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I. INTRODUCTION 

In [fl a first attempt was made to use the geometric 
techniques of Kostant and Souriau [2,3J <"K-S theory") in studying 
path integrals. The method was applied to Dirac's monopole and the 
Bohm - Aharonov experiment» 

Here we intend to develop a more genera) theory. Vc show 
that a general symplectic system is quantum mechanically admissible 
(Q.M.A.S.) iff it is prequantisahle with transition functions depend­
ing on space-time variables. If the configuration space is not 
simply connected, the different physical situations correspond to 
different prequantisations. A classification scheme [ôj- implicitly 
recognised already by Restant [V] and Dowker K J- is presented. 

The basic object of our considerations below is the 
factor 

«f [t S ' ^ ] (I) 
where S(V ) is the cJassica) action along the path ^ . 

Our results contribute to the physical interpretation of 
pregnantisation, and are hoped to provide physicists with a kind 
of introduction- to this theory. 
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2. QUANTUM MECHANICALLY ADMISSIBLE SYSTEMS (Q.M.A.S.) 

Let us restrict ourselves to classical systems (E.S ) 
with evolution space E = T " Q x P- (ft is a configuration space) 
and presymplectic structure of the form 

5" . <tô 0 - e F (2) 

d 6 0 - where 0 O is the restriction to the energy surface 
H = H 0(q.p,t) of the canonical 1-form of T*(Q x C ) - describes 
a free system $ IF - a closed 2-forra on space-time X « Q xlR -
represents the external field coupled to our system by the constant 
e <cf. [ 3 ] ) . 

If the system admits a Lagrangian function, then 
anJ it is exactly this Cartan 1-form Q which has to be intearated 
along paths in phase space (whose initial resp. final points pro­
ject to the same x = (qjt) >- jp« x* = (q',t') € X ) when comput­
ing a path integral in phase spare : 

SCJO = \Q (3> 

a 
Now. by Poincare's lemma, for any point there exists 

a contractible neighbourhood U and a 1-form © . defined here 
such that o|u. " •*©, • T n u s * c would be tempted to define S, (y ) 
by (3) «ven if no global Lagrangian - and consequently no global G 
- exists. It was oointed out in [ij , that the different expression 

S:(y) and S^ (y) may be completely different. The following 
notion 'ill be useful : 

Pefinition (E,ff> is a quantum -echani^ally admissible system 
(Q.M.A.S.) iff there exists a collection [\t: , Q t \ of pairs of 
open contractible subsets *U: ar.d 1-forms © j defined there -
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called local system In what follows - such that they are eompj 
tible, i.e. for any y £. U.ft U v we have 

(4) 

where the unitary factors C j u depend only on the projections 
to space-tine of the initial resp. end point of V , but not on $ 

itself. 

Clearly, in such situations the Feynman propagators 
corresponding to © • resp. © ^ will be related by unobservable 
phase factors. 

In fll we have shown that this happens iff 

± [e- e I (5> 

for any 2-cycle S * n space. Expressed in fiber bundle language 
we have (by Weil's lemma) 

THEOREM [j] 

A.)(E, £ ) is Q.H.A. - iff prequantisablc with transition functions 
depending on X. Then for any y with end points in we can 
define 

' « f [ { sers] " (6a) 

such Uiat there exists phase factors C* with 

(6b) 
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For Jfe-V^/il^ , we have 

.) Explicitely, we have the transition function J{. •. "\Ji. ^ ^ _ ^ \ J l O B 

with 

0.. © . i!« 
<6d) 

yielding 

C..wt x,*') = i i * = -*i.,<» 
(6.-) 

^V'^ 

Let JJ> be any path in E joining y « (x,.) to y' = ( x 1 , . ) . 

Denote (Y, to ,Tt ) a prequantisation £}] of ( E , © ) . Lift j" 

to Y horizontally through a {tH"'( »\ , denote i* the end 

point of this horizontal lift y - I f y, y' t U • , we can 

write local Jy J . t j . ï , ) , J 1 . ^ ' | j ï . » ) 

The expression (6aJ is then 

"**t L i S * ' Ï > J " - * (7 ) 
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.1. GEOMETRIC EXPRESSION FOR THE INTEGRAND 

Now we can give a completely coordinate free form to 

the integrand in Feynman's expression. Following a suggestion of 

Friedmann and Sorkin [8] let us consider any path ^ c V project-

ing to Ï . Write f ^ j . j * j ^ , . , j , , ^ ^ ^ ^ 

Lemma 

(8) 

The product of two coordinate-dependent quantities is thus coor­

dinate-independent ! 

Now all we need is to remember that the wave functions 

can be represented by complex functions on Y satisfying [3J 

^ U T m ) . 2.^11) (9) 

(where L denotes the action ofU(i)on Y ) rather than merely 

functions on Q j the usual wave functions are the local représen­

tants of these objects obtained as 

Thus» we get finally the geometric formula for the time evolution 

where , 
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Note that e x p ^ J. ̂  1 ' "ty IS) i s' i n f a c t > a function of y* , 
independently of the choice of ^supposing îflV \* « n e l d 

fixed. 

Hemarks. 

1. We do not try to give a geometric definition for "£*"• *» attempt 

in this direction was made by Simms y)\ • 

2. The introduction of the bundle (\ , W , Tt) allons for devel-

opping a generalized variational formalism f8J and makes it easy 

to study conserved quantities. 
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â. A CLASSIFICATION SCHEME (ôj 

If the underlying space is not simply connected, ve may 
have wore than one prequantisation and thus several inequivalent 
meanings of (1). (two Jocal systems are said to be equivalent if 
their union is again an admissible local system). 

The general construction for all the prequantisations are 
found in Souriau [3]. Denote (E, TT> \ ) the universal covering 
of E 1 define f = q'(T. TT,, the first homotopy group of E, 
acts then on E by symplectomorphisms. 

let us choose a*reference preouantisaf.ion*( Y (W.IT,) of 
(E,c7). As (E,C) is simply connected, it has a unique prequan­
tisation (t,Ci,TC.), which can be obtained f rom ("0 w 0 ,71») a s 

(Y,G,TC) - <^U,,w0,-5O ( 1 Z ) 

If "*• •.TT,->UtOis a character, then Ttj admits an isomorphic lift 
to (Y.GJ.Ti ) of the form 

*!ow, Souriau has shown that 

is a prequantisation of (E, 6 ), and all prequantisations can be 
obtained in this way. The inequivalent prequantisations are thus 
ii (1-1) correspondence with the characters of the homotopy group. 
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In [t] we «derived this theorea from our path-integral 
consideration noting that we are always allowed to add a closed 
but not exact 1-form A to 0 % , which - due to non simply connect­
edness - nay change the propagator in an inequivalent way. The 
corresponding character is then 

For instance, in the Bohm-Aharonov experiaent [4J T \ i 2 a n^ 
all the characters have this for». 

This is, however, not the genera) situation. A physically 
interesting counter-example is that of identical particles T^l, FlOj. 

Example 
Consider two identical particles moving in 3-space. The 

appropriate configuration space is then fllj Q ' * Q / 2 w n e r f 

which has the homotopy group TT, » £ . 

E is then T"« x R with 0- • o l S ' 4 \ d ft ' ° 
Tl - 2?9 ^as X v o characters : 

V.,ll\* i a n d *.'*l--4 
where 1 is the interchange of two configurations. 
Thus we have two prequantum lifts of "TJ, and two prequantisations, 
one of which is trivial, whi)e the second is twisted. The first 
corresponds to bosons, the second to fermions. Now, it is easy to 
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see that %, is not of the form (IS) 

PROPOSITION 

If the homotopy group i s f i n i t e , j " n \ | ^ « > , then 

H*( F | R ) i O i *•"• c v « r v closed 1-fori» i s exact. 

Proof. Let « be a closed 1-fortn on E , define Z • <J et j SJ « 0-\ 

lor E i s simply connected j define 

h i s invariant under g « Tf, and projects thus to a h ; E** R. 

On the other hand JJ = dH » dn*h = o" •>* , and thus °* = dh. 

The general situation can be treated by algebraic topological means 

[ l l ] . Consider the exact sequence of groups 

0 - o 2 - * R -̂ -» V)( l)-*> O (16) 

giving rise to the long exact sequence 

...-»• rl'lE.aj-^H'Cf.^iiH'Cs^ll^HVE,?)^^^") _, (17) 
closed / characters Chern curv. class' 

exact class 

Wr can make the following observations : 

1) Ç defines, by (5), an integer-valued element of 
H * IE.R) which, by de Rham's theorem, is just H x (E, R). 

2) The bundle is topological))- completely characterised 
by its Chern class which sits in H (E,2)> Thus we have as many 
distinct bundles as elements in the kernel of ^ • 

3) As U(l) is commutative, a character of f ^ depends 
only on "^«/[TT, ,Tf "1 . which is known to be H (E, 2). 

80/P.1230 
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On the other hand, the Theorem on Universal Coefficients fllj 
p. ?6, yields that 

Hoxatri.iE-.Z/^VJa});: H* (E.VJti» <i8) 

Thus HME, U(O) is just the set of all characters classifying 
the different prequantisations. 

4) Under quite general conditions, we have 

H V ( E , 2 ) - s ? f c ' ft Tors H l 

(19) 
H AE, 2 ) "S 2 €> Tors H ; 

where Tors H ' and Tors H t are groups «hose elements are al l of f in i te order» 

5) The kernel of the map H 4 ( E , 2 ) - > H (E.R.) is just 
Tors H ' I the image of 2. i s a basis in H'(E, IR.) % 

6) Again, by th» Theorem on Universal Coefficients, 

T o r s r | l ( E , 2 J - T o r s r 4 , ( E , ^ ) f- "Tor; ^ [ T r , , - , ] ) ' 2 0 ' 

Thus 2) , 5) , 6) give us 

PROPOSITION 
The topologicalJy distinct prequantum bundles are 

labelled by the elements of (20). 
7) According to 5), the image of H (?.s2) in H ' ( E , R ) 

under 1) is made up of integer multiples of a basis. Thus 
H'(E,m.)/im H'(E,2) 2; (S') ' and we get the exact sequence 

0-*(S') b , -> H'cc.vjurt ^ " îo- rs V I , (F , 2 ) _ , o (21) 

• 60/P.1230 
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Now by de Rhaa's theorem, to any element of H (E,R.) 
we can associate a closed l-form °^w«- such that i t s value on 

,£* i* <»> 
iTCt , 

where the homology class of f is g. . 
Next, by (21), the image of (S*) ' in H ' O K D ) is 

- composed of characters of the form 

*"0 " "f Li ^ ] '«J 
As (S ) is connected, and Tors H (E,^) is finite, we have 

PROPOSITION 

The characters of the form (23) nake up the connected 
component containing V * 4 of the group of characte~3| 

8) let' us choose a basis tt^t, . dL^ in H glC,C)and 
pick up a Xit t U'fff \J(a\ corresponding to each element of 
Tors H l = Tors « a . 

PROPOSITION 
Any character can be written as 

t T 1 I»]»} 
(24) 

where a -f (R- (mod 21* ). The y u 's can be chosen in such a 
way that they form a subgroup of the group of characters, however, 
*here is no canonical choice for them. 
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Finally, we get the following refinement of Souriait's 

construction (14) 

PROPOSITION 

ï JJ and Y y are topological identical iff V, and %t 

belong to the same component of the group of characters. 

The different connection forms on the same bundle are 

labelled by the elements of the connected component containing the 

identity character t ! l . 

Proof : If a character is of the form (23) then, by Carrying 

smoothly the coefficients to 0, the bundle has to change also 

smoothly. O-i the other hand, the Chcrn class has to change discretely* 

Consequently, it remains constant. 

V. Y . 

ÉJroua <r|. tWocJt»s InwwUf» 
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