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Abstract 

Heavy neutrinos have been recognised as providing a possible mechanism 

for muon number violating processes. Rates for these processes depend on 

neutrino mixing angles and masses. If the heavy neutrino mass is less than 

400 MeV I show that the present limit on v - v oscillations provides very 

stringent limits on the contribution of these processes to the rates for 

muon number violating processes. 
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Muon number non-conserving processes have attracted wide experimental 
1 2 and theoretical attention in recent years. * One mechanism which could be 

responsible for such processes is a possible heavy neutrino. In the presence 

of a heavy neutrino, the eigenstates of the neutrino mass matrix v , v , v , 

v .. etc are no longer identical with the states which diagonalise the weak 

currents v ' . v ' . v ' . v ' , .... The weak eigenstates may be obtained from 
3 

the mass eigenstates by a unitary transformation. For n neutrinos 

V " ji, "ij V ( 1 ) 

(n = 1,2,3 will correspond toe, u and T neutrino respectively.) 

For the special case n = 3, and m(v ) = m(\> ) a convenient parameterisation 

of the matrix U in terms of small mixing angles 8 and y has been given by 
A Altarelli et al. I will treat the analogous n neutrino case, with n-1 

neutrinos having equal mass m. which may be zero, and the n th neutrino 

having a mass m > m.. The processes of interest are u -•• ey, u -*• 3e and 

(VJ ,e ) reactions on nuclei. In the presence of the heavy neutrino v and the 
n 

neutrino mixing parameterlsed by the matrix U , these processes can occur 

through the graphs of figure I . The branching r a t i o s and r e l a t i v e r a t e s for 

these processes are 

B(u -> ey) = T(u •*• ey) / r (y -*• ev v ) 
e u 

& l« O 2 ( r 1 ) " (2) 32n yn e n ' m 
w 

B(u -»• 3e) = F(u > 3 e ) / r ( p -+ ev v ) 
e u 

3 a 2 . * . 2 n . i, . »„ 2 

~7 I" " I ( ~ > *> < ~ ) <3) 16TTZ ' yn en m m 
w w 



- 3 -

B(p~Z -»• e Z) = r(y Z •*• e Z)/r(p Z -»• v ; Z-l) 

, 2 T r , « 2 m 2 I 
: Cv(A,Z) |U U e J | ( ^ s i „ 9 w ) l » ^ ( 4 ) L w n J 

Where the function C (A,Z) has been tabulated by Shankar. 

The conventional approach to estimation of these branching rat ios has 

rel ied on the value 

i * i 2 - 3 
U U < 2 x 10 (5) 

' pn en 1 

obtained from the CERN experiments on non-detection of electron neutrinos in 

the muon ..eutrino beam. This limit follows from the data only if it is 

assured that m > 400 MeV. In these circumstances v cannot be produced in m n 
the K and TT decays that generate the v beam. The neutrino state produced in 

K,ir -> uv " is P 

n~ 1 . v "> = I U , v, > 1 V j=i Pj ' J 

and the probability of weak electron production occuring at some later time is 

p 
pe 

n \< v Iv " > | 2 

1 e' p ' 

-
n-1 *,2 

1 Z UPJ U e j ' 
j - 1 ^ J J 

m . * i 2 

U U 1 pn en' (6) 

where the last step uses the unitarity of U... The limit (5) follows from 

ref. 7. 
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If however m < 400 MeV v can be present in the beam. In this case 
n n r 

v - v oscillations occur even if the v and v both have zero mass. The state 
e y e y 
v ' produced in K •+ yv ' is 
U V 

v •> = z U . v > = |v ' ; t = 0 - (7) 
M J = 1 uj ' j ' y 

which evolves in time t to the state 

|v '; t > = " 0 e ^ Y |v > (8) 
j = l 

where E = •'m 2 + P 2 and P is the neutrino momentum, how the E are not all 

identical and |v '; t > is not the same state as Iv ', t = 0 > P is now 
1 y ' y ye 

time dependent, and is given by 

* 2 2 Ai P (t) = 2 U U sin2 — (9) 
ye ' yn en1 2 

m n
2 

where A » E - E ~ _— for P >> m and m, = 0. n e 2P n 1 

The data of reference 7 were analysed for oscillations using the formula 

P (t) = sin2 *~| sin2 2a (10) 
ye 4P 

appropriate to v - v mixing, a it; the mixing angle and M = »m 2 (v ) - m' (v ) 

<< P. Blietschen et al give their results for the limits imposed by the non-

observation of v induced events as allowed regions in the (sin 2a, M) plane. 

It turns out that these limits can be adequately expressed by the approximate 

formula 

sin 2a M ? < leV?. (11) 
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Comparing equations (9) and (10) we see that the result (11) can be directly 

reinterpreted in terms of our model as requiring 

I2 U U *| M 2 < leV2 (12) 
1 un en' n 

as long as P » m . Equation (19) is much more restrictive than equation (5) 

with m - 250 MeV which would give I2U U |m 2 < 500 MeV2. 
n ° ' un en' n 

Equation (12) limits just the combination of parameters required to 

evaluate B(u •+ ey). Thus we see that, if the massive neutrino has a mass less 

than 400 MeV, 

B(u -*• ey) < 6.9 x io 

The logarithmic terms in B(u -*• 3e) and B(p Z •+• e Z) preclude exact limits 

without recourse to additional assumptions, but it is clear that restrictions 

from the neutrino oscillation experiments lead to exceedingly small estimates 

for these quantities also. 

In conclusion I reiterate that, if muon number nonconserving processes 

occur through neutrino mixing because of a neutrino of mass less than 400 MeV 

the present estimates of branching ratios are reduced by a factor of about 

10 2 0 because of experimental limits on neutrino oscillations. The analysis 

used heretofore applies only in the case that the heavy neutrino has a mass 

greater than 400 MeV, which is in any case necessary for muon number nonconser-

vation to be explained by this mechanism if the branching ratios are observed 

near the present experimental limits. 

[ It is a pleasure to thank Dr. P. Herezeg for many helpful discussions, 

and the T and MP divisions at T.os Alamos for their hospitality which made the 

discussions possible.] 
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