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Abstract 

Reinte^ iretation of the neutron diffraction study of 2H-TaSe? 

by Moncton, Ajce and DiSalvo (1977) reveals an ambiguity in the 

sense of the displacements proposed for the commensurate superlattice 

structure. We attempt to resolve this ambiguity by electrostatic 

and short-range energy calculations of the phase dependence of the 

energy of the periodic structural distortion wave. There is a 

fine balance between Se-Se short range repulsion, Ta-Se electrostatic 

and short-range repulsion and the CDW-Ta ion interaction energy 

terms. The analysis reveals the phase dependence of the various terms 

and allows the different contributions to the stability of the 

distortion waves to be discussed more completely than previously. 

It is shown that the phase of the PSW/CDW wave is determined to 

•IT rad by miniraumizing (harmonic) energy terms, which vary as the 

square of the PSD wave amplitude. This phase relationship is 

established above the normal/incommensurate onset temperature T . 

The TT ambiguity is then resolved finally at the incommensurate/ 

commensurate transition tempcr£ure T , by minimumizing the 

(anharmonic) energy terms which vary as the third power of the PSD 

wave amplitude. 

Our analysis leads naturally to a new structural model for the 

incommensurate superlattice structure for T <T<_T , involving 

contributions from both the preferred phase $ and the phase $-TT 

which simply corresponds to changing the sign of all displacements. 

The model is the logical consequence of a "softening-mode" phase 

transition and provides a very simple structural explanation for 

the observed incoin:iienr.urat e super 1 a11 icc periodicity, 2.<>S a 

at "::.'•'. t. /M,:! it;', temperature deix lulence. 
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1. Introduction 

Despite widespread theoretical interest in the phase transitions 
and physical properties of the transition metal dichalcogenides 
(see e.g. Triste (Ed-) 1978 and recent reviews by Bruce, Cowley and 
Murray, 1978) it is disturbing that there appears to be only one 
attempt to determine the atomic displacements in the commensurate 
(or incommensurate) phases by use of standard X-ray or neutron 
diffraction techniques of structure analysis. This is the neutron 
diffraction study of the commensurate superlattice in 2H-TaSe2 by 
Moncton, Axe and DiSalvo, 1977. The superlattice intensities 
indicated that the ; tomic displacements are predominantly longitudinal 
with the symmetry of the normal mode E-. The atom labelling 
scheme and axial system is shown in Fig. 1. Moncton £t al^ assumed 
that an eigenvector e^ transforming as a single representation would 
adequately describe the commensurate superlattice. Symmetry constraints 
reduced the number of independent atomic displacement parameters to 
six, representing the amplitudes and phases of the Ta motion in the 
ft. direction (e^ ,(j>i ) , Se motion in the x (̂ 3 ,<J>3 ) and z directions 
(E A 1 
32 35» • Expressions for the superlattice structure factors were 

developed using atomic displacements given by 

H M = Z ** ( - K ^ ^Pt^'^) + e (q)exp(-i£.R£) ) (1) 
a. K 

for the K atom in the I unit cell for a normal mode of wave 
V3Ctor q̂  containing contributions from each of the three symmetrically 
equivalent wave vectors qj, £2 a n <* 9.3/ The eigenvector components 
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and the convention 

i (q) s «K t-3) (3) 

was adopted. The numerical values of (£ , ? ) for TaSe_ at 5K 

given in Table 1 of Noncton et̂  al̂  were found to be inconsistent 

with the displacements shown in their Fig. 9 and with their calculated 

structure factors (Moncton et̂  al_, Fig. 3). By fitting the observed 

structure factor data (o£ cit a calculator) two numerical errors 

(presumably misprints) were found in their Table 1. The corrected 

values are 

e l x = -0.048, <hx= -0.80; 

E 3 = 0.009, $ 3 = 1.036; 

£ 3 z - -0.0172, $3 z- 0.28 (4) 

The remaining components are given by 

£ 3 X * C*X = CK = Et>x ; rSx= **x*-*bx

S -*b> 

c 3 Z = -£4 Z = -£5 = £6ZJ i3 2 = "*5 Z = -*6 Z (5) 
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all others being zero. Since it was not possible to accurately 

obtain absolute values for the weak superlattice reflections relative 

to the strong subcell reflections the above displacement magnitudes 

represent a lower limit and an approximate upper limit of 1.9 times 

these values was given. 

It should be noted that the results of an analysis of Raman 
McMillan 

scattering data for 2H-TaSe2 by Holy, Klein/and Meyer, 1976, showed 

that inversion symmetry is maintained in the superlattice phase. 

This imposes the condition 

e^Cq) = ^ ( - q ) (6) 

Moncton et_ al_ claimed that the fit was insensitive to a change in the 

overall phase of the eigenvector 

e K •* e^ exp(i<{>) (7) 

and chose <(> = - 90 . However the transformation (7) is 

only strictly true for the ideal incommensurate superlattice, which 

is invariant under this transformation. We find that changing $ 

from -90 to +90 , for example, produces a change of 37% in the 

intensity of the (501) reflection for the commensurate superJattice y 

which is outside the error limits reported by Moncton et al. 

A comparison of other IFI values for <J> = -90 is given in Table 1. 

It will be seen that in general the fit ^s_ insensitive to $. 

More precise (c„ ,$.. ) values might have been obtained if the 

condition (7) had been used in the least s. ;iares fit. (However the 

experimental accuracy and reproducibility of the measured superlattice 
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intensities may not have warranted this.) On the other hand it 
is clear from Table 1 that the absolute value of 4 could have been 
obtained by fitting accurate values of the strong subcell reflections. 
We believe the corresponding X-ray diffraction experiment has been 
performed by Jellinek (private communication, 1979) whose conclusion 
was that $ = +90°, and not - 90 , which is equivalent to reversing 
ihe signs of all of the displacements u,.. 

In this paper we first show analytically that Holy e£ al's 
inversion condition is equally consistent with 6 = +90 and thus 
Moncton et_al_'s analysis leaves the sense of the atomic displacements 
undetermined. We then present an analysis of the change in cohesive 
energy of the commensurate superlattice structure relative to the 
normal state. This analysis makes explicit the phase dependence of 
the various terms. It is shown that $ must be + or - 90 in order 
to minimumize energy terms which vary as the square of the amplitude 
of the periodic structural distortion wave. It is the energy terms 
which vary as the third power of this amplitude which lift the ambi­
guity between <j> -• + and - 90 . Our analysis naturally suggests a 
new approach to the structure of the incommensurate superlattice and 
it is the development of such a raodel which i.r. the major aim of this 
paper. 

2. Ambiguity in structure due to inversion centre 
It is clear from Fig. 1 that the inversion centre must lie 

midway between Ta atoms 1 and 2, in the centre of the empty octahedrally 
coordinated site between the trigonal prismatic layers. Thus the 
atom pairs 1 and 2, 3 and 6 and 4 and 5 are related by the inversion 

operation and 

u . = -u T W) 
-plct -qia, 
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where p = 1, 3, 4 and q = 2, 6, 5 are atom labels (see Fig. 1). 
We note from (5) that * = -* and e = e . Thus using (1) and 

pa qa px qa • * ' 
introducing the factor exp (if) on both sides of (8) we find that 
+ nust satisfy 

Zz cos(q.R, • • • •) s-2z_ cos(-q.R. - • • •) 
-pa v3- —i Tpo ' -po l -i-t Tpo T' 

whence 
* = +90° or -90° (10) 

Table 1 shows that |F| values calculated using • = - 90 are 
equally consistent with the data, within experimental error. 
More accurate measurements, especially of the subcell reflections 
are required to distinguish between these two values of + . 
Inspection of Moncton et̂ al_'s Fig. 9 immediately confirms that 
reversal of sign of all displacements does generate a distinct 
crystal structure. 

3. Electron density distribution 

The natural parameter is the d-band conduction electron density 
?(r) = p Q(r) [1 + a(r)J (11) 

where p (r) is the normal d - electron density and o(r) may be 
expressed in terms of three sinusoidal CDW's having wave vectors 
q. (i= 1,2,3) lying in the basal plane and in directions making 
angles of 120 to each other. Thus 

« W » ^ P j sin (q,rr + » A) (12) 
where p. and *. are the amplitudes and phases of the i component 
of the CDW triplet. It can be shown (see Appendix I) that the 
electron density distribution generated by the triplet g^ with 
arbitrary phases *. is identical withthat produced by a triplet 
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of wave vectors £! having identical amplitudes to £. but having 

three identical phases •' = $! given by 

•' • (»j *t 2 ••j) /3 • 2/3 (n+«)» (13) 

where a,n are integers and the wave vectors £! are referred to 

an origin shifted by vector j_' given by 

r* = \/3*l*5 -•j • Znw]^ • A/3w[*3 -*2 * 2»(n-«)]ol2 (14) 

where c^are unit vectors parallel to q^ and X is the wavelength of the 

CDW's. In fact values of •, • +120° and 5 +240°, corresponding to 

(n+n) = 0,1,2 respectively, generate idential electron density 

distributions at three non-equivalent points A, B and C within the 

super lattice unit cell, corresponding to origin shifts r_' = 0, 

_2/3A(q. + q_) (Fig. 2 )-Other values of (m,n) generate 

electron density distributions indistinguishable from those at 

points A, B and C, since the origin shift simply acounts to a 

superlattice translation vector. For example m = 1, n - 2 gives 

r' = 2/3 (29, + 3-) as shown in Fig. 2 (a). 

Fig. 2 shows an electron density contour plot (assuming 

p. = 1 electron unit) for * = +90 . Note the density maxima having 

6-fold symmetry at points A and the two minima having trigonal 

symmetry at points B and C. Changing $ by 120 or 240 simply 

amounts to shifting the origin from point A to points C or B 

respectively. (Such shifts will become important later when we 

discuss models for the incommensurate superlsttice structure). 

Figs. 3 (&) (b) show electron density profiles along CK and q, -JU 

directions for * = +90 . 

We note that changing from $ = +90 to $ = -90 simply 

changes the sign of all of the peaks shown in Figs. 2 and 3(a)(b). 
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7. 
4. Atomic displacements for y * - 90° 

The displacements of Ta and Se atoms parallel to the basal 
plane were calculated using the parametres(c ,• ) determined by 
Moncton et al_. Thus 

u ^ r ) = 0.048 Z.^ cos (^.R^ • f^) (15) 

where fj. = * l x • 180° • • = 224.16° for 4 * •90° 

and * T a = * l x • 180° • • = 44.16° for + = -90° 

The Ta atoms at the A,B and C s i t e s are unmoved s ince the COW 

electron d i s t r ibu t ion has zero gradient at these po in t s . The Ta 

atom at £ = (2X/9) (£. - <u) has displacement 

u (2/9 AC ĵ - a 3 3) = (3/2)0.048 C i 2 cos* T a • l / 3 ( i 3 - $y ) Sin f ^ ] 

(16) 

Since £ 2 and 1/3 (o_ - £-) are orthogonal unit vectors then this 
displacement has magnitude 0.072 % and is directed at angle •_ to 
4 2 (Fig- 4 ( a ) ) - The displacement of the remaining 5 Ta atoms in 
the 3x3 superlattice unit cell are simply obtained by applying E. 
symmetry operations and these are shown in Fig. 4 (a). (Fig. 4 
assumes $ = • 90 , all displacements simply change sign for $ = -90 ) 

The Se displacements are given by 

u ^ r ) = - 0.009 ^ a i C o s C V ^ + • S f : ' > + ° - 0 1 7 2 E
i« ;os(a i«? 1

 + * z) • C 1 7 ) * 

where the - signs refer to sheets of Se atoms labelled 3 and 4 
respectively in Fig. 1. Now for $= + 90° we find $<. = $, +180° + • =329.36° 

and $ = $- + 180° + $ = 286.04° 
and there are three distinct types of displacements in the asymmetric 
unit, as shown in Fig. 1 (b) and (c) for the vertical and horizontal 
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components respectively. The latter show a remarkable degree of 

cooperative movement of the Se ions between layers, suggesting that 

short-range Se-Se interactions may be important in determining 

4- and •_, and ultimately in establishing the phase of the COM 

w.r.t. the lattice. Further evidence for strong short-range Se-Se 

forces is shown by the nature of the distortions of the octahedral 

interstices within the Se layers, labelled 4 and 5 in Fig. 1. Note 

especially the small centrosymuetric contraction (both horizontally 

and vertically) about A' in Fig. 4(c) and the zruch larger 

noncentrosymmetric displacements centred on 3' and C'f 

5. Cohesive Energy Calculations. 

(a) Ta-Ta electrostatic interaction. The difference in electrostatic 

energy per unit cell between the normal (undistorted) structure and 

the 3 x 3 commensurate superlattice was calculated using 

AUTa-Ta = * *ifJ <*?. < 1 / Rij " V V ( 1 8 ) 

where R. . and R!. are the initial and final Ta-Ta interatomic 

spacings respectively and Q_ is the effective charge on the Ta atom, 

assumed to be the sane for all 9 Ta atoms per cell. Since the 

difference Rf. - R.. is very small the sum Eq.(13) converges rapidly 

and summing to 6th nearest neighbours yields 

AUTa-Ta = Q~a ( 1 ' 3 7 3 4a + ° - 0 0 2 7 £Ta s i n ^Ta * '" >' ( 1 9 ) 

The short-range Ta-Ta interaction term is insignificant so that the 

phase dependence of the Ta-Ta interaction is carried by the cubic 



9 

(enharmonic) tern which is arinimumi red for • T a»90°, 210° or 330°. 

(b) Ta-Se electrostatic and short-range interactions. The 
electrostatic contribution was calculated u;>nn an expression similar 
to Eq. (18). For the short-range terns an interaction potential 
X exp{-R/o) tas chosen, where R is the interatoaic separation and 
> and a are constants. Thus the change in siort-range energy is 

i UTa-Se " h.j Sa-Se { ' ^ o " ?•£.- ^ " 1 } < 2 0 ) 

whe ' R is the normal state bond lenezh (2.5?" X), R - R!. is the o * v o IJ 

change in bond length and k_ _ = 0.33S|Q_ Q. ! is determined 
by the effective charges Q_ and Q_ of the Ta and Se atoms. 
(This value of k_. „ was obtained by requiring 

o 

wher.ee k T a _ S e = (o/R o
2) !Q T aQ S eI = 0.0385!q, Q S eJ, assuming o/Ro = 0.10 

(.\ittel, 1976). The phase dependence is relatively insensitive to o/R 
since the trigonometric arguments arc not effertcJ, and the coefficients 
of the various terms change only slightly.) 

Thus the total change jn cohesive energy, electrostatic plus 
short-range, and including terms to second nearest neighbours, is 

l UTa-Se - kTa-Se { 1 3 S - 1 0 e z * 9 0 - S 9 4 + 1 2 U 1 4 a 

• ( 210.44 sin(* z - * J a • 200°) • 12.57 sin((>z • • • 320°))c e^ 

• ( 3.14 sin(^ S c - * T a • 180°) - 136.23 sin(* s < ; - * T a • 32"°))e S c c T a 

http://wher.ee
file:///ittel


10 

• 42.55 s ia (3« z • 60°) c* • 34.S3 " • ( H j , • * ° ° ) 4 e 

92.75 c o s ( 3 * ^ ) t ^ 

(0.42 s i n ^ , • 2# x • 10°) - 161.46 $ » ( • , . , • 2*z * 130°)) c ^ 

(137.03 s i n ^ • 2 # T a • 220°) • 51.79 s i a f t ^ • 2 * ^ • 2 M ° ^ ^ S ^ 

(S4.39 s i n ( « T a • 2 » S e • 220°) • 67.50 s i n ( « T a • 2 * S e • -0°) 

• 1.97 sin ,o^ 2 
(*T, * 2*Se * 2 5 ° > " 3 2 2 $ i n ( *Ta * *Se * 1 0 ° " ' S V T . 

( 51.24 s i n ( * z • * S e • t J z * 130°) • 229.85 s i n ( * z * ^ * # T a •250*)) 

< £ z c S e e T a > * — } (21) 

The quadratic (haraonic) terns are ainicuaized for •_ -•_ * 131 

and $ -$_ = 67 , which should be co-spared with Moncton et al's 

values •_ - •_ = 105.20° and « - $_ » *1.38°. The ab: Mute val se la z T2 
of 4. , • and •_ are not determined by ainiaunizing these 

hamonic terns since the phase differences $_ 

are insensitive to an arbitrary phase shift •. 

hamonic terns since the phase differences $_ - •_ and • - •_ 

(c) Se-Se interactions^ The intralayer Se-Se electrostatic and 

short-range interactions, both within layers such as 4 or between 

layers such as 3 and 4 ( see Fi g. 1), have no quadratic phase dependent 

terms. (The corresponding cubic terra are discussed in section 5(e) 

below.) There is however a second-jrder term for the Se-Se 
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in ter - layer short-range in terac t ion , i . e . between the close-packed 

Se-Se layers 4 and 5. (The weak inter layer van der'Vaals interact ion 

i s assumed negl igible . ) Thus for the in ter layer Se-Se interact ions 

we obtain 

A U I e -Se = kSe-Se { 1 3 8 " 9 6 e z " 2 0 ' 9 0 ESe + 8 0 ' 2 4 % s i n ( 2 V 1 0 ° O ) 

12.06 s i * : = 5 e + & ° ) 4 

• .20.22 siaC 2 s S e • 220°) e* e 

- 127.13e S e e z s in((j . S e + • + 160°) + . . . } (22) 

I t is in te res t ing to note that the experimental values $ - 286° 

and $ s = 329 are surprisingly close to those values obtained by 

liiinimumizing sin( 2$ + 100°) and {-12.06 sin( 2<j> + 100°) • 20.22 

sin(2<|>- + 220°)} separately, i . e . $• = 265° and <Ji' =• 313.5°. 

(Inclusion of the remaining term containing sin( $ c + <j> + 160 ) 

in the niniirumization would give even bet ter agreement.) Note tha t 

values of $ and $- obtained by minimunizing Eq.(22) are sensi t ive 

to an arb i t ra ry overall phase shif t $ , but are not sensi t ive to a 

shif t of it, because of the sin2$ dependence of each term in Eq.(22). 

Thus i t is the short-range Se-Se inter layer interactions which 

determine <j> and $ . <̂_ is then determined by the intralayer 

Ta-Se in te rac t ions , which determine $„ - $_ and A - 6_ , 
Se Ta z Ta 

( d) CDV_-_Ta interact ion enerjy 'Ve assune here that the CD'.f is 

localized in the Ta metal atom layers and we neglect any d i rec t 

CDW-Se interaction energy. Some jus t i f i ca t ion for th i s assumption 
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cores from XPS studies of lT-TaS_ (Hughes and Pollack, 1978) who 

observed splittings of 4f-Ta, but not 2d-S levels due to the CDTf. 

Such splittings were not observed for 2H-TaS_ due, presumeably, to the 

small amplitude of the PSD wave in 2H. Given these assumptions we find 

A UCI» - - QTaCP0™" / sla> < - 1 8 4 a C 0**CDf " V 

• (9/2) 4 asiiO c w. Y +2«frTa) •... } (23) 

where the amplitude p of the electron distribution is linear in 

e-. to a first approximation (Moncton et al) so that in fact, the 

leading phase dependent term is second order in e* . Minimumization of 

this term requires Qrrtbl = < T̂ , although we again find that the difference 
LUn la 

*CW " *T * s i n s e n s i t i v e t 0 a n arbitrary overall phase shift of <fr in both 

*CDW a n d *Ta-

( e) Discussion of the interaction energy terns. 

( i) Harmonic terms. Me have shown in sections (a) to (cl) above that 

the relative values of the CD\f phase $ C [ W and the PSD phases $_ , $„ 

and A are determined by the quadratic energy terms, apart from a possible 
CD 

phase shift of IT. Thus the quadratic terns in AU- _ determine the phases 
TOT of the Se motion $_ and 4 . AU fixes the differences <j>_ - * c 

u6 Z let-5 6 icl Oc 

and 4_ - <f> and hence <j>T and finally the COT phase * C D W«* <J»Ta in 

order to maximumize |AU |. Realization that the relative values of the 

phases are determined b, .iarmonic interaction energy terns has escaped 

previous authors. Thus McMillan and others (McMillan 1977; MonctoT et al, 

1977) use the Landau theory argument that the quadratic terms vanish at 
T = T leaving o & 
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AU = -be3 • ce 4 + ... (24) 

so that the distortion wave amplitude ( e ) is determined by 

the ratio of the cubic and quartic terms. They then assert that 

the relative phases are determined by the leading cubic term". 

However, our discussion above clearly shows that the quadratic 

terms determine the relative phases. This is easily reconciled 

with Landau theory by realizing that the relative phases of the 

Ta and Se motions for the £j mode are already determined for 

T > T (after all the harmonic approximation does account for 

much of lattice dynamics). Thus above T the Zj mode includes 

displacements of both t u (r), corresponding to <f> = - 90 

respectively. Landau thsory only requires that the total harmonic 

energy goes to zero at T , not that each contribution individually 

goes to zero. Thus the phase relationships will remain essentially 

unchanged for T < To and softening of the Ij mode will lead 

naturally to domains containing equal volumes of tu(r) displacements 

of T = T . We assert that the role of the anharmonic terms is 

simply to determine which of the two possible sets of displacements 

- H. Cl.) * S preferred as the PSD wave amplitudes (e. ) increase with 

decreasing temperature, and thus determine the absolute values of 

the phases in the fully commensurate superlatticc for T < T • We 

return to a detailed structural mechanism for the normal/incommensurate/ 

commensurate phase transitions in § 6 below. 

(ii) Anharmonic terms. We now consider the phase dependence of the 

cubic (anharmonic) interaction energy terms in an attempt to deduce 

the absolute phase relationship between CDW, PSD and the lattice. 

We saw above(§ 5(a)) that the Ta-Ta electrostatic interaction 

term AUT „ was minimumized for <pJ& = 90°, 210° or 330° (Eq.(19)). 
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1e have not attempted to d i rec t ly ndnimumize the complex cubic 

terns (Eq.(21)) for the Ta-Se in te rac t ions . However, subs t i tu t ion 

of the experimentally observed amplitudes and phases ( e , , • , ) 

allows the Ta-Se interact ion energy term to be calculated for the 

two possible values of the phase $, i . e . $ = - 90 respec t ive ly . 

Thus a sin 3<fr phase dependence was obtained showin g tha t <J> = + 90° 

maximumizes whereas <$ = - 90 minimumizes these cubic terms, giving 
+ 3 * 

' v - 2256 k _ e_ respectively . A similar procedure was 

The resu l t has been simplified for comparison with AUi „ by 

noting that e T a / e S e = 4.619 and e 2 / e S e = 1.911 

repeated for the Se-Se cubic terms, including both in te r layer and 

intra layer terms. In t h i s case cos 3$ phase dependence was obtained 

so that t h i s contribution is/v/ 0 for both $ = - 90° (numerically 

- 34.99 kg s e s for $ = - 90°) . Thus the dominant l a t t i c e - l a t t i c e 

cubic term i s the Ta-Se in terac t ion . This i s minimumized for 

$ = - 90 , corresponding to the a rb i t ra ry choice adopted by 

Moncton et al but contradict ing, we believe, the X-ray analysis 

of Je l l inek et a l . 

Finally we note that the Ta-CDW interact ion (Eq.(23)) has 

phase dependence which i s the inverse of that for the Ta-Se l a t t i c e 

in terac t ion . Thus, not surpris ingly, whichever value of $ 
** 

maximumizes the Ta-Se cubic terns simultaneously minimumizes the 

** 
Maxinundze and nininumize refer to absolute values, not moduli. 

the CDW-Ta interact ion, giving *-Wy = $_ = 210° and <f> = • 90°. Thus i f 
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accept the conventional viewpoint that it is the CDW-Ta interaction 

which drives the transition (and hence we require this term to be 

minimumized) then our analysis favours $ =+90 . On the other hand 

if lattice-lattice interactions drive the transition we expect • =-90 . 

The above calculations alone do not allow this question to be 

resolved : they are too simplistic, the effective charges and 

hence k_ _ cannot be accurately determined, covalent bonding 

and temperature dependence have not been included. However, our 

calculations do give/reasonably complete physical picture of the 

factors determining •.r.j,,, 4>c » $ a n <* - T - Furthermore the fine 

balance which exists between the anharmonic CDW-lattice and Ta-Se 

lattic-lattic interactions, depending on $= -90 , leads us 

intuitively to a new structural model for the inconunensurate super-

lattice structure, described in the next section. 

§6 Structure of the incommensurate superlattice at T . 

(a) Neutron data and discommensuration models. 

Realistic structural models for :he incommensurate superlattice 

structure in 2H-TaSe~ must explain the following observations of 

Moncton et̂  al_. The wavevector below the onset temperature T 

is not exactly commensurate, with a = (1/300), but is <j = 

(1 - 6)9̂ .. with 6y_ 0.025 and temperature dependence as shown in 

Fig. 5(a). 6 drops suddenly to 0 at T = 90* suggesting a first-

order incommensurate/commensurate transition. In the incommensurate 

state the primary lattice distortion wave vector CK is accompanied 

by a weaker secondary distortion wave £_, = (1+26) a . The T 

transition appears continuous, i.e. second-order (see Fig. 5(a)). 
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The strength of the second order component increases with 

decreasing temperature as shown in Fig. 5(b) 

Moncton et al and McMillan (1976) argued that a single 

plane wave with <K < q will have regions ^Ac/2 over which the 

lock-in potential is alternatively attractive and repulsive and 

thus the existence of higher-order Fourier components in the 

distortion wave is expected on theoretical grounds. A theoretical 

analysis by Moncton et̂  al̂  constrained the distortion wave to 

have equal amplitude and phase components, whereas McMillan 

argued that a pure phase distortion would give a lower free energy. 

However, neither analysis gave good agreement with the observed 

temperature variation (see Fig. 5(a)). Thus Moncton et al 

predicted a sharp drop in 6 from 0.020 rather than from 0.005 

as observed, suggesting the commensurate state is far too strongly 

favoured by their model. McMillan's curve shows a continuous 

variation of 6 for T <T<T , with opposite slope to the experimental 

curve, and shows no first-order behaviour for the T transition. 

Bruce, Cowley and Murray (1978) showed that coupling of a uniform 

macroscopic elastic strain to McMillan's pure phase discommensuration 

model does introduce a strong first order transition, but no calculated 

6(T/T ) curve was given. Bak and Tiinonen (1978) have further 

extended the theory to allow for an inhomogeneous soliton like strain 

with the adrupt 2tr/3 phase changes of the discommensuraticns. This 

restored the second-order nature of the T transition but again no 
c 

attempt was made to predict the observed 6(T/T ) variation. 

It is not clear from McMillan's analysis why he chose a dis­

commensuration model having 2TT/3 phase shifts, since he did not 

explicitly consider other possible values of A$. Clearly such a 

model has a strong analogy to the antiphase domains or stacking 
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faults which occur in close-packed structures. For the CDW 

electron distribution in Fig. 2 there are three possible choices 

for the origin, separated by phase shifts of -2ir/3, and this 

suggests a possible domain structure. However no exhaustive 

search for other plausible structural models was undertaken. 

Fig. 6 shows a plot of the variation in electron charge density along 

r_ = xX(6,j- c^) t i.e. normal to McMillan's 2-/3 discommensuration. 

Such soliton like behaviour for p Cj_) seems to us most unlikely. 

What conctiveable distortion of the lattice, presumably involving 

very strong covalent bonds, could possibly sustain such a 

singularity in (conduction) electron density? We therefore searched 

for alternative discommensuration models which might minimumize 

Vp(r) across the domain boundaries. In fact such a model was 

immediately suggested by the -ir ambiguity discussed above and the 

well-known "softening-mode" nature of the phase transitions. Thus 

we were lead intuitively to consider discommensuration triplets 

which give a smooth variation in electron charge density across 

domain boundaries. Furthermore such a model immediately predicts 

a structural interpretation of the temperature variation of 6 

and to the mechanism of the T and T phase transitions. 
o t ' 

(b) Systematic derivation of lowest energy discommensuration 

structures. The basis for this derivation is given in Figs. 2 and 

3 which show the electron density distribution for *f „ = 210 

and the corresponding profiles along £ = x^j and £=xXQi -fu)/»&' 

We recall that 9 =210° or 330° simply correspond to origin 

shifts from points labelled A to those labelled B and C respectively. 

Domain boundaries delineating such phase shifts are simply McMillan's 

2TT/3 discommensurations. Inclusion of the "soft-mode" equivalents 
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*rnw " v t n e n l e a d s to a total of six possible choices for the 
CDW origin in a domain structure, all of which retain E.. mode 
symmetry and lead to centrosymmetric commensurate superlattices 
as required by the neutron and Raman scattering analyses. 

(i) Domain walls perpendicular to q. The domain walls may pass 
through A, B or C type sites and we first consider the 5 distinct 
A-type walls having phase shifts and labels as indicated in Table 2. 
Two dimensional electron density contours are given in Figs. 7 
to 11. For each wall type we considered five important profiles, 
labelled J and 2 for j_ = xAq. and a, b, and c for r̂  = xA(q, -£,)/ & 

and these are also shown in Figs. 7 to 11. It is immediately 
apparent that the domain wall type A3 shows by far the best matching 
of Ap across the domain wall. Furthermore profile A3-2 immediately 
suggests that contraction of the profiles by 0.0474 A, on each 

r comm 
side of the domain boundary would allow continuous matching of all 
five profiles with p = 0 at the domain wall. All other four models 
(Al, A2, A4, AS) predict cusp-like gradient changes for one or more 
of its profiles and in most cases these would give positive or 
negative peaks in p at the domain walls. None of these other models 
lead naturally to contraction or expansion of the CDW and hence do 
not lead to an explanation of the incommensurate superlattice 
periodicity. Fig. 12a,b shows a plot of profiles A3-1/2 with and 
without a linear contraction of the CDW according to 

A. = (1 - 0.0474) A. (25) 
incom *• c K ' 
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Note that the electron density smoothly goes to zero in the vicinity 

of the wall for A3-1 and gives zero gradient change across the 

domain wall for A3-2. Annihilation of p at the domain walls simply 

corresponds to insertion of a slab of normal (high-temperature) 

structure. This type of discommensuration model immediately 

predicts two of the essential features of an incommensurate CDW 

structure. firstly, there is a uniform change in the CDW wave­

length, in this case a contraction, given by 

6 = 0.0474 x 2/p (26) 

w'lere P is the domain wall spacing, measured in units of A. 

Secondly, there is a localized distortion of the CDW, in the 

immediate vicinity of the discommensuration, but this amounts 

only to retention of elements of the structure which existed above 

T . The CDW profiles possess the black and white symmetry operation 

m 1 (i.e. mirror combined with change in sign of the electron density, 

see Megaw (1973) or Bradley and Cracknell, (1972)) . Note that the 

models Al and A4, which correspond to McMillan's discommensurations 

(A*-,nw = +120 respectively) each contain 3 cusp-like functions 

in the profiles which would be most unstable w.r.t. A3. It should 

be noted that the diffraction evidence for 2II-TaSe2 requires 

A. < A , i.e. we require expansion rather than contraction of the mcom c ^ v 

wavelength. This difficulty is overcome by consideration of B 

and C type discommensurations. 

A study of profiles for B-type discommensurations did not 

yield any new possibilities for low energy boundaries requiring 

changes in CDW wavelength. For example Fig. 13 shows profiles 

and contour plot for the Bl type discommensuration (McMillan type, 
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A* w = -120 ). Profiles Bl - a and b both show high energy 

cusps, whereas curves Bl-1, 2 and c will be smoothest for CDW 

wavelength = Ac and therefore will not lead to incommensurateness. 

Finally we consider type C boundaries. These give profiles 

closely resembling those for type A, with the exception that CDW 

stretching, rather than contraction is required. The lowest 

energy boundary in this case is C4 (A* c n w = +60 , Fig. 14). 

Thus profiles C4-2 becomes virtually continuous for a uniform 

expansion of the CDW corresponding to 

6 = - 0.0474 x 2/P (27) 

Fig. 14 a, b, shows the result of smoothing profiles C4 - 1 

and C 4 - 2 after uniform increase in CDW wavelength. 

It is interesting to note that annihilation of the CDW 

electron density required for continuity of profiles C4 - 1 and 

C4 - 3, 4, 5 may be regarded as the result of attraction between 

equal and opposite charge densities at the domain wall or 

discommensuration. Thus in this rase the incommensurate strctehing 

of the CDW for profile C4 - 2 would seem to positively aid the 

annihilation, suggesting the origin of attractive energy term?, 

which stabilize the incommensurate state for T < T < T . 
c -•• — o 

(iii Domain boundary triplets normal to q. In both 2H-TaSe,, 

and 2H-NbTe2 the value of 6 at the onset temperature T is 

A = -0.025. This immediately suggests by comparison with Eq.s 

(26) and (27) that we construct a two-dimensional type C4 domain 

boundary structure with domain boundary spacing, along q., given 

by P = 4, yielding a predicted 6 = -0.024, in excellent agreement 

with the experimental value. 
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Taking * = 210 at the origin on a type C site we find 

that the distance to a domain boundary is given by 

R. = pX£. (28) 

where p may take the values 

p = n + 1/3 />r -n (n positive integers) (31) 

along the - <±. directions respectively. In fact this asymmetric 

choice of origin (which in turn was dictated by the cohesive energy 

calculations above) leads to further multiplicity of 2 into the 

number of domain boundary phase relationships. Thus if the 

domain wall distance from the origin is given by p = n + 1/3 

then the phase shift A$„ n w = +60 as required by the profile 

analysis above (see Fig. 14). On the other hand if p = -n then 

we generate identical domain walls but - $ r D W = -60 . This will 

be made clear by reference to Figs. 16 a, b which show the phase 

relationships for the trigonal domain structures obtained for p = -2 

and +2 1/3 respectively. Note that the domain wall spacing 

(along q.) is given by P = 3p in each case. These two-dimensional 

domain structures are described by the black and white point group 

3m'. Thus the observed value of a at the onset temperature T , 

for both 2H-TaSe2 and 2H-NbSe2, immediately leads to the CDW model 

shown in Fig. 16(a). Note that JCD,. is alternately 210 and 150 

in adjacent trigonally arranged domains. 

Attempts to draw alternative arrangements of domain walls 

and junctions, having the same phase relationship, were unsuccessful, 

since 3m' is the only two - dimensional black and white point group 

having trigonal symmetry, as required by the neutron amd Raman results. 
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It is important to realize that although the CDW is distorted 
(by an overall stretching as well as insertion of some normal 
structure near the domain walls) so that the mean wavelength is 
incommensurate, i.e. 

A. = (1 -6) \ (29) 
mcom v ' c v ' 

in fact the crystallographic unit cell for the domain structure 

is commensurate, with 
a. = 6a = 1 8 a M (=61.9 X) (30) 

1 com N v ' K ' 

where a = 3.44 A is the cell parameter for T > T . (We return 
to discuss the PSD wave for the ions and the consequences of the 
model for the diffraction intensities below.) 

It is now necessary to consider the CDK phase relationship 
between adjacent trigonal prismatic layers of the structure. There 
are two possible positions for the location of the inversion centre 
required by the Raman results; i.e. at the centroid of each domain 
or at the domain wall junctions. Attempts to place an inversion 
centre at the centroid position generates a discontinuous arrangement 
of domain walls with those at layer J rotated by 30 with respect 
to those on layer II and implies mixing of p - -n and p -• n + 1/3 
structures on adjacent levels. This possibility is therefore 
self-contradictory and may be ruled out. 

Location of the inversion operation at the wall junction 
leads to continuous domain walls parallel to the £ axis, with the 
layers of Fig. 16 (a) exactly superimposed. (In fact * „ n w changes 
by - IT in adjacent layers due to the translation vector of He). 



The black.and white space group would appear to be P3'l«' 

(Bradley and Cracknel1, (1972)). We note that the inversion centre 

at the domain centroid must be recovered on lock-in to the 

commensurate (x33.) superlattice. Its absence in the incommensurate 

state leads to minimumization of tin. _ ,_ ,•,,.»% ,, c «. 

Se-Se (Eq. (22)) allowing perfect 

matching of the Se displacements in adjacent layers. Thus one would 

expect that the incommensurate state will be stabilized by high 

pressure in agreement with the observations of Chu, Testardi, DiSalvo 

and Moncton (1976), who found that T increases slightly whereas 

T decreases rapidly with increasing pressure. 

The presence of the domain walls and junctions, where P r n w = 0 

is remarkably consistent with the interpretation of XPS measure*, its 

of Hughes and Pollak (1976) and the view of McMillan (1976), based 

on specific heat and energy gap measurements, that the coherence 

length in the incommensurate state is very small. The maximum 
2 domain area, at onset, for our nodel is 10.83 a , which compares 

favourably with McMillan's esticate of linear coherence length of 

^3 a • 

§ 7 Temperature Variation of Incommensurate S .perlatticc Sitructurc 

(a) Domain structure 

We have seen in §6 above that the domain wall separation P 

is directly related to 6 so that 5 could conceivably decrease to 

zero by increasing P from 4 to » in integral steps. However, 

this does not increase the fraction of anharmonically favoured 

structure (say * „ n w = 210 ) at the expense of the alternative 

structure (Qcmi - 150 ) so that the <fr - -it/2 ambiguity would not 



be resolved, even for infinite P. Furthermore such a model 

does not lead naturally to the introduction of a second tarmonic 

into the CD*. 

Fig. 17 (a) to (g) show an alternative approach whereby 

areas of the favoured structure (black) increase in area relative 

to areas of anharaonically unfavoured structure (white) in stages. 

The corresponding values of p , • „ . and relative areas of the 

different domains are given in Table 3. Note that in order to 

allow p to change in steps of 1/3 we require * c x m to advance by 

120 in successive stages, simultaneously in both black and white 

dona ins, so that v.^ - a^.^ remains constant at 60 . 

The variation of *._ with temperature in the two domains is shown 

schematically in Fig. 18. Of course there are a number of possible 

excitations of the incommensurate structures which may vary as the 

temperature decreases. The structure will not be static. 

Fig. 17 represents the average structure at various stages of 

decreasing temperature. We will not pursue such excitations in 

this paper. 

(b) Variation of 6 with domain SI;I. Whereas the value of 

c at the onset temperature T was predicted precisely (= 0.023?) 

(see $6 (b) ii above) it is not possible to immediately assign 

values of 6 to the intermediate stages shown in Fig. 17 (a) to (g). 

We therefore refer back to the neutron data. The abrupt decrease 

in 6 at T - T suggested that we assign $ » O.OOS to the structure 

shown in Fig. 17 (f), i.e. the penultimate stage. The increase 

in amplitude of the second harmonic peak with decreasing temperature 

(Fig. 5 b) must also be explained by our structural model. He 

therefore introduced the second harmonic into the CDK as follows, 
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so as to make explicit its structural inplications in an attempt 

to find a relationship between 6 and p. Thus the electron density 

becomes 

p(r) = P j E. sinCq..r * # £ w ) * p ? Z. sinC2q..r + **„,) C31) 

and along the direct ion r = - xA q.. 

p(x) = P l { s i n ( * J u - 2TT3C 1 - «)) • 2 s inC*J M + ir< 1 -6))} 

+ P 2 {s i iC#£ w - 4TTXC1 - 6)) + 2 s i n C * ^ + 2w< 1 -6)) (32) 

1 2 
where ( p . , • - M ) and ( P 2 , $ r-m^ a r e ^ e a m P l i t u d e s a n { * phases of the 
f i r s t and second harmonics respect ively. In order to assign values 

2 
of *_p. we plotted p( x) using Eq.(32) for various values of P 2 / P . 

and 6 taken from F ig .5 (a ) , (b ) . Thus for T/T =0 .90 the appropriate 

values are P 2 /Pi = ° - 2 7 a n d 5 = 0.010. We assume 9 = 210° as 

discussed in section 6-(b) i i above. Figs. 19a,b,c,d show plots of 

PC x) for •* = 30°, 150°, 210°, 330° respect ively. We find that only 
2 two values of * _ „ re ta in the hexagonal symmetry of the A s i t e and 

re ta in equal charge density and tr igonal symmetry a t the B and C s i t e s , 

i . e . * „ = 150 and 330 . (The general condition for these propert ies 

of the CM to be retained i s 2( * J W - 4 ^ ) = 120°, 240° , . . . ) 

Figs 20a,b,c show the nature of the d is tor t ions in the CDW prof i le 

produced by the addition of a second harmonic. Thus Fig.20a shows the 

profi le for p_ = 0, p« = 1.27 and * c r w = 210° ( i . e . no second harmonic) 

whereas Figs 2©b,c show plots for P7/P, = 0.27, $ C [ W = 210° and * r f W = 

150 and 330 respect ively. In each case the peaks occur at ident ical 
2 values of x but the peak widths are broadened and narrowed for *__,, 
CDV 

- 150 and 330 respectively. In order to construct discommensurations 

having zero Vp change at the domin walls we proceed as before by 

joining profiles for domains having phase differences of 60 
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(see §6 (b) above). Figs. 21 a to g show profiles corresponding 

to directions joining the domain centroids in Fig. 17 a to g. We 

find that the choice of phase * C D W - *__.. = 120° (i.e. peak 

narrowing see Fig. 2D c) causes 6 to decrease to zero as 

the relative magnitude of the second hirmonic increases. A geometric 

analysis of the profiles yields the result 

6 = 0.0231 - 0.0688 ( p ^ ) - 0.0048 (p 2/pj) 2 (33) 

Thus 5 = 0.005 yields a calculated value of P 7 / P 1 = 0.2b in good 

agreement with the measured value of 0.30* 

*6, being a geometrical parameter is known with far greater accuracy 

than P2/Pi which depends on the relative magnitudes of the intensities 

of the first and second order satellite reflections, see Moncton et al) 

The values deduced for 6 at each stage of the transformation from 

the incommensurate superlattice at T to the commensurate super-

lattice are indicated in Fig. 21 a to g. 

(c) Effect of addition of second harmonic on Ta and Se displacements 

A sharpening of the electron density peaks also occurs along the 

direction _r = xX (<u - £,) (Fig. 25) The corresponding flattening 

of the valleys in between the peaks will tend to increase the 

magnitude of the Ta displacements since Vp is decreased. For example 

at £ = a and for 6^ o 

vp(r=a)= 3/2 P l(l - 2p 2/ P l) L£ 2 cos 210° + (£3 - 3. j ) / ^ sin 210°] 

which is simply (1 - 2p2/pj) times the value of Vp if there were no 

second harmonic. If Ax_ were directly proportional to Vp then we 

might expect t Ta displacements to be simply decreased by the 
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factor (1 - 2p2/p.). However $_ is also changed by the 

addition of the second harmonic (shown schematically in Fig. 23). 

Thus elastic energy released due to the decrease in the magnitude 

of the displacement will be offset by the increase in elastic 

energy required to rotate the direction of displacement (bond-

bending energy). Clearly there will be restoring forces opposing 

this rotation due especially to Se-Se interactions and then Ta-Se 

interactions. There will also be displacenents of Ta and Se atoms 

due to the presence of the incommensurate superlattice spacing. 

Initially at onset there will be inversion centres located at the 

domain wall junctions ( centre of Fig. 18 a) and we expect larger 

atomic displacements for the atoms associated with the domain 

walls and junctions. However, since these involve sites where 

the electron density in the CDW has virtually anihilated to zero 

the Ta-CDW interaction will be small and such displacements will 

be relatively small. As the unfavourable domains shrink (Fig. 17 

b - g) the inversion centre is retained in the same site but now 

we have black-on-black superposition from one layer to the next, and 

the structure now gradually approaches the commensurate structure. 

The largest atomic displacements still remain at the triangular 

domain walls and vertices but these decrease as 6 decreases. 

The driving force for the transformation is clearly the increasing 

magnitude of the anharraonic Ta-Se energy terms favouring black-on-

black regions. This has to overcome the stability of the domain 

walls and the more favourable CDW-CDW interlayer interactions 

existing for black-on-white arrangement of alternate layers. Thus 

as p2/pi increases, i.e. 6 decreases, it costs more and more energy 

to convert unit area of black-on-white into black-on black. Thus the 

i i i 
i 
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6(T/T ) curve should have concave curvature in agreement with 

experiment. (We note that the analyses of McMillan and Nakanishi 

and Shika predicted convex curvature.) 

In order to predict 6(T/T)according to our model we first 

require to deduce the Ta and Se atomic coordinates for the large 

cells shown in Fig. 17. This is a nontrivial problem and in any 

case we believe it is first necessary to seek further diffraction 

evidence using both X-ray and neutrons, and possibly using high-

resolution electron microscopy, before embarking on further calculations 

of the atomic positions and energetics of this phase transition. 

I8. Conclusion 

Our attempts to resolve the ambiguity in sign of the atomic 

displacements in the commensurate superlattice structure have lead 

to a physically reasonable picture for the incommensurate superlattice 

structure and a structural explanation for the variation of & with 

temperature. In fact introduction of our large superlattice unit 

cell, containing domains and domain walls shows that the intermediate 

structure for T <T<T is in fact not strictly incommensurate, c o 
The tern is a misnomer in fact. However, locally the CDW wavelength 

is stretched relative to that existing below T so that to a first 

approximation the superlattice peaks appear to be non-integral multiples 

of the fundamental TaSe~ structure (a = 3.44 %). Fig. 24 shows 

a schematic representation of the diffraction intensities which we 

expect for the larger commensurate superlattices shown in Fig. 17. 

Clearly is is now necessary to reexamine these superlattice 

structures with diffraction techniques, probably with significantly 

better resolution than used so far. Further theoretical treatments 
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should be directed towards the remaining polytypic structures 

showing similar, apparently incommensurate behaviour. 
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FIGURE CAPTIONS. 

Fig. 1 Crystal structure, atom labelling scheme 
and axial system for 2H polytype. 

Fig. 2 Positions of A, 3, and C sites relative to Ta net. 

Electron density plot for one Ta layer for 
*mw = ^ " ^ o t e t n e six-fold symmetry at 
A, which has a maximum in electron density and 
the two minima at B and C, which each have 
trigonal symmetry. Origin shifts of r_' = 0, 
- 2/3 A(a- • q.) correspond to phase shifts of 
0 , - 120 in 6_niv, thus interchanging origin 
between A B and C sites. 

Fig. 3a, b Electron density profiles along fL and £, - cj_, 
cf. directions labelled in Fig. 2b. Electron 
density unit is ? . o 

Fig. 4a Unit cell of commensurate superlattice structure 
showing relative magnitudes and directions of Ta 
» o 
displacements for $ - +90 and data from 
Moncton et̂  al̂  

Fig. 4b Se atom displacements projected along CloToJ 
showing cooperative movement of Se on adjacent 
levels. Atoms labelled as in Fig. 1. 

I 



Fig. 4c Se atom displacements for two levels 

corresponding to top of one sandwitch and 

bottom of next. Ideally these would be h.c.p. 

In fr.ct there is a very small contraction of 

octahedra centred on A' but much larger asymmetric 

displacements centred on B' and C 

Fig. 5a, b, Temperature dependence of 5 and ratio of 

amplitudes of second / first harmonic 

contributions to the electron density (data 

from Moncton et al, Fig. 4). Calculated curves 

for Moncton et al/s one-dimensional and 

McMillan's three-dimension discommensuration 

models are indicated. 

Fig. 6 Electron density profile along _r = xAfqj- q,) for 

McMillan's 2n/3 discommensuration model. Note 

singularity at domain wall. 

Figs.7 to 11 Two-dimensional electron density contours 

for discommensuration models having domain walls 

passing through A type sites (*CDW • 210 ). 

Electron density profiles along lines labelled 

1, 2 and a, b, c in the directions r_ = xXq, and 

xX(q1 -q_) //3 respectively. Note the nature 

of the resultant electron profiles at the domain 

walls (dotted). Profile labelled A3-2 

immediately suggests the origin of an incommensurate 

distortion of the CDW. Profiles A3-1 and A3-a,b,c 

all show smooth annihilation (zero) of the CDW 



Fig. 12a, b 
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at the domain walls . This should be 

compared to cusp-like variation for many of 

the other profi les . 

Plots of profiles A3-1 and A3-2 with and 

without a linear contraction in the CDW 

wavelength (see Eq. (25)), showing annihilation 

in A3-1 and joining of *„ „ =210 and 150 

profiles in A3-2 with Vp = 0 at domain wall. 

Fig. 13 Two dimensional contours and corresponding electron 

density profiles for a discommensuration passing 

through type B site. These do not lead to 

incommensurate distortion of CDW and contain 

cusps in electron density at domain walls. 

Fig. 14. Contour plots and electron density profiles 

for C4 type discommensuration (A* = +60°). 
CDW 

Profile C4 - 2 indicates origin of extension 

of CDW wavelength given by Eq. (27). 

Fig. 15a, b, Plots of profiles C2-1 and C2-2 with and 

without linear expansion of CDW wavelength 

corresponding to 6 = -0.0462 x 2/P, showing 

smooth annihilation of C2-1 and joining of 

$ C D W = 210 and 330° at domain wall with Vp = 0. 

Fig. 16a, b. Domain structure at onset temperature T for 

p = -2 and 2 1/3 respectively. Note A*_ n w = 60 

in each case and the black and white point group 

symmetry 3m'. Notice superlattice cell dimension 
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a. = 6a = 18a.. = 61.9 X I com N 

Fig. 17a, g. Variation of domain structure for decreasing 

temperature. The displacements corresponding to 

the black domains are favoured by the anharmonic 

(cubic) Ta-Se interaction energy terms. (Corresponding 

values of p, * C D W and the relative areas are given 

in Table 3.) Note that * c_ w advances by 120° 

in each domain at each stage of the transformation. 

Fig. 18 Variation of * r n w with temperature. 

Fig. 19a, b, c, d. Plots of electron density p(-xA qj for CDW 

containing both first and second harmonics with 

*CDW = 2 1 0 ° ' *CDW = 3°°' 1 5 0 ° ' 2 1 0 ° a n d 3 3°° 
respectively. Only * r n w = 330 gives correct 

symmetry for A B and C sites. Note narrowing 

of maxima and broadening of smaller peaks for 

*CDW = 3 3 0 ° -

Fig. 20a,b,c. Distortion of CDW due to addition of second 

harmonic (a) shows electron density profile 

for p 2 = 0, Pj = 1.27 and 9 1

Q m = 210° 

(b)^show» cases for p 9 / P l = 0.27, ** D W = 210° 

*rnw = * 5" a n c* 3 3 0 respectively. Only 

*rnw = 3 3 ^ gives correct sign for 6. 

Fig. 21a to g Electron density profiles along lines joining 

domain centroids of Fig. 17 a to g respectively. 

& decreases to zero according to Eq. (33), 

as indicated. 
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Sharpending of maxima and broadening of valleys 

for electron density profile along r_ = xX (<j- -

f o r *J D W " 2 1 0 ° * *CDW " 3 3 0 ° -

Rotation of $_. and decrease in magnitude of 

atomic displacements due to introduction of 

second harmonic. 

Schematic representation of diffraction 

intensities along reciprocal lattice vector 

k̂  [10T(0 corresponding to the stages shown in 

Fig. 17a to g. An apparent maxima appears 

corresponding to an incommensurate superlattice 

whereas in fact the structures is crystallo-

graphically commensurate throughout. 

Showing that a triplet of CDW having arbitrary 

phases *. is equivalent to a triplet having 

equal phases 5. = *_ = *_ after an origin 

shift r*. 
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TABLE 1 

Comparison of Structure Factors for Commensurate 

Superlattice Models with Observed Values 

|F|2(xl0-4) 
hkl <|> = +90° * = -90° Moncton et al. 

102 0.170 0.178 0.24 

104 1.243 1.077 1.26 

105 9.193 8.970 9.12 

106 2.699 2.713 6.31 

107 8.946 S.797 8.32 

108 0.008 0.053 0.02 

200 1.028 1.042 1.26 (0.55) 

201 0.654 0.845 0.50 

202 0.110 0.099 0.66 

203 3.197 3.767 3.31 

205 6.190 6.796 5.89 

206 22.326 23.098 23.44 

400 22.392 22.260 23.44 

401 12.716 9.647 8.91 

402 3.706 3.606 3.89 

403 15.968 12.738 13.18 

500 34.633 34.881 36.31 (33.11 

501 9.616 14.160 14.45 

T30 0.345 0.556 0.54 

130 1.603 1.605 1.35 

T60 1.053 0.964 0.52 

230 3.049 2.993 4.07 

160 0.222 0.269 0.60 

Values in parantheses represent uncertainties in absolute 

intensities. 
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TABLE 2 

Code, Fig. numbers and phase s h i f t s o f 

various discomensurat ion node l s . 

Code F ig . A* CDW 

Al 

A2 

A3 

A4 

A5 

Bl 

C4 

C2 

7 

8 

9 

10 

11 

13 

14 

IS 

-180 

-120 

-60 

• 60 

+120 

-180 

•120 

• 60 
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TABLE 3 

Parameters p and * a m and corresponding. Fig. 

nuabers for the normal / incoamtnsurate / 

surate state structural transforation 

Hack Doaain White POM in 

Pi 
o 

*CDW *2 *CDW 

2.0 210 •> -. is : 

2.3 330 l.c 

2.6 90 1-3 50 

3.0 210 1.0 150 

3.3 330 0.6 270 

3.6 90 0.3 30 

4.0 210 _ _ 

Area of (anharaonically) favoured structure 

Area of unfavoured structure 

Wpl) " 1 
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APPENDIX I 

Phase Relationship for CDW Triplets After Origin Shift 

Consider Fig. A 1 where £. (i = 1,2,3) represent three CDW vectors 

referred to origin 0. Suppose they have equal amplitudes but 

arbitrary phases *.. An indistinguishable electron density distribution 

may be generated using CDW triplets £!, having identical amplitudes 

(or wavelengths A), but with three identical phases *! = *' referred 
i 

to an origin 0 displaced by vector r' from 0. We require 

* = * , + j + q , . r = $_ + £_ . r ' . + ami = S , + £ 3 - r ' +2mr ( A. l ) r_'. + 2mir = * , + 

where m, n a r e i n t e g e r s . To f ind r* we put 

r ' = xAq, + y\<± (A. 2) 

where x and y a r e t o be determined, and £ . a re u n i t v e c t o r s 

p a r a l l e l t o q^.. Then from (A.l) 

i 1 + 2TT(X - y/2) = * 2 + 2ir( -x /2 + y) + 2mir 

= * 3 + 2ir( - x /2 - y/2) + 2nir (A.3) 

yielding 

and 

x = [ « _ - * - + 2nn]/3ir 

y = [*, - $- + 2(n-m)]/3Tr 

*' = (* 2 + * 2

 + « 3 ) / 3 +(2T;/3)(n+m) 

(A. 4) 

(A. 5) 
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