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Abstract

Reinter yretation of the neutron diffraction study of 2H-TaSe2

by Moncton, Ace and DiSalvo (1977) reveals an ambiguity in the

sense of the displacements proposed for the commensurate superlattice
structure. We attempt to resolve this ambiguity by electrostatic

and short-range energy calculations of the phase dependence of the

energy of the periodic structural distortion wave. There is a

fire balance between Se-Se short range repulsion, Ta-Se electrostatic

and short-range repulsion and the CDW-Ta ion interaction energy

terms. The analysis reveals the phase dependence of the various terms ;
and allows the different contributions to the stability of the

distortion waves to be discussed more completely than previously.

It is shown that the phase of the PSW/CDW wave is determined to

n rad by minimumizing (harmonic) energy terms, which vary as the
square of the PSD wave amplitude. This phase relationship is
established above the normal/incommensurate onset temperature To‘
The n ambiguity is then resolved finally at the incommensurate/
commensurate transition terpraure Tc’ by minimumizing the
(anharmonic) energy terms which vary as the third power of the PSD

wave amplitude.

Our analysis leads naturally to a new structural model for the
incommensurate superlattice structure for TC 5T5-To’ involving
contributions from both the preferred phase ¢ and the phase ¢tn
which simply corresponds to changing the sign of all displacements.
The model is the logical consequence of a ''softening-mode" phase
transition and provides a very simple structural explanation for
the observed incommensurate superlattice periodicity, 2.98 a

at onect o and its temmcerature depondence.




1. Introduction

Despite widespread theoretical interest in the phase transitions
and physical properties of the transition metal dichalcogenides
(see e.g. Triste (Ed.) 1978 and recent reviews by Bruce, Cowley and
Murray, 1978) it is disturbing that there appears to be only one
attempt to determine the atomic displacements in the commensurate
(or incommensurate) phases by use of standard X-ray or neutron
diffraction techniques of structure analysis. This is the neutron
diffraction study of the commensurate superlattice in 2H—TaSe2 by
Moncton, Axe and DiSalvo, 1977. The superlattice intensities
indicated that the :.tomic displacements are predominantly longitudinal

with the symmetry of the normal mode I The atom labelling

1
scheme and axial system is shown in Fig. 1. Moncton et al assumed

that an eigenvector transforming as a single representation would

&
adequately describe the commensurate superlattice. Symmetry constraints
reduced the number of independent atomic displacement parameters to
six, representing the amplitudes and phases of the Ta motion in the

R direction (e1, »91,), Se motion in the R (£3x’¢36) and z directions

)

(€32’¢3§ . Expressions for the superlattice structure factors were

developed using atomic displacements given by

upe = Lh (e (a) exp(ig.R)) + e;(ﬂ_)exp(-iﬂ-ﬁg) ) (1)

for the Kth atom in the 2th unit cell for a normal mode of wave
vactor ¢ containing contributions from each of the three symmetrically

equivalent wave vectors q;, q» and q3, The eigenvector components




Sxa” ko OXP (i¢.) (2)

and the convention

(@ = e (-9)

" o

(3)

was adopted. The numerical values of (= , $§2 for TaSe, at 5K
&

2
given in Table 1 of Moncton et al were found to be inconsistent

with the displacements shown in their Fig. 9 and with their calculated
structure factors (Moncton et gi, Fig. 8). By fitting the observed
structure factor data (op cit a calculator) two numerical errors

(presumably misprints) were found in their Table 1. The corrected

values are

€1, = -0.048, $1,= -0.80;
€3, = 0.009, $3,= 1.036;
€3, = -0.0172, ¢+ 0.28 (4)

The remaining components are given by

€1, = ¢, 391y = 92,
2y
€3x T Buy = B3 TEe 1,5 Fu =855 96,
£3z = -EL,Z = -esz = Esz; 5,3z = '¢Sz = ‘¢Gz (5)




all others being zero. Since it was not possible to accurately
obtain absolute values for the weak superlattice reflections reiative
to the strong subcell reflections the above displacement magnitudes
represent a lower limit and an approximate upper limit of 1.9 times

these values was given.

It should be noted that the results of an analysis of Raman
McMillan
scattering data for 2H-TaSe2 by Holy, Klein[and Meyer, 1976, showed
that inversion symmetry is maintained in the superlattice phase.

This imposes the condition

eg(@ = -e,(-a) 6)

Moncton et al claimed that the fit was insensitive to a change in the

overall phase of the eigenvector

e > & exp(id) )]

and chose ¢ = - 90° ) However the transformation (7) is
only strictly true for the ideal incommensurate superlattice, which
is inyariant under this transformation. We find that changing ¢
from -90° to +90°, for example, produces a change of 37% in the
intensity of the (501) reflection for the commensurate superlattice ,
which is outside the error limits reported by Moncton et al.

A comparison of other IFI2 values for ¢ = -90° is given in Table 1.
It will be seen that in general the fit is insensitive to ¢.

More precise (e values might have been obtained if the

K3‘¢Ku)

condition (7) had been used in the least < mares fit. (However the

experimental accuracy and reproducibility of the measured superlattice
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intensities may not have warranted this.) On the other hand it

is clear from Table 1 that the absolute value of ¢ could have been
obtained by fitting accurate values of the strong subcell reflections.
We belicve the corresponding X-ray diffraction experiment has been
performed by Jellinek (private communication, 1979) whose conclusion
was that ¢ = +90°, and not - 90°, which is equivalent to reversing

che signs of all of the displacements Yokt

In this paper we first show analytically that Holy et al's
inversion condition is equally consistent with 3 = +90o and thus
Moncton et al's analysis leaves the sense of the atomic displacements
undetermined. We then present an analysis of the change in cohesive
energy of the commensurate superlattice structure relative to the
normal state. This analysis makes explicit the phase.dependence of
the various terms. It is shown that ¢ must be + or - 90o in order
to minimumize energy terms which vary as the square of the amplitude
of the periodic structural distortion wave. It is the energy terms
which vary as the third power of this amplitude which lift the ambi-
guity between ¢ = + and - 90°.  Our analysis naturally suggests a
new approach to the structure of the incommensurate superlattice and
it is the development of such a model which ir, the major aim of this

paper.

2. Ambiguity in structure due to inversion centre

It is clear from Fig. 1 that the inversion centre must lie
midway between Ta atoms 1 and 2, in the centre of the empty octahedrally
coordinated site between the trigonal prismatic layers. Thus the
atom pairs 1 and 2, 3 and 6 and 4 and 5 are related by the inversion
operation and

EpQ.a = -Eqih (8)




S.
where p=1, 3, 4 and q = 2, 6, S5 are atom labels (see Fig. 1).
We note from (S5) that qu = -¢

a and € = eqa. Thus using (1) and

q px
introducing the factor exp (i¢) on both sides of (8) we find that

¢ nust satisfy

;_Spu COS(&.E" + ’w + @) =-Z_;_p° COS(-&.!'. - ’m’ ¢)

whence

$= +90° or -90° (10)
Table 1 shows that IFIZ values calculated using 4 = -~ 90° are
equally consistent with the data, within experimental error.
More accurate measurements, especially of the subcell reflections
are required to distinguish between these two values of ¢.
Inspection of Moncton et al's Fig. 9 immediately confirms that
reversal of sign of all displacements does generate a distinct

crystal structure.

3. Electron density distribution

The natural parameter is the d-band conduction electron density
p(r) = p (1) [1 + a(r)] (11)
where po(r) is the normal d - electron density and a(r) may be
expressed in terms of three sinusoidal CDW's having wave vectors

9 (i= 1,2,3) lying in the basal plane and in directions making

angles of 120° to each other.  Thus

a({) = Zipi sin (Si'£-+ ¢i) (12)
where Py and oi are the amplitudes and phases of the ith component
of the CDW triplet. It can be shown (see Appendix I) that the
electron density distribution generated by the triplet q; with

arbitrary phases Qiis identical withthat produced by a triplet
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6.
of wave vectors gi having identical amplitudes to q; but having

three identical phases ¢' = 0{ given by
= (01 *92 +03) /3 + 2/3 (nwm)x 13)

where m,n are integers and the wave vectors gi are referred to
an origin shifted by vector r' given by

' = a/3ale; -8, + 2mlg, + M/3alag -0, + zn(n--)]gl2 (14)

where q;are unit vectors parallel to q; and » jsthe wavelength of the

CDW's. In fact values of ¢, ¢ +120° and 3 +240°, corresponding to

(n*m) = 0,1,2 respectively, generate iiential electron density

distributions at three non-equivalent points &, B and C within the
superlattice unit cell, corresponding to origin shifts r' = 0,

:ZISA(él +.§2) (Fig. 2 ) -Other values of (m,n) generate

electron density distributions indistinguishable from those at ‘
points A, B and C, since the origin shift simply amounts to a

superlattice translation vector. For examplem =1, n = 2 gives

r' = 2/3 (2, +g,) as shown in Fig. 2 (a)-

Fig. 2 shows an electron density contour plot (ass.uming
Py = 1 electron unit) for ¢ = +90°.  Note the density maxima having
6-fold symmetry at points A and the two minima having trigonal
sympetry at points B and C. Changing & by 120° or 240° simply
amounts to shifting the origin from point A to points C or B
respectively. (Such shifts will become important later when we
discuss models for the incommensurate superlattice structure).

Figs. 3 (a) (b) show electron density profiles along q and 9 -43

directions for ¢ = 0900.

We note that changing from & = +90° to ¢ = -9p° simply

changes the sign of all of the peaks shown in Figs. 2 and 3(a)(b).
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4. Atomic displacements for ¢ = z 90°

The displacements of Ta and Se atoms parallel to the basal
plane were calculated using the paralettks(c‘a,o‘u) Jdetermined by

#oncton et al. Thus

up, (r) = 0.048 I q; cos (g;.R, * ¢7) (15)

where ¢, = ¢, 180° +¢ = 224.16° for ¢ = +90"

_ o _ o - _o0°
and ’Ta = .lx + 180" + ¢ = 44.16 for ¢ 90

The Ta atoms at the A,B and C sites are unmoved since the CDW
electron distribution has zero gradient at these points. The Ta
atom at r = (2A/9) (él - 53) has displacement

u (2/9 x[il - q,0) = (3/2)0.048 [_Elzcosfah + 1/3(g5 - ;) sin o]
(16)

Since 52 and 1{3 (és - ;4) are orthogonal unit vectors then this

T m—

displacement has magnitude 0.072 R and is directed at angle ’Ta to
§2 (Fig. 4(a)). The displacement of the remaining 5 Ta atoms in
the 3x3 superlattice unit cell are simply obtained by applying 21
symmetry operations and these are shown in Fig. 4 (a). (Fig. 4

assumes § = + 90°, all displacements simply changc sign for ¢ = —90°)
The Se displacements are given by
2 + L C
ESe(I) = - 0.009 Eigicos(gi.gl + b ) - 0.0172 Lizpoa(ﬂi.Bl + ). (1M

where the > signs refer to sheets of Se atoms labelled 3 and 4

respectively in Fig. 1. Now for ¢= + 90° we find b, = bz, +180° + ¢ =329.36°

3

and ¢_ + 180° + ¢ = 286.04°

= °Sz

and there are three distinct types of displaccements in the asymmetric

unit, as shown in Fig. 4 (b) and (c) for the vertical and horizontal




components respectively. The latter show a remarkable degree of
cooperative movement of the Se ions between layers, suggesting that
short-range Se-Se interactions may be important in determining
’Se and Qz, and ultimately in establishing the phase of the CDW
w.r.t. the lattice. Further evidence for strong short-range Se-Se
forces is shown by the nature of the distortions of the octahedral
interstices within the Se layers, labelled 4 and 5 in Fig. 1. Note
especially the small centrosymuelric cortraction (both horizontally
and vertically) about A' in Fig. 4(c) anc the —uch larger

noncentrosymmetric displacements centred on 3' and C'Z

5. Cohesive Energy Calculations.

(a) Ta-Ta electrostatic interaction. The difference in electrostatic

energy per unit cell between the normal (undistorted} structure and
the 3 x 3 commensurate superlattice was calculated using
C

AU = L1

2 ,
Ta-Ta Q, (VR{; - 1/R3) (18)

i,j
where Rij and Rij are the initial and final Ta-Ta interatomic
spacings respectively and QTa is the effective charge on the Ta atom,
assumed to be the same for all 9 Ta atoms per cell. Since the
difference R{j - Rij is very small the suam Eq.(13) converges rapidly
and summing to 6th nearest neighbours yields

C _ a2 2 3 .

AU g2 = Q- (1.373 e 40,0027 e sin 3, + ... ). (19)
The short-range Ta-Ta interaction term is insignificant so that the

phase dependence of the Ta-Ta interaction is carried by the cubic




{znharmonic) term which is minimumized for 01h=90°, 210° or 330°.

(b) Ta-Se electrostatic and short-range interactions. The

electrostatic contribution was calculated usina an expression similar
to Eq. (18). For the short-range terms an interaction potential
L exp{-R/c} was chosen, where R is the interatomic separation and

> and o are constants. Thus the change in s™ort-range energy is

SR e v
Ta-se = Li,j Fra-se { o@((?g - 2277 - 1) (20)

LAY

whe » Ro is the normal state bond length (2.337 i), Ro - R{j is the
. - - - [ .

change in bond length and k. . = O.SSa!QTaQSe. is determined

by the effective charges QTa and QSe of the Ta arnd Se atoms.

(This value of kTa-Se was obtained by requiring

3 N h - =
5§{ -IQTaQSeI/ R + lTa-Se {exp(Ro - R)/e 1))R=R° 0,

chan~ - 2 = 3 =
whence kTa-Se = (G/Ro )IQTaQSel = 0'0385!Q*_Qse" assuming c/Ro 0.19

{Xittel, 1976). The phase depend=nce is relatively irsensitive to c/Ro

/
\

sirce the trigonometric arguments are not effertecd, and the coefficients
of the various terms change only slightly.)
Thus the total change in cohesive ener2v, electrostatic plus

short-range, and including terms to seccnd nearsst neighbours, is

O L
““Ta-Se ~ Ta

(38

+ 121.31 52

2
el 138.10 €7 + 90.89 €_ Ta

N

. o _—. s 0
+( 210.44 51n(¢z - oTa + 2007) + 12.57 sxn(éz + ¢ a + 320 ))cz €

T Ta

. o - . o
. +( 3.14 51n(¢Sc - bp, *+ 1807) - 136.23 51n(ose - b, * 320 ))eSc 1

a a

- ————
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+ 42.55 sin(3p_ + 60”) c: + 3483 sin(3g, + &0°) cg.

+ 92.75 cos(&.h)c:‘

+ (0.42 sin(ap, + 20+ 10°) - 161.46 sin(e, + 20 + no°))¢:c.h
- (157.05 sin(pg, + 20, + 220°) + S8.79 sin(4,, + 20y, * m°))¢5e¢.:_
(4]

- (58.39 sin(e, + Z4g, 220°%) + 67.50 sin(e,_ + 205, + 10")

» 1.97 sin(e, + 205, * 250%) - 3.22 sin(oy, + 20, * wo°))c§ec.|.a

J
|

. () . ] ;

- (S1.24 sm(oz * .Se + ’Ta + 1307) + 229.85 sm(oz - ’Se . ’Ta +2507)) .i
(cz ce t'l'a) + ... ). (21)
The quadratic (harmonic) terms are minimmized for .80 -.Ta = 131°

and §_ -4r, = 67°, which should be conpared with Moncton et al's

values ¢, - br. = 105.20° and ¢, = »1.38°. The ab: slute values

s
. . .
of QSe' Oz and ‘Ta are not detcmined by ninimmizing these

harmonic terms since the phase differences °S¢ - é,.. and 01 -4

Ta Ta

are insensitive to an arbitrary phase shift ¢.

e o s > e W e i D s s

short-Tange interactions, both within layers such as 4 or between
layers such as 3 and 4 (see Fig. 1), have no quadratic phase dependent
terms. (The corresponding cubic teres are discussed in section 5( e)

below.) There is however a second-order term for the Se-Se
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Se-Se layers 4 and 5. (The weak interlayer van der Waals interaction

is assumed negligible.) Thus for the interlayer Se-Se interactions

we obtain
R _ 2 2 2 . 0
AUge-Se = kg go { 138.96 € - 20.90 5, + 80.24 €, sin(2¢,+ 100°)
- 12.06 sio 2. + 280°) €2
VO ST -35e €se

+.20.22 sin 2ag + 220%) ege

- 127.18¢g, £, sin(og, + ¢, + 160°) +...} (22)
It is interesting to note that the experimental values .¢z = 286°
and bge = 329° are surprisingly close to those values obtained by
ninimumizing sir(2¢z + 1000) and {12.06 sin 2¢Se + 1000) + 20,22
sin( 205 + 220°)} separately, i.e. ¢! = 265° and 0, = 313.5°.
(Inclusion of the remining term containing sidf¢se + ¢z + 1600)

in the minirumization would give even better agreement.) Note that
values of ¢z and ¢Se obtained by minimumizing Eq.(22) are sensitive
to an arbitrary overall phase shift 3% , but are not sensitive to a
shift of n, because of the sin2 dependence of each term in Eq.(22).
Thus it is the short-range Se-Se interlaver interactions which

determine ¢ e and ¢z. ¢Ta is then determined by the intralayer

- -

S
Ta-Se interactions, which determine °Se - ¢Ta and °z - °Th'

(d) CO¥_- Ta_interaction energy We assuze here that the CD'T is

localized in the Ta metal atom layers and we neglect any direct

CD W-Se interaction energy. Some justification for this assumption
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cores from XPS studies of lT-TaS2 (Hughes and Pollack, 1978) who
observed splittings of 4f-Ta, but not 2d-S levels due to the CDiY.
Such splittings were not observed for ZH-TaS2 due, presumeably, to the

small amplitude of the PSD wave in 2H. Given these assumptions we find

coiw

2
Bepy = = Qple™ " ;¢ ) 1 - 18 eq, co( &y, - o)

Ta
+(9/2) € sin Seppy * 20p3) *--- 1 (29)

CIv

where the amplitude »p of the electron distribution is linear in

e, to 2 first approximation (Moncton et g})so that in fact the

leading phase dependent term is second order in Epa Minimumization of
this term requires °CDW = ¢Ta’ although we again find that the difference
QCDV - ¢Ta is insensitive to an arbitrary overall phase shift of ¢ in both

Ocpy 3nd O, -

(1) Harmonic terms. We have shown in sections (a) to (d) above that

the relative values of the C¥ phase ¢ and the PSD phases ¢Ta’

cov bse
and ¢, are determined by the quadratic energy terms, apart from a possible

SR
Se-Se

fixes the differences ¢, - ¢g,

phase shift of 7., Thus the quadratic terms in AU

of the Se motion ¢ and ¢, AU}ETSe

and °Ta - ¢z and hence ¢Ta and finally the CD¥ phase

determine the phases 1

Scow? ¥1a 1M
order to maximumize |aU |. Realization that the relatiye values of ‘the

phases are determined b, .armonic interaction energy terms has escaped
previous authors. Thus McMillan and others (McMillan 1977; Monctor et al,
1977) use the Landau theory argument that the quadratic terms vanish at

T = T_ leaving
o
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AU = b st el (24)

so that the distortion wave amplitude ( ¢ ) is determined by

the ratio of the cubic and quariic terms. They then assert that
the relative phases are determined by the leading cubic term-.
However, our discussion above clearly shows that the quadratic

terms determine the relative phases. This is easily reconciled
with Landau theory by realizing that the relative phases of the

Ta and Se motions for the £y pode are already determined for

T » To (after all the harmonic anproximation does aczount for

much of lattice dynamics). Thus above To the I, mode includes
displacements of both * u (r), corresponding to ¢ = MY
respectively. Landau thsory only requires that the total harmonic
energy goes to zero at To’ not that each contribution individually
goes to zero. Thus the phase relationships will remain essentially
unchanged for T < To and softening of the I; mode will lead
naturally to domains containing equal volumes of fg(zj displacements
of T = T,- We assert that the role of the anharmonic terms I
simply to determine which of the two possible sets of displaceuents
*u (r) is prefeired as the PSD wave amplitudes (eka) increase with
decreasing temperature, and thus determine the absolute values of

the phases in the fully commensurate superlattice for T < Tc' We

return to a detailed structural mechanism for the normal/ incommensurate/

commensurate phase transitions in § 6 below.

(ii) Anharmonic terms., We now consider the phase dependence of the
cubic (anharmonic) interaction energy terms in an attempt to deduce
the absolute phase relationship between CDW, PSD and the lattice.

We saw above(8 5(a)) that the Ta-Ta electrostatic interaction

C Lo = an® 0 v
term AUTa—Ta was minimumized for ¢Ta = 907, 210 or 330 (Eq.(19)).

¢ —— e e
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Ye have not attempted to directly minimumize the complex cubic
terms (Eq.(21)) for the Ta-Se interactions. However, substitution
of the experimentally observed amplitudes and phases (Ex2'¢n£)
allows the Ta-Se interaction energy term to be calculated for the
two possible values of the phase ¢, i.e. ¢ = I 90° respectively.
Thus a sin 3¢ phase dependence was obtained showing that ¢ = + 90°
maximumizes whereas ¢ = - 90° minimumizes these cubic terms, giving
~ I 2256 kTa-Se Ege respectively’. A similar procedure was

*
The result has been simplified for comparison with AUgS-Se by

noting that eTa/ese =4.619 and ¢, /eg, = 1.911
repeated for the Se-Se cubic terms, including both interlayer and
intralayer terms. In this case cos 3¢ phase dependence was obtained
so that this contribution is A~ 0 for both ¢ = I 90° ( numerically
: 34.99 kSe-Se ege for ¢ = : 900). Thus the dominant lattice-lattice
cubic term is the Ta-Se interaction. This is minimumi;ed for
¢ = - 900, corresponding to the arbitrary choice adopted by
Moncton et al but contradicting, we believe, the X-ray analysis
of Jellinek et al.

Finally we note that the Ta-CDW interaction (Eq.(23)) has
phase dependence which is the inverse of that for the Ta-Se lattice
interaction. Thus, not surprisingly, whichever value of ¢

L 2.4
maximumizes the Ta-Se cubic terrs simultaneously minimumizes the

A D e > t B P T A s A A > Dt ot ap o o

-t 2 Dt A A A ik b At A ot A 2 A e o

the CDW-Ta interaction, giving 8y = éo. = 210° and ¢ = + 90°. Thus if we
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accept the conventional viewpoint that it is the CDW-Ta interaction
{
which drives the transition (and hence we require this term to be
|
minimumized) then our analysis favours 2 =+90°.  On the other hand
if lattice-lattice interactions drive the transition we expect ¢ =-90°.
The above calculations alone do not allow this question to be
resolved : they are too simplistic, the effective charges and
hence kTa-Se cannot be accurately determined, covalent bonding
and temperature dependence have not been included. However, our
calculations do givq?reasonably complete physical picture of the
factors determining<%Dw, ¢Se’ ¢z and ra Furthermore the fine
balance which exists between the anharmonic CDW-lattice and Ta-Se
lattic-lattic interactions, depending on &= 1900, leads us

intuitively to a new structural model for the incommensurate super-

lattice structure, described in the next section.

§6 Structure of the incommensurate superlattice at T .

(a) Neutron data and discommensuration models.

Realistic structural models for :he incommensuirate superlattice
structure in 2H-TaSe2 must explain the following observations of
Moncton et al. The wavevector below the onset temperature To

is not exactly commensurate, with 9. = (1/300), but is 36 =

(1= a)gc, with &v 0.025 and temperaturc dependence as shown in

Fig. 5(a). & drops suddenly to 0 at T, = 90K suggesting a first-
order incommensurate/commensurate transition. In the incommensurate

state the primary lattice distortion wave vector is accompanied

95
by a weaker secondary distortion wave 9 = (1+28) 9.- The To

transition appears continuous, i.e. second-order (sece Fig. 5(a)).
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The strength of the second order component increases with

decreasing temperature as shown in Fig. 5(b)

Moncton et al and McMillan (1976) argued that a single
plane wave with 94 3 9 will have regions vAc/2 over which the
lock-in potential is alternatively attractive and repulsive and
thus the existence of higher-order Fourier components in the
distortion wave is expected on theoretical grounds. A theoretical
analysis by Moncton et al constrained the distortion wave to

have equal amplitude and phase components, whereas McMillan

argued that a pure phase distortion would give a lower free energy.
However, neither analysis gave good agreement with the observed
temperature variation (see Fig. 5(a)). Thus Moncton et al '
predicted a sharp drop in § from 0.020 rather than from 0.005
as observed, suggesting the commensurate state is far too strongly
favoured by their model. McMillan's curve shows a continuous
variation of § for chFETo’ with opposite slope to the experimental
curve, and shows no first-order behaviour for the Tc tr;nsition.
Bruce, Cowley and Murray (1978) showed that coupling of a uniform
macroscopic elastic strain to McMillan's pure phase discommensuration
model does introduce a strong first order tramsition, but no calculated
6(T/Te) curve was given. Bak and Timonen (1978) huve further
extended the theory to allow for an inhomogeneous soliton like strain
with the adrupt 2r/3 phase changes of the discommensuraticns. This
restored the second-order nature of the Tc transition but again no
attempt was made to predict the observed é(T/To) variation,

It is not clear from McMillan's analysis why he chose a dis-
commensuration model having 2n/3 phaz shifts, since he did not
explicitly consider other possible values of A¢. Clearly such a

model has a strong analogy to the antiphase domains or stacking
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faults which occur in close-packed structures. For the CDW
electron distribution in Fig. 2 there are three possible choices
for the origin, separated by phase shifts of I2n/3, and this
suggests a possible domain structure. However no exhaustive
search for other plausible structural models was undertaken.
Fig. 6 shows a plot of the variation in electron charge density along
r= Xl(al- ﬂz) , i.e. normal to McMillan's 2%/3 discommensuration.
Such soliton 1like behaviour for ;(r) seems t> us most unlikely.
What conceiveable distortion of the lattice, presumably involving
very strong covalent bonds, could possibly sustain such a
singularity in (conduction) electron density? We therefore searched
for alternative discommensuration models which night minimumize
yp(z) across the domain boundaries. In fact such a model was
immediately suggested by the o ambiguity discussed above and the
well-known "'softening-mode" nature of the phase transitions, Thus
we were lead intuitively to consider discommensuration triplets
which give a smooth varistion in electron charge density across
domain boundaries. Furthermore such a model immediately predicts
a structural interpretation of the temperature variation of §

and to the mechanism of the To and Tc phase transitions.

(b) Systematic derivation of lowest energy discommensuration

structures. The basis for this derivation is given in Figs. 2 and

(o}

3 which show the electron density distribution for ¢ 210

cow -
and the corresponding profiles along r = xlél and T=x) (3, -33)/.8.

We recall that ¢ =210° or 330° simply correspond to origin

cow
shifts from points labelled A to those labelled B and C respectively.
Domain boundaries delineating such phase shifts are simply McMillan's

2w/3 discommensurations. Inclusion of the ''soft-mode" equivalents
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®cow :_n then leads to a total of six possible choices for the

CDW origin in a domain structure, all of which retain I, mode

1
symmetry and lead to centrosymmetric commensurate superlattices

as required by the neutron and Raman scattering analyses.

(i) Domain walls perpendicular tqgéf The domain walls may pass

through A, B or C type sites and we first consider the S distinct
A-type walls having phase shifts and labels as indicated in Table 2.
Two dimensional electron density contours are given in Figs. 7

to 11. For each wall type we considered five important profiles,
labelled 1 and 2 for r = xAg, and a, b, and ¢ for r = xA(g, -g5)/ ¥3,
and these are also shown in Figs. 7 to 11. 1t is immediately
apparent that the domain wall type A3 shows by far the best matching
of Ap across the domain wall. Furthermore profile A3-2 immediately
suggests that contraction of the profiles by 0.0474 Atomm on each
side of the domain boundary would allow continuous matching of all
five profiles with p = 0 at the domain wall. All other four models
(A1, A2, A4, A5} predict cusp-like gradient changes fb¥ one or more
of its profiles and in most cases these would give posifive or
negative peaks in p at the domain walls. None of these other models
lead naturally to contraction or expansion of the CDW and hence do
not lead to an explanation of the incommensurate superlattice
periodicity. Fig. 12a,b shows a plot of profiles A3-1/2 with and

without a Jinear contraction of the CDW according to

Mincom (1 - 0.0474) Aé | (25)
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Note that the electron density smoothly goes to zero in the vicinity
of the wall for A3-1 and gives zero gradient change across the
domain wall for A3-2. Annihilation of p at the domain walls simply
corresponds to insertion of a slab of normal (high-temperature)
structure. This type of discommensuration model immediately
predicts two of the essential features of an incommensurate CDW
structure. [irstly, there is a uniform change in the CDW wave-
length, in this case a contraction, given by

&= 0.0474 x 2/p (26)

where P is the domain wall spacing, measured in units of A.

Secondly, there is a localized distortion of the CDW, in the |
immediate vicinity of the discommensuration, but this amounts

only to retention of elements of the structure which existed above |
To. The CDW profiles possess the black and white symmetry operation

m' (i,e. mirror combined with change in sign of the electron density,

see Megaw (1973) or Bradley and Cracknell, (1972)) . Note that the

models Al and A4, which correspond to McMillan's discommensurations

(AoCDw = 120° respectively) each contain 3 cusp-like functions

in the profiles which would be most unstable w.r.t, A3. It should

be noted that the diffraction evidence for ZH-TaSe2 Tequires

Aincom * Aes i.e. we require expansiou rather than contraction of thg
wavelength. This difficulty is overcome by consideration of B

and C type discommensurations.

A study of profiles for B-type discommensurations did not
yield any new possibilities for low energy boundaries requiring
changes in CDW wavelength. For example Fig. 13 shows profiles

and contour plot for the Bl type discommensuration (McMillan type,
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LU— -120°).  Profiles Bl - a and b both show high energy
cusps, whereas curves Bl-1, 2 and ¢ will be smoothest for CDW

wavelength = Ac and therefore will not lead to incommensurateness.

Finally we consider type C boundaries. These give profiles
closely resembling those for type A, with the exception that CDW
stretching, rather than contraction is required. The lowest
energy bounda;y in this case is C4 (MCDw = +60°, Fig. 14).

Thus profiles C4-2 becomes virtually continuous for a uniform

expansion of the CDW corresponding to
6 =-0.0474 x 2/P 27)

Fig. 14 a, b, shows the result of smoothing profiles C4 - 1

and C 4 - 2 after uniform increase in CDW wavelength.

It is interesting to note that annihilation of the CDW
electron density required for continuity of profiles C4 - 1 and
C4 - 3, 4, 5 may be regarded as the result of attraction between
equal and opposite charge densities at the domain wall or
discommensuration, Thus in this case the incommensurate straching
of the CDW for profile C4 - 2 would seem to positively aid the
annihilation, suggesting the origin of attractivc encrgy terms

which stabilize the incommensurate statc for Tc <T < To'

(iii Domain boundary tripletsAEngaJ_tg_ﬂéﬂ" In both 2H-TaSe7

and 2H-NbTe2 the value of § at the onset temperature To is

8 = -0.025. This immediately suggests by comparison with Eq.s
(26) and (27) that we construct a two-dimensional type C4 domain
boundary structure with domain boundary spacing, along éi' given

by P = 4, yielding a predicted & = -0.024, in excellent agreement

with the experimental value.
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Taking °CDN = 210° at the origin on a type C site we find

that the distance to a domain boundary is given by

R, = pig (28)
where p may take the values

P=n+1/3 T -n (n positive integers) (31)

along the M éi directions respectively. In fact this asymmetric
choice of origin (which in turn was Zictated by the cohesive energy
calculations above) leads to further zuitinlicity of 2 into the
nunber of domain boundary phase relatioaships. Thus if the
domain wall distance from the origin is given by p = n + 1/3

then the phase shift AQCDW = +60° as required by the profile

analysis above (see Fig. 14). On the other hand if p = -n then

we generate identical domain walls but 1$ -60°.  This will

COW -
be made clear by reference to Figs. 16 a, b which show the phase
relationships for the trigonal domain structures obtained for p = -2
and +2 1/3 respectively. Note that the domain wall spacing

(along éi) is given by P = 3p in each case. These two-dimensional
domain structures are described by the black and white point group
3m’'. Thus the observed value of 4 at the onset temperature Ty
for both ZH-TaSe2 and 2H-NbSe2, immediately leads to the CDW model
shown in Fig. 16(a). Note that QCDW is alternately 210° and 150°

in adjacent trigonally arranged domains.

Attempts to draw alternative arrangements of domain walls
and junctions, having the same phase relationship, were unsuccessful,
since 3m' is the only two - dimensional black and white point group

having trigonal symmetry, as required by the neutron amd Raman results.
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It is important to realize that although the CDW is distorted !
(by an overall stretching as well as insertion of some normal
structure near the domain walls) so that the mean wavelength is

incormmensurate, i.e.

A4 ncom = (-8 a (29)

in fact the crystallographic unit cell for the domain structure

is commensurate, with

aj =6 =183, (=61.9 §) (30)

where aN = 3.44 & is the cell parameter for T > To' (We return
to discuss the PSD wave for the ions and the consequences of the

model for the diffraction intensities below.)

It is now necessary to consider the CDW phase relationship
between adjacent trigonal prismatic layers of the structure. There
are two possible positions for the location of the inversion centre
required by the Raman results; i.e. at the centroid of each domain
or at the domain wall junctions. Attempts to place an inversion
centre at the centroid position generates a discontinuous arrangement
of domain walls with thosc at layer ] rotated by 30% with respect
to those on layer II and implies mixing of p= -nand p=n + 1/3
structures on adjacent levels. This possibility is therefore

self-contradictory and may be ruled out.

Location of the inversion operation at the wall junction
leads to continuous domain walls parallel to the c axis, with the
layers of Fig. 16 (a) exactly superimposed. (In fact oCDW

by T oin adjacent layers due to the translation vector of kc).

changes




The black.and white space group would appear to be P3'Im’

(Bradley and Cracknell, (1972)). Ve note that the inversion centre
at the domain centroid must be recovered on lock-in to the
commensurate (xsgu) superlattice. Its absence in the incommensurate

.. . . R
state leads to minimumization of Auge_se (Eq. (22)) allowing perfect

matching of the Se displacements in adjacent layers. Thus one would
expect that the incommensurate state will be stabilized by high
pressure in agreement with the observations of Chu, Testardi, DiSalvo
and Moncton (1975), who found that TO increasas slightly whereas

Tc decreases rapidly with increasing pressure.

The presence of the domain walls and junctions, where Pcow 0
is remarkably consistent with the interpretation of XPS measure..nts
of Hughes and Pollak (1976) and the view of McMillan (1976), based |
on specific heat and energy gap measurements, that the coherence
length in the incommensurate state is very small. The maximum
domain area, at onset, for our model is 10.83 az, which compares
favourably with McMillan's estinate of linear coherence length of

A3a !

§ 7 Temperature Variation of Incommensurate S.perlattice Structurc

(a) Domain structure

We have seen in §6 above that the domain wall separation P
is directly related to § so that § could conceivably decrease to
zero by increasing P from 4 to = in integral steps.  However,
this does not increase the fraction of anharmonically favoured

structure (say ¢ = 2100) at the expense of the alternative

CDW

structure (¢ = 1500) so that the ¢ = In/2 ambiguity would not

CDW




be resolved, even for infimite P, Furtherwore such a sodel

does not lead naturally to the introduction of a second larmonic

C e —— o

into the CDW.

Fig.- 17 (a) to (g) show an altermative approach whereby
areas of the favoured structure (black) increase im area relative
to areas of anharmonically umfavoured structure (wvhite) in stages.

The corresponding values of p , ¢ and relative areas of the

oM
different domains are given in Table 3. Note that in order to

allow p to change in steps of 1/3 we require ’CDI

120° in successive stages, simultaneously in both black and white

domains, so that Ozll;d - O:;te remains constant at 60°.

to advance by

The variation of .Cll with temperature in the two domains is shown
schematically in Fig. 18. Of course there are 2 number of possible
eixcitations of the incommensurate structures which may vary as the
temperature decreases. The structure will not be static.

Fig. 17 represents tic average structure at various stages of

decreasing temperature. We will not pursuc such excitations in
this paper.
(b) Variation of § with domain si:.c. Whereas the valuce of

¢ at the onset temperature T, was predicted preciscly (= 0.0237)
(see §6 (b) ii above) it is not possible to immediately assign
values of § to the intermediate stages shown in Fig. 17 (a) to (g).
We thereforc refer back to the neutron data. The a.rupt decrease
in § at T = T, suggested that we assign § = 0.005 to the structure
shown in Fig. 17 (f), i.e. the penultimate stage. The increase

in amplitude of the second harmonic peak with decrcasing temperature
(Fig. 5 b) must also be explained by our structural modcl. We

therefore introduced the second hrmonic into the COW as follows,
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so as to mke explicit its structural implications in an attempt

to find a relationship between § and p. Thus the electron density

becomes
_ . 1 . 2
o(r) = Py Zi 51"(?1'5 + ¢CDV) + e, Zi s1n(2§i.; + °CUH) (31
and along the directionr = - xléal

o(x) = pl{sir(OéLN - 21 - 8) + 2 sin(al, + w1 -8)))

2 2

+ o {sin(any, - 4nx(1 - §)) + 2 sin(og, + 21x(1 -8))  (32)

1 2 .
where (pl, ¢CDV) and (p2,° an) are the amplitudes and phases of the
first and second harmonics respectively. In order to assign values
of °EDJ we plotted p( x) using Eq.( 32) for various values of 92/91

and 6 taken from Fig.5(a),(b). Thus for T/T° = 0.90 the appropriate

1
cov

discussed in section 6-(b)ii above. Figs. 19a,b,c,d show plots of

values are p2/pl = 0,27 and § = 0.010. We assume 9 = 210° as

po{ X) for ¢én~ = 300, 150°, 210°, 330° respectively. We find that oniy

two values of anw retain the hexagonal symmetry of the A site and

retain equal charge density and trigonal symmetry at the B and C sites,
2

i.e. QCDW = 150%and 3300. ( The general condition for these properties
. . 1 2 = 0 0

of the CDf to be retained is 2(¢CDH - ¢CD¥) = 1207, 2407,...)

Figs 20a,b,c show the nature of the distortions in the CD¥ profile

produced by the addition of a second harmonic. Thus Fig.20a shows the

profile for p, = 0, py = 1.27 and °éﬂﬂ = 210° (i.e. no second harmonic)

. _ | (o 2

whereas Figs 20b,c show plots for pZ/p1 = 0.27, oCDN = 210" and ¢CDV =

150° and 330° respectively. 1In each case the peaks occur at identical
2

values of x but the peak widths are broadened and narrowed for'@CDV
= 150° and 330° respectively. In order to construct discommensurations
having zero Vp change at the domin walls we procced as before by

joining profiles for domains having phase differences of 60°
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(see §6 (b) above). Figs. 21 a to g show profiles corresponding

to directions joining the domain centroids in Fig. 17 a to g. We

. . 2 1 o ..
find that the choice of phase Scow - Pcow = 120" (i.e. peak
narrowing see Fig. 20 c¢) causes § to decrease to zero as
the relative magnitude of the second hlarmonic increases. A geometric

analysis of the profiles yields the result

6 = 0.0231 - 0.0688 (QZAi) - 0.0048 (pZ/pl)2 (33)

Thus § = 0.005 yields a calculated value of 97/91 = 0.20 in good

agreement with the measured value of 0.30*

*3, being a geometrical parameter is known with far greater accuracy
than p2/p1 which depends on the relative magnitudes of the intensities

of the first and second order satellite reflections, see Moncton et al)

The values deduced for § at each stage of the transfermation from
the incommensurate superlattice at T, to the commensurate super-

lattice are indicated in Fig. 21 a to g.

(c) Effect of addition of second harmonic on Ta and Se displacements

A sharpening of the electron density peaks alsc uccurs along the
direction r = xxc (32 - 95) (Fig. 25) The corresponding flattening
of the valleys in between the peaks will tend to increase the
magnitude of the Ta displacements since Yp is decreased. For example

at r = a and for én o
- (o} " - . (o]
Yo(r=a)= 3/20;(1 - 20,/p4) L, cos 210" + (g5 - q {)/ 5 sin 210 ]

which is simply (1 - 2p2/p1) times the value of Vp if there were no
second harmonic. If Ax were directly proportional to Yp then we

might expect t° Ta displacements to be simply decreased by the
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factor (1 - szlpl). However %Ta is also changed by the

addition of the second harmonic (shown schematically in Fig. 23).
Thus elastic energy released due to the decrease in the magnitude
of the displacement will be offset by the increase in elastic
energy required to rotate the direction of displacement {bond-
bending energy). Clearly there will be restoring forces opposing
this rotation due especially to Se-Se interactions and then Ta-Se
interactions. There will also be displacexents of Ta and Se atoms
due to the presence of the incommensurzte superlattice spacing.
Initially at onset there will be inversion centres located at the
domain wall junctions ( centre 6f Fig. 18 a) and we expect larger
atomic displacements for the atoms associated with the domain
walls and junctions., However, since these involve sites where
the electron density in the CDW has virtually anihilated to zero
the Ta-CDW interaction will be small and such displacements will
be relatively small. As the unfavourable domains shrink (Fig. 17
b - g) the inversion centrg¢ is retained in the same site but now
we have black-on-black superpostion from one layer to the next and
the structure now gradually approaches the commensurate structure.
The largest atomic displacements stil] remain at the triangular
domain walls and vertices but these decrezsc as 8§ decreases.

The driving force for the transformation is clearly the increasing
magnitude of the anharmonic Ta-Se energy terms favouring black-on-
black regions. This has to overcome the stability of the domain
walls and the more favourable CDW-CDW interlayer interactions
existing for black-on-white arrangement of alternate layers. Thus
as pz/pl increases, i.e. & decreases, it costs more and more energy

to convert unit area of black-on-white into black-on black. Thus the
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6(T/T°) curve should have concave curvature in agreement with
txperinment. (We note that the analyses of McMillan and Nakanishi

and Shika predictea convex curvature.)

In order to predict G(TVTO)according to our model we first
require to deduce the Ta and Se atomic coordinates for the large
cells shown in Fig. 17. This is a nontrivial problem and in any
case we believe it is first necessary to seek further diffraction
evidence using both X-ray and neutrons, and possibly using high-
resolution electron microscopy, before embarxing on further calculations

of the atomic positions and energetics of this phase transition.

£8. Conclusion

Our attempts to resolve the ambiguity in sign of the atomic
displacements in the commensurate superlattice structure have lead
to a physically reasonable picture for the incommensurate superlattice
structure and a structural explanation for the variation of & with
temperature. In fact introduction of our large superlattice unit
cell, containing domains and domain walls shows that the intermediate
structure for chjfjo is in fact not strictly incommensurate.
The term is a misnomer in fact. However, locally the CDW wavelength
is stretched relative to that existing below Tc so that to a first
approxination the superlattice peaks appearAto be non-integral multiples
of the fundamental TaSe2 structure (2 = 3.44 3). Fig. 24 shows
a schematic representation of the diffraction intensities which we

expect for the larger commensurate superlattices shown in Fig. 17.

Clearly is is now necessary to reexamine these superlattice
structures with diffraction techniques, probably with significantly

better resolution than used so far. Further theoretical treatments
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should be directed towards the remaining polytypic structures

showing similar, apparently incommensurate behaviour.
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Fig. 1

Fig. 2

Fig. 3a, b

Fig. 4a

Fig. 4b
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FIGURE CAPTIONS.

Crystal structure, atom labelling scheme

and axial system for 2H polytype.

Positions of A, B, and C sites relative to Ta net.

Electron density plot for one Ta layer for

(o}

$ = 90°. Note the six-fold symmetry at

CDW
A, which has a maximun in electron density and
the two minima at B and C, which each have
trigonal symmetry. Origin shifts of r' =0,

s A(gl + éQ) correspond to phase shifts of

0 + o . . .
07, - 1200 in CCDw,thus interchanging origin

between A B and C sites.

Electron density profiles along g}_and q; - 43
cf. directions labelled in Fig. 2b. Electron

density unit is I

Unit cell of commensurate superlattice structure
showing relative magnitudes and directions of Ta
.. o

displacements for 3 = +90° and data from

Moncton et al

Se atom displacements projected along [10T0]

showing cooperative movement of Se on adjacent

levels. Atoms labelled as in Fig. 1.




Fig. 4c

Fig. 5a, b,

Fig. 6

Figs.7 to 11

Se atom displacements for two levels
corresponding to top of one sandwitch and

bottom of next. Ideally these would be h.c.p.

In fact there is a very small contraction of
octahedra centred on A' but much larger asymmetric

displacements centred on B' and C'

Temperature dependence of § and ratio of
amplitudes of second / first harmonic
contributions to the slectrcn density (dats

from Moncton et al, Fig. 4). Calculated curves
for Moncton et al's one-dimensional and
McMillan's three-dimension discommensuration

models are indicated.

Electron density profile along r = xi(q;- q5) for
McMillan's 25/3 discommensuration model. Note

singularity at domain wall.

Two-dimensional electron density contours
for discommensuration models having domain walls
passing through A type sites (°CDW = 2100).

Electron density profiles along lines labelled

1, 2 and a, b, ¢ in the directions r = xxil and

xl(al :53) /73 respectively. Note the nature

of the resultant clectron profiles at the domain
walls (dotted). Profile labelled A3-2

immediately suggests the origin of an incommensurate

distortion of the CDW. Profiles A3-1 and A3-a,b,c

all show smooth annihilation (zero) of the CDW




Fig. 12a, b

Fig. 13

Fig. 14.

Fig. 15a, b,

Fig. 16a, b.
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at the domain walls. This should be
compared to cusp-like variation for many of

the other profiles.

Plots of profiles A3-1 and A3-2 with ang
without a linear contraction in the CDW
wavelength (see Eq. (25)), showing annihilation
in A3-1 and joining of ®ow = 210° and 150°

profiles in A3-2 with Vp = 0 at domain wall.

Two dimensional contours and corresponding electron
density profiles for a discommensuration passing
through type B site. These do not lead to
incommensurate distortion of CDW and contain

cusps in electron density at domain walls.

Contour plots and electron density profiles
for C4 type discommensuration (MCDw = +60°).
Profile C4 - 2 indicates origin of extension

of CDW wavelength given by Eq. (27).

Plots of profiles C2-1 and C2-2 with and

without linear expansion of CDW wavelength
corresponding to § = -0.0462 x 2/P, showing
smooth annihilation of C2-1 and joining of

®cow = 210° and 330° at domain wall with Vp = 0.

Domain structure at onset temperature To for

p = -2 and 2 1/3 respectively. Note A°CDW = 60°

in each case and the black and white point group

symmetry 3m'. Notice superlattice cell dimension




Fig. 17a, g.

Fig. 18

Fig. 19a, b, ¢, d.

Fig. 20a,b,c.

Fig. 21a to g
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ap = 6a_ = 18a = 61.9 R
Variation of domain structure for decreasing
temperature. The displacements corresponding to

the black domains are favoured by the anharmonic
(cubic) Ta-Se interaction energy terms. (Corresponding
values of p, oCDW and the relative areas are given

in Table 3.) Note that ¢ DI advances by 120°

C

in each domain at each stage of the transformation.

Variation of oCDW with temperature.

Plots of electron density p(-xxcél) for CDW

containing both first and second harmonics with '

21 0 2 _ .0 (o} o (
°CDW = 210, QCDW = 307, 150, 210 and 330
respectively. Only °éow = 330° gives correct

symnetry for A B and C sites. Note narrowing

of maxima and broadening of smaller peaks for

2

_ 0
oCDW = 330 .

Distortion of CDW due to addition of second

harmonic (a) shows electron density profile

for o, = 0, p, = 1.27 and o' = 210°
(b)'shows cases for p,/p, = 0.27, QéDw = 210°
°éDW = 150° and 330° respectively. Only
oéDW = 330° gives correct sign for §.

Electron density profiles along lines joining

domain centroids of Fig. 17 a to g respectively.

§ decreases to zero according to Eq. (33},

as indicated.
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Fig. 22 Sharpending of maxima and broadening of valleys

for electron density profile along r = xA, (g, - 93)

1 o ,2 _ 0
for QCDW = 2107, °CDW = 330,
Fig, 23 Rotation of $1a and decrease in magnitude of

atomic displacements due to introduction of

second harmonic.

Fig. 24 Schematic representation of diffraction
intensities along reciprocal lattice vector
5_[10T0] corresponding to the stages shown in
Fig. 17a to g. An apparent maxima appears
corresponding to an incommensurate superlattice
whereas in fact the structures is crystallo-

graphically commensurate throughout.

Fig. A.1l Showing that a triplet of CDW having arbitrary
phases °i is equivalent to a triplet having

equal phases ¢1 = 02 =&, after an origin

shift r'.
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TABLE 1

Comparison of Structure Factors for Commensurate

Superlattice Models with Observed Values

¢

12 (x107%)

= +90° ¢ = -90° Moncton et al.
0.170 0.178 0.24

1.243 1.077 1.26

9.193 8.970 9.12

2.699 2.713 6.31

8.946 §.797 8.32

0.008 0.238 0.02

1.028 1.042 1.26 (0.55)
0.654 0.845 0.50

0.110 0.099 0.66

3.197 3,767 3.31

6.190 6.796 5.89
22.326 23,098 23.44
22.392 22.260 23.44
12,716 9.647 8.91

3.706 3.606 3.89
15.968 12,738 13.18
34.633 34.881 36.31 (33.11)
9.616 14,160 14.45

0.345 0.336 0.54

1.603 1.605 1.35

1.053 0.964 0.52

3.049 2.993 4,07

0.222 0.269 0.60

Values in parantheses represent uncertainties in absolute

intensities.
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TABLE 2

Code, Fig. numbers and phase shifts of

various discommensuration models.

Code Fig. A.Clﬂo
Al 7 -180
A2 8 -120
A3 9 ~-60

Ad 10 + 60
AS 11 +120
B1 13 -180
C4 14 +120

Cc2 15 + 60




TABLE 3
Parameters p and .CN and corresponding Fig.
numbers for the mormal / incommensurate /

commensurate state structural transforsatiom.

Fig. Black Domain White Domain
° o
P1 Yoom P2 Yo
17a 2.0 210 2.z 152
b 2.3 330 1.¢ 275
< 2.6 %0 1.3 30
d 3.0 210 1.0 150
e 3.3 330 0.6 270
f 3.6 9% 0.3 30
g 4.0 210 - -

»
1]

Area of (anharmonically) favoured structure

Area of unfavoured structure

.
(8/p3) - 1

1.00
1.88
3.50
7.00
17.00

71.00

|
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APPENDIX I

Phase Relationship for CDW Triplets After Origin Shift

Consider Fig. A 1 where 94 (i =1,2,3) represent three CDW vectors
referred to origin 0. Suppose they have equal amplitudes but

arbitrary phases ¢;- An indistinguishable electron density distribution
may be generated using CDW triplets gi, having identical amplitudes

(or wavelengths 1), but with three identical phases o; = &' referred

)
to an origin 0 displaced by vector r' from 0. We require
= = ' = '
¢ 01 +4q,-r 02 +q,- r'. ¢+ 2mm ¢3 * 95T +2nmw (A.1)
where m, n are integers. To find r' we put
' = x)\g_l + -v}‘.‘_"lz (A.2)

where x and y are to be determined, and gq; are unit vectors

parallel to q;- Then from (A.1) !

o * 2r(x - y/2) = o, + 21( -x/2 + y) + Zum
=0, + 2( -x/2 - y/2)+ nm : (A.3)
yieding i
x = Lo, - o + 2ml/3n f
y =Lo -0, 2(n-m)1/3n : A.4)
and ¢' = (8, + 9, +05)/3 +(27/3) (n+m) (A.5)
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