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1. INTRODUCTION

.

In [l] a first attempt was made to use the geometric
technigues of Xostant and Souriau [2,3] {"K-5 theory") in studying
path inteprals. The method was applied to Dirac's monopole and the
Bohm ~ Aharonov experiment.

Here we intend to develop a more general theory. Wc¢ show
that a gencral symplectic system is guantum hanically admissible

(Q.M.A.S.) iff it §s preguantisable with transition functions depend-

ing on space-time variables. If the configuration space is not
simply connected, the different physical situations correspond to
different prequantisatio;\s. A classification scheme (6]— implicitly
recognised already bv Kostant [2] and Dowkey [5]— is presented.

The basic object of our considerations below is the
factor

“‘?[t S("’] (1)

where S(b') is the classical action along the path ¥ .

Our results contribute to the physica) interpretationof
prequantisation, and are hoped to provide physicists with a kind
of introduction- to this theory.
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2. QUANTUM MECHARICALLY ADMISSIBLE SYSTEMS (Q.M.A.S.)

Let us restrict ourselves to classical systems (E.§)
with evolution space E =T Q x R (Q is a configuraticn space)
and presymplectic structure of the form

e‘dgo* eﬂ‘. (2)

40, -~ where G), is the restriction to the energy surface
H=H_(q.p,t) of the canonical 1-form of T *(Q xR) - describes
a free system 3 I - a closed 2-form on space-time X = @ xR -
represents the external field coupled to our system by the constant

e ter. [3]).

1f the system admits a Lagrangian function, then O = d©
and it is exactly this'Cartan 1-fora” © wvhich has to be intezrated
along paths in phase space (whose initial resp. final points pro-
ject o the same x = (q,t) r-sp. x' = (g',t') € X ) when comput-
ing a path integral in phase spare :

S(a.) = SO (&3]
¥

Now. by Poincaré's lemma, for any point there exists
a contractible neighbourhood U _ and a !-form O defined here
such that G[U = d©, . Thus we would be tempted to define §;(y)
by (3) even J.f no globa] Lagrangian - and consequently no globa] ()
~ exists. It was pointed out in {1] , that the different expressions
Sj(b') and 5, (%) may be completely differeat. The following
notion vili be useful :

Definition (E, &) is a quantun .echanivally admissible system
(Q.M.A.S.) iff there exists a callection {\1 , 4} of pairs of
open contractible subsets 'u ard 1-forms ea defined there -
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called local systen in what follows ~ such that they are compa-
tible, i.e. for any y& u‘-n WU, we have

wlifo] = ol f0,] @

where the unitary factors civ. depend only on the projecticns
to space-time of the initial resp. end point of ‘J , but not on ¥
itself.

Clearly, in such situations the Feynman propagators
corresponding to Ga' resp. @u. will be related by unobservable
phase factors.

In [l] we have shown that this happens iff

L (s €2 (s?

art s

for any 2-cycle S im space. Expressed in fiber bundle language
we have (by Weil's lemma)

Theone [1]

A)(E, @) is Q.M.A. - iff prequantisable with tramsition functions
depending on X. Then for any Y with end peints in u.) we can
define

e [-‘1'. S(a’)] (6a)
such {hat there exists phase factors Cj‘ with
" L cC. " ) N ¥ (6b)
u‘f’[t\ Sl(g)] = G onxy- u(:[é S“rnl
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For 3LV‘-A'?L‘ , we have

(6¢c)

tfisin) s [ f{0;]

B,) Explicitely, we have the transition function zh" 'U.i n'uk-v Ut l)
with

ez
- B [ 14
el k ¢ 2y (6d)
yielding
Cyy () = Zug () ‘ (6e)
: z“‘ (x')

let 7 beany path in E joining y = (x,.) to y'= (x',.).

Denote (¥, 0> ,TC ) a prequantisation [3] of (E,G). Lift g

to Y horizontally through a Zem"Y( y) > denote £’ the end

point of this horizontal lift F . If y, y’ e U.& , We can
. . \

write locally & (-alz‘) , §'- lkas,zi»)

The expression (6a) is then

Taxp [i sgl!)] " % (71
C Z'
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3, GEOMETRIC EXPRESSION FOR THE INTEGRAND

Now we can give a completely coordinate free form to
the integrand in Feynman's expression. Folloving a suggestion of
Friedmann and Sorkin [8] Jet us consider any path ?c Y project-

ing to § . Write ’EM-} ~ (1'1..) Flaye 3'a l‘l‘l?i‘)

Lemna
"we Lt sip]” %’, - wpld éw] ®
[}

The product of two coordinate-dependent quantities is thus coor-
dinace-independent !

Now all we need is to remember that the wave functions
can be represented by complex functions on Y satisfying [3]

Y { Z.‘m) =z ®

{where Z , denotes the action of U{4) on Y ) rather than merely
functions on Q 5 the usval wave functions are the local represen—
tants of these objecty obtained as

N3 ey 3e ()  am

Thus, we get finally the geometric formula for the time evolutien

a

(u{._,"‘{)(s')- qur E;OK uﬂ{t Sw]»\\,tg) On
. ¥

where s X
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[}

Note that expt}t‘ S-u]-‘\l{(ﬁ) is, in fact, a function of ¥ ,
independently of thelchoice of isuwusing 'i(ﬂs ;“ is held
fixed.

Remarks.

1. We do not try to giye a geometric definition for “Dz ", An attempt
in this direction was made by Simms [9_] .

2. The introduction of the bundle (Y, ty, TU) allows for deve)-
opping a generalized variational formalism [8] and makes it easy
to study conserved quantities.
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4. A CLASSIFICATION SCHEME [6]

If the underlying space is not simply connected, ve may
have more than one prequantisation and thus several inequivalent
meanings of (1). (two Jocal systeas are Rid to be equivalent if
their union is again an admissible local systea).

The general construction for all the prequantisations are
found in Spuriau [3]. Denote (E, nf 1) the universa) covering
of E 4 define & = ¢* 6. TY,, the firsthomotopy group of E,
acts then on £ by symplectomorphisms.

Let us choose a"reference preguantisation” (Y ", ) of
(E,6). As (E (f) is simply connected, it has a unique prequan-
tisation (¥,% ,Tl'- )}, which can be obtained from (\D, we, o) 38

(‘\?)C‘J,ﬁ): q..(Y°nw°b‘“"’) (12)

If % -TT,=>UlL) 45 a character, then T, admits an isomorphic 1ift
to (Y, ) of the forn

a}"(?,g).: (q3y, z_tg)Y(g)) an

%'(' .ﬁ‘ 3 .

%ow, Souriaw has shown that
[V L
(Y,‘,w,,Tt,,)-:(Y,&‘s,TI)/.'{T\,( (10)
1

is a prequantisation of (E,§ ), and all prequantisations can be
obtained in this way. The inequivalent prequantisations are thus
i (1-1) correspondence with the characters of the homotopy group.
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In [I] we rederived thia theorem from our path-integral
consideration noting that we are always alloved to add a closed
but not exact 1-form X to e‘, which = due to non simply connect-
edness - may change the propagator in an inequivalent way. The
corresponding character is then

xegy e e} § « .X 1s)
L¥l+q '
For instance, in the Bohm-Aharonov experiment [4] ‘ﬂ‘- 2 amd

all the characters have this form.

This is, however, not the general situation. A physically
interesting counter—example is that of identical particles [J], [10].

Exanple
Consider two identical particles moving in J-space. The
appropriate configuration space is then [ll] Q.. O,/ZL"“"'

4% 1 3
Q= R«R{q,-9,}
which has the homotopy group n.= Z 2 -
E isthen T0x R wvith & : dB:". 4o

T, Zz has two characters :

%,i1y= 4 amd - X ).y

where T is the interchange of two configurations.

Thus we have two prequantum lifts of T_\. and two prequantisations,
one of which is trivial, whi)e the second is iwisted, The first
corresponds to bosons, the second to fermions. Now, it is easy to
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see that X, is pot of the form (i5) :

PROPOSITION
*
If the homotopy group is finite, lTral<‘° , then
H'(F,R): O, i.c. every closed 1-form is exact.
Proof. Let « be a closed I1-form on E , define & -q‘a( Ko AE
for E is simply connected ; define

~ ~
_L’ (R ._1.. . z %’” £

‘ nl \ 35 'n"
b is invariant under ge 7T, and projects thus toa h : E< R,
On the other hand @ = db = dg’h = g ol , and thus o = dh,

The genera) gituation can be treated by algebraic topological ‘means
[ll] . Consider the exact sequence of groups

“l
0—-2Z—~> R Rl Ul1y—= 0O (16)

giving rise to the long exact sequence

A X IS 1 Y
o RUEZ) S HUE RS RUE VAN SHE 2)SHER) (17
closed / characters Chern cutv, class’ '
exact class )
W~ can make the following observations : ‘,6-/ ?-7“‘-__‘

3) ® defines, by (5), an integer-valued element of
Hz {€,R) which, by de Rham's theorem, is just H* (E, R).

2) The bundle is t.opologica]]y completely characterized
by ity Chern class which sits in HZ(E,Z). Thus we have as many

distinet bundles as elements in the kerne) of 4, .,

3) As U(4) is commutative, a character of J[, depends
only on TV,/[1, A, » vhich is known to be H(E,2).
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On the other hand, the Theorem on Universal Coefficlents [ll]

Pp. 76, yields that
Hom(K,(£,2), Un) s W' (€, urty)

Thus HYW(E, U(1))

(18)
is just the set of all characters classifying
the different prequantisations.

4) Under quite gencral conditions, we have

W(E2)= 2" g Tors n*

N (19)

- H‘:(E,Z)'E y AR ) Tors H;

where Tors H‘ and Tors H, aregroups whose elements are all of finite order,
~5) The kernel of the map HUE, 2) = H((E,K) is just

Tors H' 5 the image of Zb‘ is a basis in BY(E,R)

[} Again, by the Theorem on Universal Coefficients,

Torg HI(E'Z) - Tors H‘( E, ?) (-\ Tovs Tf,/[.ﬂ’ .‘_'_‘])120)
Thus 2), 5), 6) give us

PROPOSITION

The topologically distinct prequantum bundles are
labelled by the elements of (20). .

7) According to §), the image of H‘(E,I) in H‘(E,R)
under 1)

is made up of integtzr multiples of a basis. Thus
H‘(E,R)/im HYE.Z) & (5")? and we get the exact sequence

b .
O=(s) = H' (W) — Tors H,(E, 2)— o
Bo/P.1230
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[
Now by de Rham's theorem, to any element of H (E,R)
we can assoclate a closed 1-form d/lﬂt ruch that its value on

qe HogR) d8

1 ‘§ ® (22)

21t 3
where the homology class of y i g.

. .
Next, by (21), the image of (8') = in (1)) s
- composed aof characters of the form

Xlq) = we[-;-\ §o‘] (23)
- b -
As (5‘ )b' is connected, and Tors HL(E,Z) is finite, we have

PROPOSITION

The characters of the form (23) make up the connected
component containing %% 4 of the group of characte-s;

8) Let' us choose a hasis &, ... d‘t in H;QIE'.DZ)and
pick up a X, ¢ W*(E,y(pn) corresponding to each element of
Tors H* = Tors H,.

PROPOSITION

Any character can be written as

®igya u;f[i { a; éd‘], X, (28)
o Uleg :

vhere a ¢ R (mod 24¢ ). The %, ’'s can be chosen in such a
way that they form a subgroup of the grovp of characters, however,
+here is no canonical choice for them,
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Finally, \;e get the fo)loving refincment of Souriau's
construction (14)

PROPOSITION

Yy, and Yy are topologically identica) iff %, amd %,
Y
belong to the same component of the group of characters.

The different connection forms on the same bundle are

——————

Jabelled by the elements of the connected component containing the
identity characrer ¥ 821 .

Proof : 1If a character :s of the form (23) then, by currying
smoothly the enefficients to O, the bundle has to change also
smoothly. Oa the other hand, the Chern class has to change discretely.
Consequently, it remains constant.

c}'“”-? 0{, howacton L her
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