

FR> *%\ 00\^*

COMMISSARIAT A L'ENERGIE ATOMIQUE

DIVISION DE LA PHYSIQUE

SERVICE DE PHYSIQUE THÉORIQUE

ON DEFORMED TENSOR POTENTIAL FOR INELASTIC DEUTERON SCATTERING

by

Jacques RAYNAL

5. International symposium on polarisation phenomena in nuclear physics. Sant Fe, NM, USA, August 11 - 15, 1980. $CEA - CONY$ 5359

CEN-SACLAY - BOITE POSTALE N° 2 - \$1190 GIF-SA YVETTE - FRANCE

ON DEFORMED TENSOR POTENTIAL FOR INELASTIC DEUTERON SCATTERING

by

Jacques RAYNAL

DFh-T-CEN- Saclay, B.P. N°2, 91190 Cif-sur-Yvette, France

Tensor analysing powers for inelastic deuteron scattering have been measured since a long time around 12 to 15 MeV ^{1.2}). The aim of **such measurements for elastic scattering was to obtain informations on a tensor potential which comes from the interference^) betveen the S and D parts u(r) and u(r), of the deuteron in** *t* **crude folding model:**

$$
V_{T}(r_{d}) = f_{T}(r_{d})T_{r} \qquad T_{r} = \frac{\sqrt{8\pi}}{3} [Y_{2}(\hat{r}_{d})T_{2}]_{0}^{0} \qquad (1)
$$

$$
f_{T}(r_{d}) = \int \frac{18\omega(r)}{r^{2}\sqrt{2}} \left(u(r) - \frac{\omega(r)}{\sqrt{8}} \right) [V(r_{p}) + V(r_{n})]P_{2}(\cos r_{d}^{2}r) d\vec{r}
$$

where the deuteron wave function is :

$$
\varphi_{\mathbf{d}}(\mathbf{r}) = \frac{1}{\mathbf{r}\sqrt{4\pi}} \left[\mathbf{u}(\mathbf{r}) + \frac{\omega(\mathbf{r})}{\sqrt{8}} \mathbf{S}_{\mathbf{n}\mathbf{p}} \right] \qquad \mathbf{S}_{\mathbf{n}\mathbf{p}} = 3(\vec{\sigma}_{\mathbf{p}}\hat{\mathbf{r}}) \quad (\vec{\sigma}_{\mathbf{n}}\hat{\mathbf{r}}) - 1 \qquad (2)
$$

There is a similar term generated by the spin-orbit nucleon-nucleus potential.

There is no problem to use such a tensor potential for the excited states in coupled channels calculations. However, for transition \mathbf{p} otentials, form factors are very different if $\mathbf{f}_{\mathbf{T}}(\vec{\mathbf{f}}_A)^4$ or $\mathbf{V}(\vec{\mathbf{f}}_n)$ is **assumed to be deformed : in the last case the form factors of** $\text{I}(\text{Y}_\text{L}\text{T}_2)$ for $L = \lambda \pm 2$, λ are different.

Using a nucleon nucleus potential V_c **(** \bar{r}_p **)** + ∇p V_{LS} (\dot{r}_p) \wedge $\frac{p}{t}$. σ_p , the **contribution of the central potential to the folded*one is :**

$$
V_{c}(\vec{k},\vec{s}) = \int \varphi_{d}(r) V_{c}(\vec{r}_{p}) \varphi_{d}(r) d\vec{r} = \frac{1}{4\pi} \int V^{c}(\vec{r}_{p}) \left\{ \frac{u^{2} + \omega^{2}}{r^{2}} + \frac{\omega}{r^{2}/2} \left(u - \frac{\omega}{\sqrt{\theta}} \right) s_{np} \right\} d\vec{r}
$$
(3)

 \vec{v} and \vec{v} the contribution of the spin-orbit potential is $\n y \n $\n \begin{array}{c}\n 2 \\
1 \\
\end{array}\n x \n $\n \begin{array}{c}\n 1 \\
1 \\
\end{array}\n x \n $\n \begin{array}{c}\n 1 \\
1 \\
\end{array}\n x \n $\n \begin{array}{c}\n 1 \\
1 \\
\end{array}\n x \n $\n \begin{array}{c}\n 1 \\
1 \\
\end{array}\n x \n $\n \begin{array}{c}\n 1 \\
1 \\
\end{array}\n x \n $\n \begin{array}{c}\n 1$$$$$$$$

$$
v_{LS}(\vec{R},\vec{S}) = \frac{1}{2} \vec{\nabla}_{R} \left[\phi_{d}(\mathbf{r}) v_{LS}(\vec{r}_{p}) \wedge i \vec{\sigma}_{p} \phi_{d}(\mathbf{r}) d\vec{r} \cdot \vec{\nabla}_{R} \right]
$$

\n
$$
= \frac{1}{8\pi} \vec{\nabla}_{R} \wedge i \int v_{LS}(\vec{r}_{p}) \frac{1}{r^{2}} \left\{ \left(u^{2} - \frac{u\vec{w}}{\sqrt{2}} + \omega^{2} \right) \vec{\sigma}_{p} + \frac{3\omega}{\sqrt{2}} \left(u - \frac{\omega}{\sqrt{2}} \right) (\sigma_{n}\hat{\mathbf{r}}) \hat{\mathbf{r}} + \frac{3\omega^{2}}{4} (\sigma_{p}\hat{\mathbf{r}}) \hat{\mathbf{r}} \right\} d\vec{r} \cdot \vec{\nabla}_{I}
$$

\n
$$
= \frac{1}{8\pi} \vec{\nabla}_{R} \int v_{LS}(\vec{r}_{p}) \left\{ \frac{1}{r^{2}} \left(u^{2} - \frac{u\omega}{\sqrt{2}} + \omega^{2} \right) - \int_{a}^{3} \frac{3\omega(r)}{r^{3} \sqrt{2}} \left[u(r') + \frac{\omega(r')}{\sqrt{2}} \right] d\vec{r} \wedge \frac{\vec{\nabla}_{R}}{\vec{i}} \cdot \vec{S} \right\}
$$
(4)

and a central plus tensor potential:

and a central plus tensor potential :

 $\bar{\rm I}$

 $\bar{1}$ $\bar{\mathbb{F}}$

 $\bar{\rm I}$

 ± 1

$$
V'_{LS} (\vec{R}, \vec{S}) = -i \int [\vec{V}_{T} \varphi_{d}(r) \wedge \vec{\sigma}_{p} \cdot \vec{V}_{T} \varphi_{d}(r)] V_{LS} (\vec{r}_{p}) d\vec{r}
$$

$$
= \frac{1}{4\pi} \int V_{LS} (\vec{r}_{p}) \left\{ \frac{3\omega}{r^{4}} [2r\omega^{3} - \omega] + \frac{3\omega}{2r^{4}} [\sqrt{2}r\omega^{3} - \sqrt{2}\omega - r\omega^{3}] S_{np} \right\} d\vec{r}
$$
 (5)

Due to the simple expressions in r, these integrals are easily evaluated, changing dt into dt_n and $\vec{r} = 2(\vec{r}_n - \vec{R})$. The central form-factor of a **transfert** λ is obtained from the multipole λ of $\frac{1}{2}$ ($u^2 + \omega^2$) in (3) and of $\frac{30}{4}$ [2rw-w] in (5). Similarly, the form-factor of $[Y_LT_2]$ ₁ involves the multipoles of $f_1(r) = \frac{1}{r^4} \frac{r}{r^6} \left(u - \frac{1}{r^6} \right)$ in (3) and $f_{\alpha}(r) = \frac{30}{\pi R}$ [$\sqrt{2}ru^{\alpha}-\sqrt{2}u-\nu^{\alpha}$] in (5). The results are $2^{2^{n}}$ 2^{r^4} **64 2L+1 •HFn** $\frac{2L+1}{2L+1}$ **4.200** λ 0> $[(\mathbf{V}^{\prime}(\mathbf{r}_{-})\mathbf{f}_{1}(\mathbf{r}) + \mathbf{V}^{\prime}_{1} \mathbf{c}(\mathbf{r}_{-})\mathbf{f}_{2}(\mathbf{r})\mathbf{I}\mathbf{R}^{2} \mathbf{P}_{1}(\cos\theta))$ $\mathbf{r} \cdot \mathbf{r}^2 \mathbf{P_L} (\cos \theta) - 2\mathbf{R} \mathbf{r} \mathbf{p} \mathbf{P_{L+}}$ (cus θ)} $\mathbf{r}^2 \mathbf{p} d\mathbf{r} \mathbf{p} d\cos \theta$ $L = \lambda \pm 2$ **64** \leq λ 200| λ 0> $\left[(v^{\lambda}(r_{-})f_{1}(r) + v_{1c}^{\lambda}(r_{-})f_{2}(r)) \right]$ $(x^{2}+r_{-}^{2})P_{1}(cos \theta)$ (6) $\begin{bmatrix} -2\lambda+1 \\ 2\lambda-1 \end{bmatrix} P_{\lambda+1} + (2\lambda+3)P_{\lambda+1} \begin{bmatrix} r \ r \end{bmatrix} \begin{bmatrix} r \ r \end{bmatrix}$ dr P^d cos $\mathbf{L} = \lambda$

To study the importance of such teres, a fit has been done with the first order vibrational model for ⁶⁴ Ni(dd')^M Ni*, *2** **at 1.344 MeV. The plain curve shows the best fit obtained without tensor potentials. The dashed elastic curves are an optical model fit with complex spin-orbit interaction and some tensor potential. These curves were obtained, using primarily cross-sections and elastic vector polarization in the** \mathcal{X}^2 . In the optical model, the tensor polarizations are quite well fit**ted as soon as the fit of the vector one is good. In coupled channel calculations the spin-orbit interaction became real but the fit of the elastic vector analyzing power cannot be maintained. The dotted curve, obtained with a tensor potential with different strengths for the elastic and inelastic channe-ls, shows that a tensor potential cannot fill the gap between calculation and experiment. The inelastic dashed curves are obtained with deformed tensor potentiels (6) of which the** strength was varied₋ These results show that a tensor potential for **the 2* or a tonsor transition potential, chiefly L« 4 can give a better fit for inelastic tensor analyzing powers. However, they show primarily the importance of central and spin-orbit terms : without a very good fit for cross-sections and vector polarizations, such a searc'u is not conclusive.**

References

1) 0. Karban et al. Kucl. St. Annual Report, Birmingham (1976) 30 2) F.T. Baïcer et al, Nucl. Phys. A 233 (1974) 409 3) J. Raynsl, Thesis (Orsay 1964)""ANL-TRABS-258 4) 0. Karban, Nncl 3t. Animal, Report Birmingham (1975) 60

