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I. INTRODUCTION

srEuEcTusENECTIR

One of the popular methods in the theoretical study of
quantum chromodynamics (QCD) is (or used to be) the semi-classica!
method and its generalizations [13].

Such an approach gives very good qualitative description
when applied to the quantum mechanics problems {2] , even if used in
a rather crude form. But this technics seems to suffer various defects
when applied 0 the problems of quantum field theory in general, and
Q.C.D. in particular.

In Jatter case, while there have been the series of works
on the possibility of the spontaneous breaking of chiral symmetry and
the generation of quark masses [3] [41many of which follow the clas-
sical observation of 't Hooft [ ‘.], one is also worried by the fact
that, as soon as one tries ‘to analyze the situation by semi-classical
method even in its most general form {6], one gets the results com-
pletely contrary to the expectatica [7].

It was Crewther who examined this and related problems ("U(1)
problem”) in the greatest detail [8 Jand his conclusion was that, even
if one is to reject the most genera) assumption of semi~classical me-
thod such as the importance of classical solutions with fivite Euc!‘dean
action, and thus thc whole idea of integer topological numbers, one
is still left with quite severe chiral selection rules which may mini-
mize the significance of "gauge non invariance" of U(1) axial chaige.
Thus, in spite of observation by 't Hooft [5], one would be in diffi-
culty s0 long as one does not adwit the unwanted U{1) Goldstone boson

81, [si-

On the other hand, recently there appeared the series of
works based on 1/N expansion [10] of QCD which have shown that the
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appearance of U(1) Goldstone boson, after all, may not be so disas-
trous and one can get on quite happily with normal current algebra
type phenomenciogy as long as one does not really imsist on the quan-
titative explanations of, for instance, fq" mass or, irdeed, pion
decay constant [u] .

At the same time, Witten has shown the possible unreliable-
ness of semi-classical method in the problems of quantum field theory
112]. If one defines the semi~classical method as the Gaussian expan-
sion around the arbitrary (well separated) real mirima of the Euclidean
action, Witten's jdea was confirmed by the exact calculation by Liischer
and Berg on the special model [IJ], '.14]- It is quite possible that
one must interpret 'z d as U(1) Goldstone boson [ll] 52] ES]and
moreover that one cannot ask for the guantitative explanation beyond
the consistency argument offered by 1/N approximation [111 EZ]

However, even if the most familiar methed of the dilute gas
approximation is shown to be definitely misleading in some cases I!J]
[14! s, there seems to bi still quite a "ew unsolved problems as well
as the possibilities of computational improvement in the semi-classical

* technics in field theory II(\].

In the following note, I would like to preseat the arguments
to show that the conclusion of Crewther and others is not the most ge-
neral one which one can expect within the framework of conventianal
QCD. Even the seemingly clear-cut conclusion from dilute pgas approxis
mation [7] of QCD may originate from the way in which basic "path in-
regral" representation is written down without due regard for the boun-
dary conditions.

The most “simple mindad® semi-classical approximati-~u con-

sists in starting from the path integral representation of the Eucli-
dean expectation value of operator (or the product of operators)
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X (¥, ?: ﬁ, p) with respect of so-called §-vacuum,

< X (¢ ‘h/', )>o

1 4

-5 (9% & efwsbv s frFe

e X (T 4)

( : Rormalization factor)
where
gzﬂ = pure Yang-Mills acxon
= dpfer T fu FF
Se = j\“z "’9“8’! (5"' 9{'"‘“’&%'} :r(k.,.
"'Z g,d.‘ M;Lh.. q’iv

with Sutet
a4 -8 A"-T“
(v, 7 ‘f'““
Fro. fa/;, _9,4 +(A, A
L ‘Frv 2 Gr.nr' E\r\'
The Buclidean J matrices {f[’ 3,.: savi<fy

AR AR

(1)

2)

3)

(4)

The indices s,t... and w,v... refer to the flavours and colours of
quarks and run for 1,....,N and 1,,,,,N respectively. The letter

L ir the second term of S:.(;)represents the number of light quarks.

Physically L ~ 2 [17].
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Then assume the scni-classical boundary condition on the gauge fields
integration A
i.e. Assume that A, (&) reduces to the pure gauge a!

P it = 00 -
A= J097U) <1ir0 5

This implies that the integration f G"Af- can be expressed as
the svm of configurations with integer Pontryagin number, i.e.

jor - 2 forggor, -

Thus, the -vacuum expectation value (1) reduces to the Fourier
series

S cve
<Xp = 2, e XD o
whese ln"l'
< XD, - z.'r,fsmr.g(-,#fnfuuv)

F

6-9»""f9¢.9¢ X.e %

Vao, £/, 22,--7>-

(8)

The trouble is that the calculation of () through ( p 24
and (9 ) can cause the seeming desaster, as pointed out by
several authors [1,7].

One can "diagonalize" the action -YEF ty introducing
the gauge field dependent "quark variables" (,.,?,)correspending
to the Euclidean Dirac eigen value problems

(%+-A’)¢n - 2u¢.,

9)
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and expansion of the fermionic coordinmatny

Y2) = 2 €. Ftr)

’-]_L(-‘U = Z.', QLL,(’) @ (10)
One defines the integial over fermion fields [dP4f as

7'7"/:.".‘-4!;' - Z]f‘(?-dg. a1

r
The action _SJE now takes the form

$F.Z 2%5 . w
Ando
Now the eigenvalue equation (9) in genera) has several solutions
with A. =0 (zero modes). Number of zero modes is related to the
Pontrjagin number 3/ of gauée fields, as

A2 - Al o+ A2 (13)
with Ve Uﬂ—tﬂﬂ—-

vhere Ur.t) repr s the ber of independent solutions of

(7*49’)# = 0.

with + ve or - ve chiriality.

b}‘k‘. - t¢g (12)

The last statement is the consequence of celecbrated Atiyah-Singer's
theoren.

v ¥ yu°
Since the zero mode variables ( §o ’ t?c )9‘ ' do not appear

Bo/p.1217
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'
in the action 3¢ (of (12)), the integral

ded . oo
17 (49748 71 [42.45. - - -

vzl

vanishes uniess enough numbers of zero mode variables are supplied
from the "integrand" X{A,A‘,Y) .

Note that the number of 'light" flavours L increases the number

of zero modes of (4) from fPeo [ /1°

Now, for instance turn to the calculation of vacuum expec-

tation value of
X* - FULE Y

which is supposed to be the measure of spontaneous beaking of chiral
symmetry. In (7), the sector V= © does not contribute to

XD = K FUEIDYE D>
because in this sector ome has rigorous chiral selection rule

X(X) =0 (15)

But for all other sectors, (vl 2 | , the numbers of zerc mode

integration 1T fd %"d g.v
r=
27 2 204 (16)

Thus, for the “physical" case of L=2 s the bilinear operators
F& {1z rr)'-f' can never absorbe all the zero mode integral and thus

80/pP.1217
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an

t.e. from (7)

<¢T(tin)¢>o-o a8

Of course, if one has taken en&ugh numbers of these operators, €.g.
( Flar 04 )" , then one would not get the trivial zero
for the integral. This means that chiral symmetry is still broken by
the presence of non trivial topological sector of gauge field. Only,

the chriality can be changed only by the large value

Ax‘-z"' (19)

This kind of "paradaxe" is known for the long time and usvally dismissed
as the faute of semi-classical nature of the calculation. On the
other hand, since only explicit assumption here is the vacuum boundary

condition on Q 19/'

f .@/9/- - Z @A/

——ﬂ

it is not easy to set up alternative scheme which allows more meaning-
ful results, in particular, to reach the spontaneous breaking of chi-
ral symmetry <¢$> £ O .

There is also the difficulty that the resultant chiral selec-
tion rule (19) can be obtained under more general assumptions, even
vhen the "topological" number V is not restricted to the integer
(8,9]). For instance, Cre\lther‘has carried out very detailed analysis
using only the current algebra with anomaly and it looks as if the

naive suggestion from the path integral method is closely followed.[ U

The simplest result of "naive" analysis described above is
wvhen X = 1 , i.e. one is dealing with simple Euclidean vacuum transi-
tion amplitude
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. - Ht
, 8 e 7
< 1 79 ~ eyl < ®
In this case, the counting zero mode immediately gives (in (7))

<1>p = 0 . (20

for V%0 . This usually is interpreted as the absence of vacuum
tunneling in the presence of massless fermion. But the more correct
interpretation [4] Iwould be that the vacuum of massless fermion is

not stable in the presence of gauge fields with instantons (i.e. Vo )
Thus, after tunneling, it finds itself in the state with several pairs
of real massless quark and anti-quarks. This means that the true va-
cunm in Q.C.D. cannot be expressed as the small perturbation of the
Fock vacuum of massless quarks but rather the superpositica of quark
-antiquark states. Such situation is familiar in the many body theory
and in fact the bases of B.C.S. theory of superconductivity ['29].

In the following section, I shall analyze the origin of spon—
taneous symmetry breaking ln a simple model from quantum mechanics
{can be taken the most primitive kind of B.C.S. mode)) and establish
the correct "patii integral" representation for such model. The last

section is devoted for the suggestion for Q.C.D. case.

80/pP.1217



I11. THE PATH INTECRAL IN THE QUANTUM MECHANICS

1/ A MODEL

To i)lustrate the possible modification to the path integral
formalism of QCD, I would like to discuss a simpler model from quantum
mechanics [ 387, [ 39] which shous the spontanecus symmetry breaking in
the limit of oo degree of freedom.

Let us consider the system of & MJ2 farmionic oscilla-
tors {Gl(*) . 4:(4)} with anti-commutation relations (S =1,...N
and X can take L2 different values )

(Gs @), 0’:’“’)} » Sue St ”

{8, & )} o S Sar
ond { asdd, acdd’)y e o

§ @sit), €'’} = 0

s
{a[(‘)‘ XY (4')}. [s] Jy. (21)

which are coupled by the interaction hamiltonian

—Z—o[IL*I‘T‘] (22)

where #
T 2 a’is (A, 2it-2) » (I')
*

(23)

2
The N matrix satisnes

20'3-1_

8o/p.1217
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Th A =0
1,‘,_2.-.?&‘}"29:,

i'j- L2-.. NY) (24)

These are the U(N) generalization of Gell'Mann's ] -matrix for SU(3)
They satisfy the completeness relation

by .
5 0 Qe =508
The l:l:i;tonian (22> is invariant under the transfonmatio;ls
» gty =& ) Q)
L) — B8 (€F)

("Diagonal subgroups”) (26)

o) aott) = @) aen )
Ls(t) — ettt

{"Chiral subgroups") (27)

A) and B) form a symmetry group of chiral U(N) x U(N),

One can show that, in the limit of L2=*%4 | the symmet~y A)
is preserved while ciiral symmetry B) is "spontaneously broken®.
To prove this, one can, in principle, solve the model for finite &
exactly exploiting the SU(ZN} classification of the states. Then one
can show that the energies of one part of “"ground level" become degene-
rate for large 2. while the another part”run away" to o0 .

However, to see the behaviour of the system in LL 3D
limit, it is much simpler to adopt the exact methoa proposed by Haag

80/P.1217



140] for the study of BCS theory. Here, of course, I leave all the
mathematical detail for the rclevant literature.

First of a].i, cne notes that the operater [40]
ot ] ] L
s = mﬁg;-? = Jr (28)

commutes with arbitrary element of algebra

2 ﬁ.} Qs -+ z .. Lits

© 2 fadls a0 gin L%
Slfaslice 5 1§es]'ce 29

ot
This means that in the limit of. £ o9, &g are U-numbers in say
given irredu:ible representation of the original algebra. (Schur's
Lemma).
As A2 >N «
-]
& - Az

- ( C- numbor ) (30)

Then, taking the commutators between H and elements of algebrz, one
has - Py - . ¥
r H ’ as(")J - 3% 9.4 Clz),,réy(-’)
Ly
[H, afar] - 95, ar2d-40),,
d o
[H, 4621 ._3 “’2-' O a “)(2"),';

[H, 25 ] - 32 2" (s, artt )

(31)

8o/P.1217
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From these, one can see that the hamiltonians H can be written, in
the limit of f13 and within a given irreducible representation,

H- H.-9L[a 2, alo X gee)
+ A 2,4,«/-!) Tes M*) ]

where A.s.! are the constant depending on the particular irredu-
cible representavion. The Hamiltonian (32) is bilinear and can be
diagonalized by canonical transformation of creation and annihilation
operators.

First define the “chiral p.hase" by writing
astt) = (e™#?),,.q%a)>
2u(d) » 25D (),

(Chira) transformatjon) (33)
with parameter FA suck thau
LR
e#icatr)e
-,
. —‘f“ (Ad3) e -
= % { hermitian and +ve definite) (34)

‘One can alvays find such a unitary transformation e" 2 .

Next, one diagonalizes ¢f by

a,c(‘g )= le-u':)a' a;:a )

go/p.1217



Lolt) = ¢ :'(*> (e:d-a 578

(Diagonal subgroup) (38)

8o that

. o2
e"'"df e - ﬂ’/n. J
. fo

;M s (36)
$astly, the canonical transformation proper,
afti)s wo ¥ 3stt) + 0¥ 83 4
PAR SIS & ARSIy & LY o
37

[ 4
If one assumes 44‘24 # 0 , then one can see that the choice
i en?lfa SMS 2
e Fswfn L tie fau Tp )

reducez H' to the +ve diagonal form

~ ~ ~r -
H's 92 psl2@0rBice) +8sth)lale))
* + Cmol™ - (39}

(38)

° Clearly, the ground state of humiltonian E' is the Fock vacuum [Yh >

of new operators 'Q\s(“) and -’&\: ¢ )
as(4)d WD =¢

~ _ .
@;("h) l\l—.> 'C{ .(40).

Then l‘h} can be represented as the formal coherent state in terms

Bo/P.1217
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of orizinal Pock states,

14%>= T] .[w-r + sl q’;"c\!)a‘:'(.a)j fo >
des . -
= (v )T (4 teraftye™ ) ef )] >
| e
o (1) 2 {tar TOEYID] 10>
L T

.ere |02 is the Fock vacuum of original creation and annihilation
operators

asdd10> = o

Ls(%) |o> = 0©
42)

The parameter {34 is the same as in (33).
In our case, Y= /g avd

>« (a2, i) ) vt 1>

One solution (39) still contains unknown coefficients [ul , L.e.
A,(t " . This can be eatily found out by calculating vecuum
expectation value in the limit of _f2-9eb.

Ad* = &d: ( ~ € - mumb, )

T < Q>
la et qu et

(43)

80/P.1217
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Thus

£ o eF3arne™ . Im(eaae’)
(C-s‘ Q€ 1‘“) - 1 [m

where one has used the completeness relations of 2 .matrices (25).

Thus ra = |/ for ol 5, and 2
.Z'A:{ 2% = e'*Z‘F'

iy
The undetermined parameters { go L" o1 I(N) group space repre-
sents the multiplicity of irreducible components in the limit of
L2 o0,

In each irreducible sectors, the reduced hamiltonian has

48)

the same form

H'- 922 (a:mas({) NIy

but they can be distinguished by the vacuum expectation values of
a| riate operators, e.g.
PPTOP! P ] & 22 IIK' 2

o
z (,<fl—o| Q.. l‘k? Aa e

. Thus, one has the degeneracy of vacuum and the spontaneour breakdowm

. of the chiral part of U(® x U(R) symmetry. For given *ﬁ}, the
each irreducible subspace is still invariant under the U(N} subgroups
given by the elements of transformation

Qs ) ~ (e'i/“ - ’h) Qs )
es4)— {2,'(4)(€lﬁ e"“‘ -lﬂ A)r’.\

(g« 3 gre=)

(46)

8r/p.1217



The degeneracy can be removed if one adds é‘le small pertur~
Fation

~2i64) €
AH = $p2al(€7) Gt

an

[ 4
Then the chiral. transformation (33) to diagonalize the hamiltonian iu

the limit JR = 93 vill be fixed as

ezxf-" - ezf-é“

and a‘t will take the we)] determined vacuum expectation value.
The system is invariant under the U(N) transformation (46). This is
the equivalent of Dashen's theorem [ 42] in current glgebra.

2/ THE PATH INTEGRAL FORMALISH [39)

As it is expla® ~d in the Appendix, it is easy to represent
the Euclidean amplitud.s with fermionic degree of freedom as the path
integral (functional integral) on the appropriate Grassmann variables.

The problem is to define the path integra) so that one can
go smoothly to the symmetry breaking swlutions in tue limit (2-300 ,

For instance, the naive prescription suggests the represen-
tation [24] for the vacuum expectation value of the operators X(¢ R.w.d-u.D

"¢ oxw >“
T ~H (t=17
g < My

{r
-

8o/p.1217
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4" « o
con M T \fes 48 ks)

1:':_:‘ 4’ dued 'l.s
WP"S:. [ 2 B84 8s)
- 2%2 VT T T T (?t-g' )J A .X (%. %)

- '/Z

(2 : normalization factor) (48)

»
Taking, for Enstlnce, X [ ;1 Ja » one can see easily
that R.H.S. of (&F) will not go to the symmetry breaking solutions
in the limit £L2 4+ o8 . 1In fact, for finite J2 ,

"<Xtt)>" = o (49)

unless X(t) = invariant under the, chiral transformation (27). Thus,
in particular, < —_é T,") = o(for any finite /2 ). Therefore,
this quantity remains zero alse in the limit of inifnite J2 . The
addition of symmetry breaking term ( #2) does not help because
then one can show that
» AN ] >

'sf‘-:“o ﬁ‘:‘n< r Ta >"‘%“‘2ﬁ -0 (50)

The situation is a little differeat from the case of cer-
tain field theoretical model such as A($'~CY)' potential in two di-
mensions, where one can demonstrate the existence of spontaneous sym-
metry breaking by adding small symmetry breaking term (or the "external
magnetic field").

In the present case, the simple minded path integral (48)
represents the expectation value with respect to the Focks vacuum of
original creation and annihilation operators and not the mixture of the
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symmetry breaking states such as in case of scalor model in two dimen
sion.

On the other hand, one can obtain the correct vacuum expec-
tation value by applying the path integral representation for arbitra-
ry matrix elements given in Appendix (A4.22). As it has been shown in
(41), the true vacuum I1¥e> can be formally expressed as the co-
herent state in terms of original Fock states. This expression con-
tains the divergent coefficient as 1 -3 209 . But this is not
serious since such a factor can be cancelled in taking ratio with nor-
malization factor, i.e. one can give the following path integral repre-
sentation

oS XE)I 9.>,,

2 L T 47540 AR 5)
2 %’,’?. 4.'.'1 JI-.L T.rs j ?'

ot 2 gicanie ) §lua
24 p 2. ‘7[ Y4 -3) (e"‘fh), r?:-‘{,{_,,)

T g EZ.‘? (4.9) ‘% 4.5)
t 7. 7 7). %) ]
up -2 Vs Sa
X (%. S.)

x l/[ sa;ne expression with X<} 1 J (51)

" First two factors taken at the final and initial (Euclidean) time
t=t" and t' represent the wave function (and its conjugate) of
the true vacuum |'+.¥ - (See (41)).
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The last factor 'ciff -2 7?‘ “,)?"-')18 of purely kine-
matical origin (See Appendix). Alternatively, one can write down the
path integral directly in terms of new variables ? and "7"
corresponding to the cancnuically transformed operators a »
and 'I\', "E' of (37). In this case, there is no question of vacuum
vave fnnctin'n\; However, now one can transformback the Grassmann variables
§¢ and ‘?" according to the canonical transformations (33),
(35) and (37).

Then, one sees that the "kinematical part” of the Euclidean
action will generate precisely the vacyuum wave functions in (51), i.e

wp -8 2 BasR Slehsd
L Z, ?,‘i ¢.s5) g‘, h.s )

= eowt exfj‘viz;.‘?,(&’)—%ﬂn
« oap -3, ks §L 4

L I

< { o) gt GO N XS
[ 3
ot 2i Ypté-s) Ce'“Fa)”, ‘Zf(.g,,')}
1

(52)

where the relations between ('i" R %') and (7‘, ?‘)a:-e defined
through (33), (35) ani (37). ¢ -

With exprossion (51), one can study the spontaneous symmetry
breaking of chiral U(N). For instance, changing +he integration va-
riables according to the local (time wise} version of chiral transfor-
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wation (27), one obtains the generalized charge conservation
o
& - ? :
<! §_“« 42 a' 0 Q) astt i)
L 4
=3 4t 0Qu)e b (i) }

s XD 1y,

. o 145 .
- ,__rz,f,cn %, & bl Xt 142,

(53}
vhere f2, is the NIXN.. matrices defined by
-¥ R 1 28 Al
o 0% eafe;oae ¢
7 e\ ' ) ¢
€6s"(6-6, - “ts‘ﬁ("‘“) «0(&47) (54)

as($.2) , €s(8.t) , etc., are the abuse of notation
ne “tag

L

- -Ht
e"toadtr e eotloe

,etc.
One may remark that the transformation such as (5% )
has appeared in the non-}inear realication of chiral symmetry in the

current algebra of Weinberg and Coleman, Weiss and Zumino [43;.

I have discussed a way to promote the simple model of this
section to relativistic field thaory in Appendix B.

80/P.1217
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II1. THE PATH TNTEORAL IN QCD

The discussions at the end of last sectior'l suggest that the
way to modify the path integral (1), so that the resultant chiral se-
lection rules may be less severe, is to add the non trivial wave func-
tion which can contribute to the Euclidean path integral in the limit

¢"?+4 and f’—) -0 . Such a wave function must be able to indure
the system to fall into one of degencrate vacua and *hus must contain
the germ of chiral SU{N) symmetry breaking in itself.

The discussion of Sect.{on I shows that the non trivial
boundary ‘condition on the gauge field integration -9/9/. , although
it breaks chiral U(1) symmetry [30], does not have enough symmetry break-
ing in it. Thus the simplest possibility would be to lock for the wave

;ffmctions which depend on the “fermionic" variables ‘v[— and *F at the

boundary surface f 22AQ . From the way in which our path integral
is defined (i.e. as the generalization of (A.22)to infinitely many
degrees of freedom), this wave function should express the relationship
between the Fock vacuum of massless guarks and antiquark. and the true
physical vacuum where the chiral symmetry is spontaneous} broken and
quark§ are massive.

Now, just such a relationship has bzcn considered in the
classical paper by Nambu and Jona-Lasinio :31] introducing for the
first time the "Goldstone pions® in the theory of stromg interaction.

According to these authors, the chiral symmetry is sponta-
neously broken through the "super conducting” states where the massless
quark and anti-quark pairs (pucleon—antinuc]eon of Ref. 3t ) of same

helicity ard opposite momenta form the "Cooper pairs” [35).

In analogy with ihe coherent trivial states of Refs.[26]

8o/p.1217
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and [27], Nambu and Jena-Lasinio give the explicit expression in the
simplest case of L | [32].(See also Appendix B.12).

o T ¥, L
2« T {{Fofe> + frt-fe) Son i
.P s quark momentum

2 ,» helicity

and 6.; =« {&l/ « £2mt (m : parameter),

|.n'>r !o? is the Fock vacvum of the massless “nucleons” or quarks

Q) 1 8"> =o

€ @) 1Rt>=0 (56)
Writing Stm Q({):J%(I-Ff)

tov &19) = j.;(:+ﬁ,)

one sees that the formula (42} corresponds té the Bogoliubov trans-
formation
DR A) v en B AMA) +INGINRVEN)

T A e~ 56 ) A RN o)LL A )

{(57)
The new amnihilation operators satisfy
' Uy 10D =0
2‘ @A) jnv> =0
(58}

f~rall P and A

8o/r.1217
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The parameter m , which is related to the Bogeliubov angle as

e s =(FER)) /u (59)

corresponds to the spontaneously gencrated mass of quarks.
"This can be in principle calcuvlated with self-consistent method r33]
(See Appendix B),

The chiral symmetry breaking trial state (35) of N.-Lu,
Jona-Lasinio is of the form discussed in Section II. Moreover, if on
one calculates the overlap with Fock vacwum [31],

Cel%e? s>
- ep 41{(‘.‘4} PRy tfs =0

(60)

because the exponent is negative at large momentum 7 d diverges li-
nearly with the ultra-vielet limit of integral.

Before writing down the modified path integral which shouvld
replace(1), I generalize the Nambu-Jona-Lasinio representation (55)
to chiral SUM)with e > |

1-"D00 = T { anete)
Lodvst

¥ 2.p.7 2 v
+suetp)z, d,0a) (8 ),*e Luita) 10>
it (61)
where the angle 8 (2) is chosen ag before, and
{ TR }." 3 the penerators of SU(N.) in the
quark .‘epresentation
’ - ’
& £ e ' paran. .rize vacuum degeneracy with

respect to the chi-al part : °
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¢, : parametrize vacuum degeneracy with respect to chiral U(1}.
Corresponding to the global chiral transformation of the field operators

er@'@'—}fu e e ’= [ ot T2 1Y (62)
One has
JRUNA ’“MZ... - "QMZ.-?‘
where -_ﬂ-' is given by
2t wET 8T eei-t“-:’ -

-
182 also breaks chiral U{1) which amounts to the change of para-
meter ’

o o> o e’ (64)

Now I can put the wave function corresponding to the trial state (61)
into (1) and obtain the following modified path integral representa-
tion of the vacuum expectation value of operator X (¥ ¢ Af )

<elX{\c.¢,A,)|g>.‘n o fon
o - - ILFF
a Tl J\Qﬂlu.w e IS}L.,.')Q Tr.7) e“‘j

L 3

2 cRAATy p !
. ‘1'1_ '{ o 0(2)+ suw)l%,l-?-;)_]_(e ')’[?,""‘):_!__
x . ' WART) ro2
e ]

. C-S‘F- x(\"! {I:; A, )

X 1/(normalization factor) (65)
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The letters (6,42 ) in !..Hs indicate the degeneracy of vacuum with
respect to &  as well as the direction in the space of chiral trans-
formation -ﬂ- , the Grassmann variables [ g::(i.a) ]? and

[ ‘2 su (.r, a) ]z correspond to the Fourier components of
local 4-component Dirac variables P (3.7) and Y *12.7) ar
the given Euclidean time T . One can write

foam) ~ (46 Mt (2] +1€6) ()
+ [‘é,‘.(—m:)],(w;m) +[8bp0], (,,ﬂ,,,) }

"!’:,, (z.7) = gd’-? € l*"{ [‘Z"' (,p,-u)]’( o, w-"m) + [‘Z‘:#,-')l (a;‘w.o)

+ LOata] (eftn.0) +[9 2] (o, U7 ) }
(¢ =Th) (66)

o
The vectors ( w’m) ; etc, are the massless spinors in the repre-—
sentation where fg— natrix is diagonal. One can choose, for
instance,

Serasurenl ' 2 h-n P"
umn.\’zlﬁ;_r»_(w‘) w: (B)s Jl (Flapy [ 2o

¥ 2Py !
-and
T
w;® W . A B2
2 !
* o
w-® o’ . (- I’s-)
2 ] (69)

(See Appendir A)
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Note that one can write the coherent state (61) as formal unitary transfor-
maticn

Ly, = opiGraes <8 a €)1

where

Gla-e,a%4"; Q4 ) .:.rd#éa’)

. e <2001y -t
Z{ T Cay AL 2 (e 2 e a,,,gu)}
e
(68)

although it is not.so simple to introduce the object like (68). which
is not normal ordered, into the path integral. (Normal ordered form
of (68) is, of course, juste original (61)).

The "current algebra" vacuum of Mambu-Jona-lasinie breaks
chiral. SU(N) x SU(N) according to (63). It also breaks the chiral
U(1), i.e. under the global transformation

ol 28y
A — € e

-— - U
l -
Y —» ¥e (69)

" one has
»
9 > 12

:Just as in QCD Lagrangian of quarks and gluons, the invariance under

- the chiral SU(N) x SU(N) implies automatically the chiral u(1) ir_l‘va—
riance (unlike the Gell-Mann-Levy linear Q¥ -model withov , 7 and
N ), the spontaneous breaking of former (by couplirg to the wave func-
tions(48)) entails the breaking of the latter.

W
The factors a‘@‘;\) 622 ) ( A -helicity), in (61)
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have the chirality 22 . So to study the chiral transformation pro-
perty of (61), it is convenient to write this as

tam> = T [ emew) +sioep) 0oy 1

N
o)) (P
» Tl [ emb@)+ 50t )] o

A .
>
where the operators U (‘F'} transform as

Ui - e ute)

under (69). -
(71) means that the Nambu-Jona-lasinio's trial states are the coherent
superposition of chiral U(1) eigenstates

- A
(@™ « 2 Wi (72)

o

where A ‘X'A
d — € Ui

under (69).
The vacuum expectation value according to the modified expression “f}‘
<ca™ - - .. I-n."‘7 can be written as

o4 A N
Ji ol - W10 D
Vo, Vivow

_ where | o) is still "Fack vacuum" or the factor 1 jin the path integral.
The assumption of spontaneous breaking of chiral SutNe)xSU M)
(or the current algebra) is that the chiral sectors « of uq:_ - W |o>
with more or less arbitrary values of )& and Yz should be able to

contribute to the vacuun amplitude, and not just the ones with 'UFJI:IQZLP.

N

Bo/P.1217
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More explicitely, with the path integral (65), one can, in
principle, justify the normal self-consistency caleulation for the
spontaneous symmetry breaking. As it is discussed in more details in
the Appendix B , the formal effect of the.presence of wave function
such as (61) is just to change the mass of fermions implied by the
path integral from 0 to m. Thus the “free propagator” which is inhe-

rent in the path integral (65) is
1]

——
FA-m
and not :?l' « Thus it is meaningful to transform the action
ST T+ 8,
to

@.("f—*vﬂ)%. - nEuthy (73)

(0 and m refer to the inherent mass used to define the path integral,
see Appendix A -(c)).

Thus the natural q
(73) is the self conmsistency equatiom[3], r4}, [33), [34}

of the d position such as

Also, this gives the bases of mechanism for spontaneous symmetry
breaking of chiral symmetry proposed by 't Hooft [ 51 Callan, Dashen
and Gross [3] if this scheme can be freei irom the defect of dilute
gas approximation.

8o/P.1217
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1V. SUMMARY ARD CONCLUSION

In this note, I have attempted to trace the certain incon-
sistencies in the manipulation of the path integral formalism of QCD.
Taking account of the boundary condition (expressed in terms of "inhe-
rent" mass) on theirfermionic Z.gree of freedom, I have suggested that
the semi-classical method, even with the assumption of inteper topolo-
gical number, could )ead to the meaningfu) conclusion.

Owing to the still remaining ambiguity in the path integral
with respect to the removal of ultra-violet cut off, it is of course
not possible to set up the rigorous scheme in the monner of BCS theory.
But one seems to be naturally lead to che self-consistency calculations
of usual kind instead of the “disasters" like ref[7]. The latter

is still plagned by the fact that, to get the definite con-
clusion, one must rely on the dilute gas abproximation.
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= APPENTTYX A -

P ey

PATH _INTEGRAL REPRESENTATION

.

The path integral representation of the Euclidean fermionic
amplitude can be introduced in the completely algebraic way for the
finite number of degree of freedom, I follow the method proposed by
Fradkin et al. (25 ) for the study of Ising model. The result does
not differ from the standard treatment such as Faddeev (25),

The method can be jllustrated for the simplest example, i.e
one component fermionic oscillator. For the more complicated case, a

all one needs is careful combinatories and I will only give the result.

Let us consider the quantum system of fermionic oscil~
lator with Hamiltonian

H = wa¥a . : (A.1)

x
where the creation and annihilation operators & and a satisfy
anti~commutation relation

a¥a + aa¥.
a* e’z 0 = : C(Aa2)

The problem is trivial since the Hilbert space here is just two-dimen-

; siomal complex vector space spanned by

l°> (defined by @lo)e 0, Fock vacuum = real vacuum )

e 1> a¥io>
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The operator H is then equivalent to 2x2 diagonal matrix
P [}
H ~ ( !
. : . [~

Dut Jet us fmagine that ve do not use even the simplest matrix calculus
and to calculate the amplitude

—-N(t-¢%) .
<1 € > (4.3)
(Euclidean vacuum amplitude)

One has to apply the standard procedure for calculating quantum

amplitude. First, one writes (3) as
~H{t%t)
<ol €7, o>
1]

a3 el <otmd il e pnD

Aemo Ay @
2 gmale™ ) - e K16t > < 1€ >

®oeeee X (n,]t'”“l”') <N o D>

whine At - (%=1 /W

(A.5)

The interval [ <’ 171 1s segmented as’

A tugtne
e r—r—y
LN oty

As usuval, for large N oné assumes the validity of

e '- Hat

At ~Hat
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Then, one can see easily that there is numerical equality

<Ml 1-atH LMy 7 = (R XI-Hj drthavadhl;

(A.S5)
(8 od W ; both take the values O and 1),
One has then ’
«f (4'—-2’)
<ot e le> .
i [)
s J -3 {<-|».> * T L-w;X1-%4)
Heeo et J'“
+ (mato) M x<mi> ] w0 lat)
(A.6)
] 1
to evaluate RHS of (A.6), one must perform the sum nz.. L ﬁi

explicity., The difficulty for doing this is due to the fact that the
same set of numbers "J 2 {0, 1) appears in the two consecutive factors

<"}'l, 1-4at N | ”)' 7

4”)' l-At ﬂ l“)-.‘ >
This difficulty would be resolved if one could have written the

«Xpression

Cneli-stHInD = Ct-; 14_41)-) + (I-AtQ )'n:nj

as the product of twy factors each depending only on WNi and n)
respectively

a M [ .
n-naxu-nj)m—aw)n;nj a" Fim)Find
(A7
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In general, such a factorization is impossible. The observation of
Fradkin et al [14] quoted above is that one can do such a factorization
if one introduces the Grassmarm varjables.

Indeed, taking- the pair of generators of the Grassman alge-
bras U; and L{)- vith &% o, a;':o, {d},uj}so, One can 2arily
verify

’ (- Xi=M; ) 4 (p-u:..\)mty
= ~ Sd!&dlf)- (nerti-n)ut )
% (14 (1~atwdUTU; )
x (nj ¢ (r—n}.)uj)
s - S'dﬂ‘\.duj (New@-ne )R ) e“"*")d‘: u;

x (i (=1p ;) \ (4.8)

vhere the integral is constructed in the space of polynomials according
to the familiar rule of Berezin Il;].
v
dodU { u | =
uor

(4.9)

—~00e0

More precisely, one can define the integral with the help of anti-
commuting differentiation on the Crassmann -algebx 1 [14]

[draw ¢ )

s (a- ) )l

susor (A.10)
U=nov
8 £
where u , U, & ° su must all anti-commute, with each

other.
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Also, as the special case of (8), one can express the "end"
terms at 4" &y and *"{o as

<olnp> = {(l-”omxl-"h)-r m.-m} -

LR

Veally '
2 - Sdﬁud"u U;" € (ny f(l-ull)ﬂy) o

(A.11:2)
<M lb > = flI-mY1=n,)+Ms PR I
U,
=-Sm Al (ne-e (FAITL) € Uy (ra1h)

Substituting (A.B) and (A.11) into (A.3), for the Euclidean vacuum

arplitude and effecting the sum X (Vad, M, . --0) between consecutive
-,

factors, with e

)
%‘:.‘(u)m—n})u))fnj -*(l—"l)-)dj)
e,
= l+u)0_} s € /7 (A.12)

one ends up with the representation
<5l e—n(i"—t_')lo>
N U
=T f e qd; [J'du"dﬁ'iu e %yl ]
J-° ~ )
[ ﬁ eu-mu)({‘;d)--;} [ Tr 6-‘5“’} + O (at )
Je e

o ]
‘a J'IT 40;44; %'r[-JZ__'{o;m)--uj.,)Mmg@._,}

(A.13)
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L]
If the formal transition to continuum Jimit Uj- “)' o & at
15 in someway justified, (A.13) can go over to the familiar path in-
tegra) formula.

<ol

'
(o et - et
at ..

ettt >

.

where “Euclidean action"
0
Se = g;’d“ (U'da%- -+ U'“) (A.12)

As a matter of fact, one cannot consider u} and Uj-' are real-
1y close together for small A€ |, owing to the form of fermionic
propagator coming from (A.14). On the other hand, for the simple sys-
tem like (A.1), one can write the path integral representation without
the approximation At ~ © , i.e. instead of approximate formula
(A.§) (A.B), ane can write directly \

-]
<mie 4 ;5 . [‘ _“,,]
L] [ 4
a u-mxl-'nj) +e"""m'nJ
u
- S‘dvidUJ(n;+(l-ne)Ui)e Yn;etmnpu;)
-ac

with 2K € ' {A.15)

2K0T

In this way, one can write down the exact expression independently of
smallness of A€ .(See K.G. Wilsom Ref. 25 ).

<ol e M-y,
N N N
o 0 faga e -2 g 262 ]
)lb

—atw
2K = €
(A.16)
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Since the action of (A.16)

~N
R = -g:_..’u;a_t)- +2K%¢§aj..

J

and the "limiting" actionfrom (A.14)
$ = j‘::& [vgu ~+ wou ]
gives the same value for the correlation function
cas,af > mlarw Hy kb=
one considers the (A.14) as being correct. )

One caa generalize the derivation of (A.13) or (A.14)
to the matrix element batween arbitrarily Fock state

I = (Ke+aia™) 10>
\® = (oL’ +06" A% ) 10>

Then <Fl e—H [ELA ) Iz >

b T (dvau; © o ai*un]
N4 % J'-l ) )

o -)7: fgtaj-u)-.,”awq;uj,,}
o4 ~ o Us, XL ote=diUb ]
o 1 Cigiay B(Ue) oHpESe -0ole)
4 "f.t(v?)
(A.17)
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vhere

FCde) = & — ol U
g-z(();t = ole —-d:tﬁ’

b General Case.
Now one can consider the set of fermionic creation and anni-

hilation operators
S

fal . el

with usual anti-commutation relations among them. For the finite .,
the Fock space is complete and spanned by the set of base vectors

10> ; asle>=a \
EEN I A
(@*)™. .. (a%)" 10>

n=0 on 1

Nu 2 |

My o

omd
o

(A.18)
Then, for the arbitrary mﬁal ordered form
: H (ﬂ.‘, d) .'
) (| Wa
3 ,% Hf"--r,. Y A ol w5 %

(A.19)

one can write down the following Grassmann integral for the matrix
element

80/P.1217
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({m.}[ |- at!H! HH"}>
g’w-'du ol
[ e O-MY ] - [+ -0 D'

® [ (- at Hf'""T““’"' - ,.,{ (79 AR o
((-').n-u)_n)w-- . @‘j')v' } }
x{ n,-'+u-n)-')09'} RETE {ﬂfq‘ (x-n)i“) u)-“}

(A.20)

Using this formula and introducing new variables

?:d - (—U‘—la—:—d
g:.d (-l)"'u dabh2...- 2

one obtains following path integral representation "or the arbitrary
amplitude, 8o long as the number of states o2 Is even.

12 =n;:.° oLt LMD
lI>= Z“ Ay ---n""\"w‘} >

M‘a (-]

For

and H given by (A.13)

<Fl e"“"”l I>



=. J.T!. ;r!‘ ré%ld ?JQ
T ( f?,,*}j_j )
- (217550 |
4t 2. Huepesne OB -0 050
A A
* ’.'z‘-:l' ({?odj,:) -+ 0 ‘dt)

where QIF ({g:}‘:) - 0'::-’- eewa (g:’)h_ - (g",)q' :
g‘z({?,’}:) adlm ...y (WD"_ ) _‘(7.-'?)4,.

This can be written as the continuum limit

<+F| e M-ty >
) ';['TC’ ﬂu d(?*‘ddgfl
% ({gl'}d:.,) o
orp~Se . exp -ﬂ,,g’, .
C S ()

(a.22)
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where the Euclidean action S’( takes the expected form

S« '{‘Zf [5 UG + (%L E0) ]

(A.23)

’ R wad
One must keep the kinematical factor '%P - %‘?f' gf
_to make the correspondence with canonical formalism (see for instance

ch. 11, b)

F.21d Theory.

Jt is not trivial to generalize the preceding discussion to
the case of infinite degree of freedom. In fact, there
are problems peculiar for the fermionic fields to define the Euclidean
amplitude as the path integral. At the elementary level, this is con-
nected to the fact that the free fermion Green's function is not well
defined at egqual time.

Thus, to make sense of the expression like (1), one must
imagine, in absc<ce of exact theory, some emergency prescription. The
lattice cut-off method with finite voiume seems to be most hopeful
way to eventually reach the more s;tisfactory definition and is tacit-
ly assumed throughout the formal discussion of CH. I and 1II. .Here,
of course, one optimistically assumed th-* ‘e consegquence of most of
formal manipulation survives independen.” < he detail of the lattice®
QCD formalis¥., It is also hopeilcghat t . < manipulation such as
{ function regularization method to derive the current algebra selec-
tion rule ey (17) can be eventually justified. 1

One can formally define the functional integral over the
massless Dirac fields as the limit of fermionic oscillators discussed
above.

Cae  .arts from the second quantized form at fixed time

80/P.1217
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2

vay « for e aman (5)

+ alg, A=-1) (“-:6")

« 2% ( "f‘”)’ + e*(-r,)--l) ( a:ﬂ,,) }

(a2 4)
and its conjugate '\P-r(.’.)
] s
The vecters ( ° ) R (“_,0)) are tl?e massless spi-
nors in the representation where B'; matrix is diagomal, e.g.

~f° 32 Ve ( e '9'-.')
Y (L E)
The two-dimensional spinor W %) saisties
."';’:'—‘—; WitR) =x 0z tp)
who) wzgp)s) . wi@uR) =0 -
=J 2 A.26
we (p)@ire (p) 3 (12 '%_’ )

F‘or free hamil tonian
H "P’J iF [emagsy + e¥@A)e0N]
one has the collections of oscillators such as been discussed before.

One iptroduces the Crassmann integration variables for given
Buclidean time T,

), Era) , V@) and Tatha)

corresponding to the Fock representation
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ag», 6, a¥ @ 2) od 222

Then, write R A .
feea® o T 4% @D 4, )
A T up (A.28)

So long as one has some vay of cutting-off the momenta ¥ (ultra-
violet as well infra-red) (A.28) is well defined. Certain details of
such a cut-off method are explained in the Appendix B,

Definition such as (A.27) and (A.28) refers to the Fack space of massless

fermions and not expected to be very convenient one. The improper "cano-

nical® transformation discussed in Ch.11 and III (Bogoliubov transformation
applied by Nambu and Jona~Lasinio) has the effect of transforming them
into the massive second quantization, i.e. the decomposition

pa ' ,
‘f"-'-”-f"* el Zawnuns)

+ 2 QERN£) )

P opemyuy) = o0
(P +m) ) =0

where m is the parameter in the canonica) transformation ( Jd').\,a?),

On the other, hand, precise meaning of the co-ordinate such
€10} is une].ear.} Even the free field equivalent of (16)

('5""‘)¢a = 2‘#:
'll"zga“#))
F=2z s

as

8o/p.1217
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and

™ d?-l!.'rH;u.r) n:ﬂ'fd%dﬁ
2

seems tc We of formal mature.
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-« APPENDIX O -

e

THZ GENERALIZATION AND THE CONTRUM LIMIT
OF _THE MODEL OF CHAPTER II

The model discussed in the preceeding paragraphs bas been
taken from nuclear physics (non-abelian generalization of Racah model)
and is seemingly irrelevent for the relativistic field theory.

But a slight generalization of the model brings it <lose to
the theory of free relativistic particles obeying Fermi statistics,

First of all, ome idemtifies the parameters k as the space
components $ of momentun of the particles placed on the finite 3-
dimensional cubic lattice with lattice separation'® and total volume

v U2, '

Taking usual periodic boundary condition, the allowed momenta
are of the form

. 20T ¢
2= 27 (),
1P| ¥

3

s

€2

N

H
M

(8.1)

Thus,
0= (i_z ) 3 a _;_{:' = number of lattice points

Now, introduce the creation (and annihilation) of “massless

faf ey, ¢ ®2) Y

fermions*
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where Az E 3 ] represent the “helicity" of the particles.

Befine
A : (-P) = a:f'P:-H)afE'(ﬁ) -+ eg'ﬁ’,;') mf(# )

BS(p) = AP0 tR) + 82100 (R)
) (e=bz.)

w L
and their conjugate As (;) and B; (‘4’)

Then the anti-commutation relations

Fas. 1,85 @N)Yy » §pp SarSis”
/
{e’{#»)' @;(313’)} @ ;‘rff'é;d’é.fj‘ a}c. ‘

impl, v
Craw) AW} - Sy S
{ B;S{'P) ’ Bt}(;’) } x S?-" &:r “"; de.

Defining

1= 5 £ @), 55Cr)
¥
= CI:)#

one can introduce the‘analogue of the hamiltonian {22} as
. ' - - +
Hat 2o [T%7 + 1757

80/P.1217
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(B.4)

(B.5)
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At the name time, one generalizes che model by ad ding the bilinear

" Ho » 2 I [ Ko AR) + B! "ep B’tp)]

£-5.4
. 3, ipLafenasten + & payes ]
pas + comal . o

a7,

and the total hamiltonian of the system is defined as
"H = He + Hut _ P
Now, the discussion of §IT.a) about the spontaneous symme-
try breaking in the limit L2 =»od needs only little modification in
the presence of additional bilinear term (8- 7) The quartic part
. (B- €) 1is reduced to the bilinear form exactly as in (3!) Only
change is the proper canonical transformation (Bogoliubov transforma-
tion) (l)) and here one must introduce the momentum depending angle
tﬁ s which should dxagnna]yze the reduced hamxltcnxan

e P [Aanse) + 58 3‘(:)]

~32ps 1A "B+ BienAte) ]

(B.8)
From this, one obtains the condition
L& 2 rp’ = 3/'3 /ﬁ'
s 2l > 0
' (8.9)

80/P.1217



-54-

for the analogues of the transformations (3;!)

for cach 2 and §,

Then the calculation of the vacuum expectation value
“om &% T}l Yo >  sives the consistency equations

Ia s;z'e

!
(= 25 % ﬂ_g'_,,gfl.‘_’,‘ (5.10)

Thus .2 symmetry breaking solution can be obtained by

' . ."J - {u (independent of # )

e AT e
zn-;m‘ (B.11)

Note that the "Bogoliubov angle® & can be written as
s 20p= /-z’-(l-/@,e)
cov 2[;=/ 4 (re fr)

. By - et : (B.12)
’ REZEA

One can consider the limit when V is large and a0 ,
In this limit, one can replace the sum & by the integral L?f[d<¥
and the Kronecker's delta 5';4‘ by 125.’, s-3)
Lastly, if one renormalizes the creation and annibilation operator
: a;rm) , etc. by

5 a, LF,,\)I __\f asfﬁu\)
. ﬂ)

8o/p.1217



~55-

then

$acwa), 3.:"09’)} o 8 @2 SurSes-

It is convenient, in the limit V—’N and A 0 , to introduce
the Jocal "Dirac" field

P °
L) 2 f e [ {a‘,u,,w'@H 2,"{4,-1)141"0) }
{ Gs (£,-15 TR + P @) } ]
+

[ e

(B.13)

and

}‘ (1) « !Es“ (.‘!).Xa

Then, it is easy to convince oneself that in the limit of NeX bl

T~ f"‘ Wi 25 1) 310
™ N_E{Zf"‘-’ EWhe 147 E2)
2

T % 128 l"r 21g) + H-C ]
_ ‘i{ rds; g:q);{‘ Q(g)fd'j Frayl. El%)

= —

_Q-
f"' M)m.tmj‘;g F L (1) }

(B.15)
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L2 4 number of lattice points.

After taking limit M2 -3od , and reducing Hd‘ -Hn-l'Hu'J
to the bilinear form, one obtains .

Hot .ﬁi’z{ (EL2E - g Bwfcw2pa

v 0 56 2621, 002 ] (5.16)
{Be} , U porameln ( anlitrony)
vhere is determined by the continuum version of the consistency

equation (B-1)

ztf,;f:’%—

where A= T/a corresponds to the usual momentum cut-off. RHS
stays finite in the limiv of A=~»o® |, if @ is renormalized on

2 = ) net )
A s (&‘ ° (8.18)

Since, accordil;g w (3.18) , H’: 97‘ v represents the mass of
resultant free fermions, the equation for the Bogoliubov transofmration
( 3.9 ,IZ) is nothing but the transformation proposed by Nambu and Jona-
Laslnxa(ﬁn\.sﬂ In teras of new canonical variables 3‘; @A)

and z, (.,A) , one can write

2t e
g 1) = 2:,4 [
j’w{e"‘z Fuwus) + M2 Tonrws) |

(B.17)

(8.19)

with (I—-H}M‘Fl")zo
(Fen) vlEay=o0
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e

te I !\ reduces to free Dirac field at given time.

On the other hand, eq. B.17 is consistent with 1}”
= finite, only if M = 0 (vhen g.) g = —A—. )¢ g, is the upper
limit of values of g for which symmetry breaking solution (B.17)
exists. The vacuum expectation value Py~ at this point is
equal to zero.

Thus, one can go to smooth “relativistic" limit in
this model only at the critical point. The resultant theory is
free massless fermions. The analogous situation can be found in
two dimensional Ising model [23,39-

-’

-

.
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