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ABSTRACT

One possible element for funnel ing two beams to-
gether is a deflector with a constant or time-varying
electric-field strength. With such an element, arbi-
trary beams can be brought together and maintained on
the axis, if the appropriate combination of deflector
parameters is chosen. A parallel beam can be handled
only with a time-varying voltage of the deflector. The
six-dimensional transfer matrices are calculated for
constant or time-varying fields; all the results are
correct in first-order approximation.

I. INTRODUCTION

The idea of funnel ing two or more beams together is an importart point for

most heavy ion fusion scenarios. The idea of fi ineling means that parties

beams, coming from a low-frequency acceleration stricture, are brought together

in a second accelerator, which is operating at a nig ar frequency in such a way

that every bucket of the high-frequency acceleration field is filled. Such an

arrangement has two great advantages: the space-charge problem is not severe,

because the number of particles in each radio-frequency (rf) bucket can be kept

small, and filling all the buckets reduces the total length of the system and

the operation costs. One example of such a funnel ing concept is the proposed

arrangement of six different types of linear accelerators for a heavy ion fusion
2 +1

facility. In this case, a Xg beam of 800 mA and 10 GeV at the end is pro-

duced by starting with 32 individual beams of 25 mA. In general, the funneling

idea allows handling a final high-current beam in an elegant and less expensive

way.
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One possible element for bringing the beams together is a deflector with

a constant or time-varying electric field. Two beams are assumed to be symmet-

rically distributed around the longitudinal axis of the following accelerator.

In this case, funnel ing means that at the end of the funnel ing section, the two

beam centers, separated in time, are coiinear for minimizing the longitudinal

and transverse emittance growth. Therefore, for a symmetric arrangement of the

two beams, the deflector's electric-field strength has to be changed from a

positive to a negative value. This can be done either with a fast switcher and

E = constant, or with a time-varying electric field with an appropriate fre-

quency choice.

Each funnel ing section may increase the transverse and longitudinal beam

emittance; therefore, the funneling line must be optimized. To minimize the

emittance growth, the transfer matrix of the funneling section must be known,

at least in first-order approximation.

In this report, we would like to present the linear transfer matrix T in

six dimensions for a deflector element with a constant or time-varying field.

All formulas are in first-order approximation, correct for an arbitrary movement

of the beam centers inside the deflector. Space-charge effects are not included,

but in a funneling line they are not so important because for low energies the

current is low, and for high-current values the beam energy is high.

The deflector element is the most important part of our followina proposed

funneling line: two symmetrically located beams, produced by arbitrary, but

identical accelerators, are first brought near the z-axis by similar bending

magnets of opposite polarity. We define the z-axis to be the longitudinal axis

of the following accelerator structure. Therefore the parameters of the two

beam centers differ only in sign and we can consider one beam only.

After the bending magnet, the angle x' of the beam center is smaller than

or equal to zero for a positive value of the displacement x. A zero anale can

be achieved by using two separated bending magnets. The parameters of the fol-

lowing deflector element are chosen so that the beam, coming from the bending

magnet, is transferred to the z-axis. For a parallel injection (x' = 0 ) , we

have to use a time-varying field, whereas for x1 < 0 either constant or time-

varying fields are possible. At the end of the deflector, the beam center is

.moving along the z-axis for every given initial diSDlacement and angle, if the

parameters of the bending magnet and the deflector element are compatible. In

the deflector element, the longitudinal and transverse motions of the particles



are coupled. Therefore, we are expecting some emittance growth, and a matching

section has to be constructed for transferring this beam into another accelera-

tor.

All above statements are correct for the second beam if its beam center,

arriving at the deflector at.some later time, is seeing the opposite electric

field. A concrete design for such a whole funnel ing section will be done later.

This report is organized in the following way: in Sec. II we calculate

the linear transfer matrix T of a deflector with a constant electric field for

an arbitrary movement of the beam center. In Sec. Ill, the same is done for a

time-varying field. In Sec. IV, the two six-dimensionals transfer matrices and

the definitions of all the terms are listed.

The most important part of this report is the calculation of the phase

difference. In the Appendix, we derive a general formula for the phase differ-

ence, which is valid for arbitrary movement of the beam center and the particles.

The movement of the particles is described in its own specific curved coordinate

system. The expressions used for the phase differences in Sec. II and Sec. Ill

are based on this Appendix.

II. THE DEFLECTOR ELEMENT WITH A CONSTANT ELECTRIC FIELD

The deflector for funnel ing the beams together is shown in Fig. 1.

-^BEAM CENTER

Fig. 1. Schematic Drawinp of a Deflector Element



We are using this coordinate system: (x,y,z) are normal rectangular cartesian

coordinates and z is the longitudinal axis of the following acceleration struc-

ture; (x.y) are the displacements of the particles from the z-axis.

The deflector element is a normal plate conductor of the length Lpr.

parallel deposit around the z-axis, with a constant or time-varyina field. The

beam centers are moving along the lines x (z) in the (x,z)-plane. The two beams

/x \1 /x \2
are thought to enter symmetrically ( I = - I c ) but separated in time in

W ) Vc)
this arrangement, and we consider one beam only.

In this entire report, the subscript c refers to the beam center (the

synchronous particle) and x (z) always means the movement of the centers, called

reference line. The quantities m and q are the particles rest mass and charne.

Velocity-dependent parameters are carrying a subscript c for beam center and p

for particles. The quantity v ({) is the velocity's absolute value (the rela-

tivistic factor . = jof either the beam center or the particles.

Vl-(v/c)2

With a bending magnet, the particles of each beam are brought to the be-

ginning of the deflector element; therefore, the displacement and the angles

of the particles are determined by the magnet parameters. For a parallel ert.rv

of the beam (x' = 0) in such a magnet with a homogenous field strength B^, we

get

x(.(z1 + a ^ = xc(z1) - p1 + p-| Vl - (a/p)1

Vl - (a/p)2

with X(l(z-|) = 0 and - < 1 . Here x (z-|)[x (z-j + a,)] is the displacement of the

synchronous particle at the beginning (end) of the bending magnet and — is the
pl

curvature radius of the magnet:

hmi?k • <3)



The magnetic field is acting on the synchronous particle in the interval

z-j < z < z-j + a-j.

A parallel entry of the beam into the deflector element is possible if

we use a second bending magnet. The beam parameters are given by

(a/p)
xc(z2 + a2) = xc(z

2

c(z2) + p2 - -yjj D2 (4)c(z 2 + a2

x ' (z 2 + a2) = 0

• • i ( a / o ) 2

wi th ' • • >9 ' 1 and ~r~n~y ' 1- Note tha t x (z ? ) is the displacement of the
• • ' i x c ^ 2 •

beam center at the entrance of the second magnet.

For the deflector element, we get these equations of motion if we apply a

constant voltage between the two plates

• m ~ = q I (6)
dr

with r = (x,y,z) and t = (E ,0,0). For a constant velocity v = -3- , the solu-
X Z Q L

tions of Eq. (6) in x-direction can be written as

x(L) = x(0) + x'(0) + (a/2)L2

(7)
x'(L) = x'(0) + a L

with L = z - zQ or 0 =s L < L f

and
qExa = — ^ - = const . (8)

The quantity x(L) is the particle displacement from the z-axis, and x1 = dx/dL

is the angle between the particle trajectory and the z-axis.



For funnel ing the two beams together, we would like to have at the end of

the deflector

= 0 . (9)

For one beam center, the reference line x (L), fulfilling the restriction of

Eq. (3), is given by

xc(L) = ^ (L r f - L )
2 (10)

q Ex ' c'with a = — p and v i ~ v = const .
m vc \

Therefore, for our symmetric arrangement of the two beams, Eq. (9) can only be

fulfilled by changing the electric-field strength from +E to -E for the two
X X

beams.

Mow x (0) and x'(0) are functions of the parameters a and L * and for a

positive value of the electric-field strength E v, we get x (0) > 0, x'(0) < 0.

This sign combination of x and x1 can be made by bending the particles near the

z-axis. Thus, with a fast change of the constant electric-field strength E ,

both beam centers can be brought to the z-axis and maintained on the axis.

Please notice that a parallel beam (x' = 0) cannot be handled with this approach.

Equation (7) is used for the synchronous particle, but not for the other

particles in a bunch, for the following reason: Eq. (7) is only valid for a

constant velocity v (t), which is approximately correct for the beam center,

because the synchronous particle has no motion in y-direction and x' can be

made small enough with a bending magnet. For the other particles, both state-

ments are incorrect; the differential equation (6) is solved in a curved co-
— — 3ordinate system (x,y,s). (Appendix).

All the following formulas are correct for an arbitrary reference line

x_(z) and not only for the function x (z) given in Eq. (10). The results for x

and y are independent of the form of x (z); however, the phase difference .1?

can be calculated only if the function xc(z) is explicitly known. For the

reference line x (z) the differential equation (6) must be solved.
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Assuming the existence of an arbitrary reference line x (z), we obtain the

following differential equations

(11)

a * - L 6
ds v dt

where (x,y) are the displacements of the particles from the reference line and

the coordinate s is the path length of the beam center (Appendix). From

Eq. (11) we get

y(s) = v(0) + sy'(O)

(12)

y'(s) = y'(0)

with 0 - s = r Vl + x'2(L') dL' * L
element ,

6 C

and Le emen is the length of the reference line inside the deflector element.

The behavior of the particles in y-direction is the same as for a drift-space

element with the length L e l e m e n t , as expected.

For the x-coordinate, the following equation is exact, if phase-difference

effects in the arguments of the functions are neglected (Appendix).

Jx'2(t) + z'2(t)
x(t) ̂ - i L — ^ J L

dxdx
with x' = -n- and x (t)[x (t)] is the displacement of the particle (beam)
from the z-axis at some time t.

For small values x'(t), we get

x(t) = xp(t) - xc(t) . (14)



Inserting this approximation into Eq. (11) and using Eq. (6), we obtain

with Y D
 = Y c + A • The solutions of Eq. (15) can be written as

x(s) = x"(0) + sx'(O) + •£• s 2 (1-)

and 0 < s *» L . The movement in x-direction is the same as in a drift-

space element plus an additional velocity dependent term, which couples the

transverse and longitudinal motion.

The functions x(s) and y(s) are both independent of any specific refere' .c

line x c(z).

For the phase difference .'.L, we obtain in first-order approximation

(Appendix)

with I-, o

The first two terms of AL n are the terms of drift-space element with lengtr

L e emen ; the next two terms are specific for the deflector element. Aqain we

obtain a couplinq between the transverse and lonqitudinal motion of the par-

ticles. The formula for £L is correct for any arbitrary function x (L),

but is not independent of the specific form of x (L). For our funnelina con-

cept, we use x C(L), given in Eq. (10). The resulting formula of LL is give'

in Sec. IV, where we list all the definitions used.



III. THE rf-DEFLECTOR WITH A TIME-VARYING FIELD

Let us assume the existence of an electromagnetic field inside the rf-

deflector of the following form:

£(r,t) = (A sin .t, 0,0)

B(r,t) = 0 . (18)

Eauation (18) is correct, if edge effects and contributions of the magnetic

field to the Lorentz-force are neglected.

The coordinates of the rf-deflector and the definition of the particle

properties are the same as in Sec. II.
The equation of motion in x-direction for a particle inside the deflector

2
— £ = ^- A sin ,t (19)

at

has for v? = — = const solutions of the form

x(L) = x(0) + Lx'(O) + e(L)
(20)

x'(L)= x'(0) + f(L)
with L = z-Zg or 0 *s L < lrf

-a
^ - ^ -2

z

_de(L) _ q A a,

— cos o - sin p

UJL , \

— + p ] - cos c

The parameter A sin p is the electric-field strength of the rf-deflector when
the particle enters.

For funnel ing two symmetric beams, we would like to have

(x \ beam 1 / x \ beam 2= , = ° (21
xc/ W /

at the end of the deflector.



Using the res t r ic t ion of Eq. (21) for one reference l i ne , th is beam

trajectory x (l_) is given by (for |v [ = v )c z c

^ r ( L r f - L) COS (•
V \ /J (22)

If the frequency w of the electric field is chosen as

u At = (2n + 1)- n = 0,1,2, ... (23)

where Lt is the time difference between the two beam centers arriving at some

point, then Eq. (21) is fulfilled for both beam centers. For the first beam,

the value of the electric-field strength is + A sin p, whereas for the second

beam, the field strength is given by A sin (p + oiAt) = - A sin p.

To get a smooth movement of the particles, we would like no beam-trajec-

tory oscillations around the z-axis. Therefore x'(L) should not be zero except

at the points L = 0 (parallel injection into the deflector) and L = lff (end of

the deflector). These oscillations do not occur if p is limited in the interval

- TT/2 < p < + n/2 and we choose

— — + p < TT for p > 0

(24)

+ p < TT for p < 0 .

In both cases, x^O) * 0 and x^(L r f) = 0 . With the choice

coLrf

vc
= 2|p| and - | < p < 0 , (25)

a parallel bean (x'=0) is brought to the z-axis without any osc i l la t ions between.
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In every case, the field-amplitude A is positive for x' < 0, x > 0 and

this sign combination is the result of using a bending magnet.

For a positive value of p, the absolute value of x' is maximal in the be-

ginning, whereas for a negative value of o, the maximum of jx'i is located in-

side the deflector. We expect a small emittance increase for p > 0, but mors

increase for p < 0, especially for parallel injection into the deflector element.

Equation (20) is only used for the description of the beam centers, be-

cause here v (t) has to be constant. For the other particles in a bunch, we

use a curved coordinate system (x,y,s) and with the same approximations as in

Sec. II, we obtain

4-.
(26)

ds mvc

where A sin p[A sin (p + utg)] is the field strength when the beam center (par-

ticle) enters the rf-deflector. In the beginning, ojtn is proportional to a

phase difference £$.

The solutions of Eq. (26) can be written as (in first-order approximation

in ojtQ and £ Y / Y C )

y(s) = y(0) + sy'(O)

x(s) = x(0) + sx'(O) + (aito)a(s)

(27)

x'(s) = x'(0) + ((otc

with

n ^ „ ^ i elementU ^ s ̂  L

Y p = Yc + AY

n



«(s)

3(s)

A ( S )

M ( S )

rnco Y

/

V

1,

0,

,0,

CO

V

o,

- i ,

CO

V 'yc

o,

- 1 ,

0,

co

V

CO

co

Vc

0

COS

sin

• s + p I

• s + p J

p

p

As in Sec. II, we obtain a coupling between the transverse and longitudinal
motion and the results for x and y are independent of the reference line x (L).
For the length difference AL, proportional to the phase difference A*, we get
(Appendix)

ALend = ALbegin
in -(^>

with:

element

rf

o vi + x ^

(23)

The first two terms in AL e n are the terms of a drift-space element; the last
three terms are specific for the time-varying rf-deflector. The parameter cot̂
is proportional to AL e^1n and the functions [x(L), y(L)] are given in Eq. (27).

For our funnel ing arrangement, the reference line x (L) is given by
Eq. (22) and the resulting form of AL is listed in Sec. IV.
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IV. CONSTRUCTION OF THE SIX-DIMENSIONAL TRANSFER MATRICES

In this section, we would like to list the complete (6 x 6) matrix for

both deflector elements, and to repeat all the definitions used.

The arrangement of the deflector is the same as in Fig. !; the plates

are parallel to the z-axis, their length in z-direction is lrf, and they are

thought to be infinite in y-direction.

The quantity v (v ) is the total velocity of a particle (beam center =

synchronous particle); m and q are its rest mass and charge.

The velocity difference Av is related to the momentum, or total energy,

difference by

_2
Ap =

with

PP

P

VP

" Pc

= vc
+

m

AV

c Y3

)

c2"

V

c

- vc 2

2

vc

AV
vc

Ay

c

(29)

where PD(pc) and W (Wc) are the momentum and total energy of a particle (beam

center) and (B,Y) are the usual relativistic factors of the synchronous particle;

c is the velocity of light.

The phase difference A4> is given in terms of the used length difference AL

A* = {* - * ^ b e g i n n i n g = 2rr Al_end,beginning ( 3 0 )

P C PA

where x is the wavelength of the accelerating field.

The beam center is moving along the reference line x (L) in the (x,z)-

plane. The particle coordinates x(s) and y(s) are the displacements of the

particles from the reference line with path-length s and (x',y') are the deriva-

tives with respect to s.

Using these definitions, the two transfer matrices can be calculated.

13



The transfer matrix T is defined by

X

x 1

y

y '

AL

Av

c

= T

end \

X

x 1

y

y 1

AL

Av_
v .

(31)

beginning

a) the T-matrix for a constant electric f ield

T =

o,

0,

0,

0,

o,

L,

1,

0,

o,

o,

o,
0,

1 ,

o,

o,
o,

o,
0,

L,

1,

o,
0,

o,
o,

0,

0,

1 ,
0,

2 L

a l L

0

0

I 2 - L
1

with: t = (E,0,0)

. _ r5i L_
11 " "»c c2 - v7

0

L,

rf ,-
1 + dL

v ' f I \

—£— I I , - 3ik i
K • I my 2 2

1 + x ' 2 (L) V c c - vc

dL

and x (L) is an a r b i t r a r y reference l i n e , given by Eq. (7) ,
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For a funneling arrangement, both x (L -:) and x'(Lrr) should be zero. In

this case, for |v c| = v , the reference line is given by Fq. (10)

xc(L) = - 5 | _ (L r f - L )
2 .

A paral lel beam (x' = 0) cannot be handled by a constant e l ec t r i c - f i e l d
strength E.

b) tne T-matrix for a time-varyinn f i e l d :

1, L, 0, 0, a.
V

6(L)

T =

0, 1, 0, 0, ^

0, 0, 1, L, 0,

0, I3, 0, 0, 1 + f- I4,

j

c2 - v} 5
- L

0, 0, 0, 0, 0,

wi th:

/ 1, 0,

-qA
2

-1. s -

0, -1, ŝ -, 1
c

0, - ̂ -, 0, ^-

CO n CO n

\~ v"' 0> v"'\ c c

cos/ —

sin/^-

COS p

sin p

15



L =J Vl + x^2'
0

•f-
(.4,5 7 r

dL

x'(L)

+ x'2(L)

The electric field strength is given by

I = (A sin tjt,O,O)

and A sinp [A sin(p + cot,,)] is the field strength of the beam center (particle)

in the beginning. The parameter uto is related to the length difference

^beginning by ^ = (;o/Vc)ALbeginrnng. ^{l) .$ an a r b i t r a r y reference line,

given by Eq. (20).

For a funnel ing arrangement, the frequency OJ is given by

L t = (2n + n = 0,1,2, ...

where it is the time difference between the two beam centers. The reference

line x (L) is given by Eq. (22):

*c(L) = mt- T
c w

sin

To avoid oscillations (x' = 0) around the z-axis, we have to choose for

( -TT/2) < P < ( +TT/2)

O)Lrf p < i r if p > 0

Pi <
-rf + p < TT l'f p < 0

In both cases, x^O) * 0.

16



A p a r a l l e l beam (x1 = 0 ) can be handled by the parameter choice

^ = 2| pi f o r - J < •: < 0 .
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APPENDIX

CALCULATION OF THE PHASE DIFFERENCE A*

FOR AN ARBITRARY MOVEMENT OF THE BEAM CENTER

If the beam center (the synchronous particle) is not moving along the

z-axis, it is convenient to use a curved coordinate system (x,y,s) instead of

a normal cartesian coordinate system (x,y,z). In this appendix, we consider

only a movement of the beam center in the (x,z)-plane.

The coordinates (x,y,s) are defined in this way: the beam center is moving

along an arbitrary reference line x (z) with constant velocity v in the (x,z)-
c c

plane. The coordinate s is the path length of the reference line with s' = vc,
starting at some point s = 0. The unit vectors (e~, e~) are perpendicular to

.». x y '

the tangential vector SQ of the reference line at every point s, and the coordi-

nates (x,y) are the displacements of a particle from this reference line.
17



In Fig. A-l, the displacement x is shown for an arbitrary reference line
x (L) and particle coordinates (x.,,!.-,).c ^ p p The vector e:r is perpendicular tox^ p
the tangential vector sQ of the reference line at the point Lg and in general LQ

and L are not equal. The difference L - LQ is proportional to the phase dif-L are not equal.

ference A£ of the particle.

xp .--v

(L)» Arbitary reference
line

Fig. A-l. Curved Coordinate System

In some cases, the values x(s) = x[s(L)], y(s) and x (L) are known, but
unknown are the functions x (L) and y D(L), the displacements of the particles
from the z-axis. Using the definitions of Fig. A-l, we get for the parameter
Lo this complicated relation:

L0 = LP
(A-l)

with x(L0) = x [s (L 0 } ]

:emen1

parameter LQ by

The displacement x and its derivative x' then are given as a function of the

x(L0) + xc(LQ) (A-Z)



3

(1 + x^ ) (x' + x^) - x x^ x|
= xp

 = — -J
(1 + x ' 2 ) 2 (1 - x' x') - x x"

with xp = xp(Lp)

xc = xc^L0) ' xc

x = x[s(L0)]

. dx(D
' dL"

For the value of the displacement y and its derivative y' we obtain

yp(Lp) = y[s(L0)]

7 7 (A-4)
dyD _ (i + *'£r
dL yp y 3

(1 + x' 2) 7(1 - x V ) - x x^

with y' = y'(L ) and all the x (x,y') - values are taken at the point LQ[s(L0)].

All of these kinetic formulas are exact for arbitrary functions x (L),

x(s), and y(s).

In a curved coordinate system, the phase difference A* is proportional to

V.he time difference AT, at which the beam center and a particle are arriving at

some point sQ. For an arbitrary element, located perpendicular to the z-axis in

the interval a < z < b, we have the situation shown in Fig. A-2; the reference

line is x (z).

At the time tQ, a particle should arrive at the point s(a) and at the time

tQ + Ll , this particle should arrive at the point s(b).

The z-coordinates of beam are assumed to be z = z^ at the time t = t« and

z = z 2 at the time t = tQ + AT , as shown in Fig. A-Z.
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-PARTICLE
ATt=t.

PARTICLE
AT t-ts*AT.

BEAM

Fig. A-2. Coordinates for the Phase Difference Calculation

There exists a length difference Al_en between the beam and the particle

at the end of the element:

AL
end (A-5)

AL n is the length of the reference line between the points z = b and 2 =

and AL is proportional to the phase difference A

Using the coordinate s with s' = v = const, we obtain

AL e n d = s(z2) - s(b)

= [s(z2) - s(Zi - s(a)] + [s(a) - s(b)]
(A-6)

= vc ATp
9 - L

where L = M/l + x^ (z) dz is the effective total length of the element and

a

..end, beginning _ (sbeam _ sparticle)end, beginning

20



Equation (A-6) is exact for an arbitrary movement of the beam center in

the (x,z)-plane and the only unknown parameter is the time AT , which is a quite

complicated function of the parameters x(s) and x f z ) -

If the particle displacements x(s) from the reference line are small at

the beginning and at the end, then the parameter AT is approximately the flight

time from the point z = a to the point z = b:

b - a -f vz
p(t) dt (A-7)

Lrf

or: 11 = — /"Vl + x'2(L) + y'2(L) dL (A-8)

with b = a + L r f and x^

where x_(L), yp(L) are the particle displacements from the z-axis.

The length difference AL can therefore be calculated, if the functions
and y'(L) are known.

Using the first-order approximation of Eqs. (A-3, A-4)

x'(L) = x'(L) + x^L)

(A-9)
yp(L) = y'(L)

and the expansion •— = 1 - -p with v = v + Av,
P c

we obtain the final result for ALen :

L r f -
, v r x ' (L )x ' (L ) / Awv

ALend = ALbeginning / A V V + / <^-[' ' ^ 1 (A-10)
\ v c / J V 1 + x ' (L) C

0 c

- flrfi 2~
where L = I Vl + x^ (L) dL is the effective length of the element.

0
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Equation (A-10) is in first-order approximation correct for arbitrary

reference line x (L) and displacement x(s) of the particle from this reference

line. In general, Eq. (A-10) couples the longitudinal and transverse motion of

the particles.
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