}{\mathbf{r}^{2}} \left(u^{2} - \frac{u\omega}{\sqrt{2}} + \omega^{2} \right) - \int_{\mathbf{a}}^{3\omega} \frac{3\omega(\mathbf{r}')}{\mathbf{r}^{3}\sqrt{2}} \left[u(\mathbf{r}') + \frac{\omega(\mathbf{r}')}{\sqrt{2}} \right] d\mathbf{r} \right\} d\vec{\mathbf{r}} \wedge \frac{\vec{\nabla}_{\mathrm{R}}}{i} \cdot \vec{\mathbf{s}} \end{aligned}$$

and a central plus tensor potential :

Т

ī.

$$V'_{LS} (\vec{R}, \vec{S}) = -i \int [\vec{\nabla}_{r} \varphi_{d}(r) \wedge \vec{\sigma}_{p} \cdot \vec{\nabla}_{r} \varphi_{d}(r)] V_{LS}(\vec{r}_{p}) d\vec{r}$$

$$= \frac{1}{4\pi} \int V_{LS}(\vec{r}_{p}) \left\{ \frac{3\omega}{r^{4}} [2r\omega' - \omega] + \frac{3\omega}{2r^{4}} [\sqrt{2}ru' - \sqrt{2}u - r\omega'] S_{np} \right\} d\vec{r}$$
(5)

Due to the simple expressions in r, these integrals are easily evaluated, thanging dr into dr and r = 2(r - R). The central form-factor of a transfert λ is obtained from the multipole λ of $\frac{1}{r^2} (u^2 + \omega^2)$ in (3) and of $\frac{3\omega}{r^4} [2r\omega - \omega]$ in (5). Similarly, the form-factor of $[Y_L T_2]_{\lambda}$ involves the multipoles of $f_1(r) = \frac{\omega}{r^4 \sqrt{2}} \left(u - \frac{\omega}{\sqrt{8}} \right)$ in (3) and $f_2(r) = \frac{3\omega}{2r^4} [\sqrt{2}ru^2 - \sqrt{2}u - r\omega^2]$ in (5). The results are $\frac{64}{\sqrt{10\pi}} \frac{2L+1}{2\lambda+1} < L200 |\lambda 0\rangle \int [V^{\lambda}(r_p)f_1(r) + V^{\lambda}_{LS}(r_p)f_2(r)]R^2 P_{\lambda}(\cos \theta)$ $+ r_p^2 P_L(\cos \theta) - 2Rr_p P_{L+\lambda} (\cos \theta)]r_p^2 dr_p d\cos \theta$ $L = \lambda \pm 2$ (6) $\frac{64}{\sqrt{10\pi}} <\lambda 200 |\lambda 0\rangle \int [V^{\lambda}(r_p)f_1(r) + V^{\lambda}_{LS}(r_p)f_2(r)] \left[(R^2 + r_p^2)P_{\lambda}(\cos \theta) - \frac{Rr_p}{2\lambda+1} \left\{ (2\lambda - 1)P_{\lambda+1} + (2\lambda + 3)P_{\lambda-1} \right\} \right]r_p^2 dr_p d\cos \theta$

To study the importance of such terms, a fit has been done with the first order vibrational model for ⁶⁴Ni(dd')⁶⁴Ni^{*}, 2⁺ at 1.344 MeV. The plain curve shows the best fit obtained without tensorpotentials. The dashed elastic curves are an optical model fit with complex spin-orbit interaction and some tensor potential. These curves were obtained, using primarily cross-sections and elastic vector polarization in the χ^2 . In the optical model, the tensor polarizations are quite well fitted as soon as the fit of the vector one is good. In coupled channel calculations the spin-orbit interaction became real but the fit of the elastic vector analyzing power cannot be maintained. The dotted curve, obtained with a tensor potential with different strengths for the elastic and inelastic channcls, shows that a tensor potential cannot fill the gap between calculation and experiment. The inelastic dashed curves are obtained with deformed tensor potentiels (6) of which the strength was varied. These results show that a tensor potential for the 2⁺ or a tensor transition potential, chiefly L=4 can give a better fit for inelastic tensor analyzing powers. However, they show primarily the importance of central and spin-orbit terms : without a very good fit for cross-sections and vector polarizations, such a search is not conclusive.

References

O. Karban et al. Nucl. St. Annual Report, Birmingham (1976) 30
 F.T. Baker et al, Nucl. Phys. <u>A</u> 233 (1974) 409
 J. Raynal, Thesis (Orsay 1964) ANL-TRANS-258
 O. Karban, Nucl. St. Annual, Report Birmingham (1975) 60

