3. <u>Harwit M.</u> Spectrometric Imager., Applied Optics, 1971, v. 10, N 6, p. 1415-1421.

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ ОСКОЛОЧНЫХ РАДИОНУКЛИДОВ В ПОЧВАХ ПРИ ИСПОЛЬЗОВАНИИ ГАММА-ДОЗИМЕТРОВ

И. Ф. Моисеев, Г. А. Федоров

Полевая гамма-дозиметрия – простой и доступный способ радиологического контроля почвы и земли, в процессе которого получают первичные данные о радиоактивном загрязнении местности. Измеренное значение мощности дозы есть сумма трех компонент

$$P_{usm} = \sum_{j} f_{1j} G_{j}^{OCK} + \sum_{j} f_{2j} G_{j}^{ecm} + P_{KOCM}, \qquad (1)$$

где первые два компонента обусловлены наличием в почве осколочных и естественных радионуклидов с концентрацией δ^{OCK} и δ^{ecm} соответственно, последний дает вклад в дозу космического излучения. Причем

$$\mathcal{G}_j = \int q_j(z) dz, \qquad (2)$$

где $q_j(Z)$ – профиль концентрации j –го нуклида по глубине (Z) почвы; коэффициент пропорциональности между показателем детектора и концентрацией j –го нуклида в почве. нием детектора и концентрацией j –го нуклида в почве.

Для оценки мощности дозы от естественных радионуклидов (P_{ect}) используется модель равномерного распределения концентрации естественных радионуклидов по глубине почвы $q(Z)=q_0$ [1]. Справедливо следующее соотношение:

$$P_{ecm} = 2\pi \sum_{j=1}^{n} \varphi_{0,n=1} \sum_{j=1}^{n} E_{jn} \delta_{jn} n_{jn} C_{jn}^{ecm}, \qquad (3)$$

где g_{0j} - концентрации калия-40, урана-235 и тория-232; E_{jn}, J_{jn} и n_{jn} - значения энергии, коэффициента истинного поглошения энергии и выхода отдельной гамма-линии: $C_{jn}^{ecm} C_{jn}^{ecm} (E_{jn}, h, l, \psi)$ - функция, выражающая зависимость мощности досы от E_{jn} и геометрических условий измерений

еысоты расположения датчика над поверхностью почвы – h, толшины верхнего слоя почвы, в котором распределены естественные нуклиды – l, угла коллимации датчика, численно равного проекции телесного угла конического коллиматора на плоскость, нормальную к границе раздела почва-воздух – ψ ; $K_{fj} = \sum_{n} E_{jn} T_{jn} n_{jn}$ – ионизационная гамма-постоянная j -го компонента; $C_j^{ecm} = \sum_{n} E_{jn} C_{jn}^{ecm} M_{jn}^{ecm}$

эффективный дозовый спектр ј-го компонента,

При Р_{ест}, мкР/ч и q_{0j} Ки/кг. почвы формула (3) примет вид

$$P_{ecm} = 6,28 \cdot 10^{6} \sum_{j=1}^{3} \kappa_{\gamma} \, \bar{C}_{j}^{ecm} q_{oj} \,. \tag{4}$$

Значения средних концентраций естественных радионуклидов для европейских почв [1], ионизационных гамма-постоянных, дозового спектра и геометрической функции при различных l и ψ приведены в табл. 1. При составлении этой таблицы использовались данные по схеме распада ecrecTвенных радионуклидов [1]. Данные табл. 1 позволяют сделать вывод, что мощность дозы при h = 1 м практически полностью определяется гамма-излучением радионуклидов, распределенных в верхнем слое почвы толщиной 50-60 см. Известно, что при 2 2 60 см распределение калия, а также урана и тория [1] не имеет существенных отклонений OT равномерного. Поэтому при проведении численных оценок Рест можно использовать данные табл. 1, соответствующие полупространству, заполненному активностью ($l = \infty$). Отсюда полученные по формуле (4) средние оценки истинного значения мощности дозы при $\hbar = 1$ и $\psi = 90 \text{ M } 80^{\circ} \text{ cost-}$ ветственно составляют для европейских почв 5.4и 4,5 мкР/ч. Известно [2], что в районах высоких широт (60 - 90°) плотность ионизации, обусловленная космическим излучением, почти постоянна. Научный комитет ООН по действию атомной радиации рекомендует [2] для сценочных расчетов использовать значение средней ионизации на уровне моря, равное 2,14 пар ионов/см³.с при нормальных температуре и давлении, что соответствует мощности экспозиционной зоны - 3,7 мкР/ч.

При оценке мощности дозы от смеси продуктов деления учтено, что вертикальное распределение продуктов деления в почвах с удовлетворительной точностью описывается экспоненциальной формулой [3,4]

Таблица 1

Некоторые сведения о естественных радионуклидах почв, необходимые для оценки значения Р ест

	Материнские	911	К [*] , Ки	<i>К_{гі}, 2</i> р.см	n	E _{jn} , MəB		Cecm*** r/cm2		
;	радионуклиды	Ки					Nin,%	₩=90°		¥ = 80°
J		кг почвы	кг почвы,%	ч • мкКи		квант	-	l,cm	Cjecm	[=∞
1	Калий-40	1,07.10 ⁻⁸	7,64•10 ^{-9**}	80	1	1,46	100	5 10 20 40 80 ∞	17,5 25,6 33,7 38,6 39,8 39,9	33,4
2	Уран-238 (в равновесии с продуктами распада)	5,19•10 ⁻¹⁰	3,24·10 ⁻⁶	9,52	1 2 3 4 5 6	0,28 0,332 0,609 1,12 1,76 2,2	8,71 12,27 26,97 17,94 22,32 11,79	5 10 20 40 80 ∞	18,9 28,0 36,6 41,5 42,4 42,6	36,4

3 Торий-232 (в 6,49•10 ⁻¹ 1,08•10 ⁻⁰ 9,88 1 0,24 8,55 5 19	3
равновесни с продуктами 2 0,58 13,82 10 28	6
распада) 3 0,96 24,40 20 38	6 40,6
4 2,62 53,23 40 46	1
80 48	C
∞ 48	5

Примечания:

137

- х) Пересчетный коэффициент от содержания радиоактивных элементов (%) к концентрации радионуклидов в Ки/кг.
- **хх)** Указанное значение соответствует значению К для перехода от содержания природного калия к концентрации активности калия-40 (Ки/кг).

ххх) Плотность почвы принята равной 1,5 г/см³,

$$q(z) = q(0)e^{-mz} = 6me^{-mz}$$
, (5)

где ла - параметр заглубления нуклидов. Для свежих выпадений // = 15-30 см²/г, для долгоживущего продукта деления цезия-137 в настоящее время $0.5 < m < 3 \ cm^2/r[1.4]$.

Для решения практических задач весь диалазон спектра гамма-излучения продуктов деления принято разделять на несколько энергетических интервалов [5,6]. Спектр разбили на пять интервалов $(1 \le i \le 5)$ (табл. 2), тогда

$$P_{oc\kappa} = 2\pi \sum_{i=1}^{5} \sum_{j} \mathcal{E}_{j} \sum_{n} \mathcal{E}_{ijn} \mathcal{J}_{ijn} \mathcal{R}_{ijn} \mathcal{C}_{ijn}^{oc\kappa}, \qquad (6)$$

где $C_{ijn}^{OCK} \equiv C_{ijn}^{OCK}(E_{ijn}, h, \psi, m)$ – функция, выражающая за-висимость мощности дозы от E_{ijn} , геометрических параметров ћ, ψ и коэффициента П. Формулу (6) можно упростить, если принять во внимание, что функция Соск слабо зависит от Е и в пределах одного знергетического интервала ее можно считать постоянной, тогда

$$P_{ock} = 2\pi \, 6 \, \mathcal{K}_{\gamma}(\varepsilon) \, \overline{\mathcal{C}}^{ock}(\varepsilon, \psi, m), \tag{7}$$

где $\mathcal{K}_{\mathcal{J}}(\mathcal{I}) = \frac{1}{6} \sum_{i} \sum_{j} f_{ij} \sum_{n} f_{ijn} \mathcal{I}_{ijn} -$ полная ионизационная гамма-постоянная смеси продуктов деления данного возрас- $\delta = \zeta \delta_j$ - концентрация полной активности; та;

$$\overline{\mathcal{C}}^{ock}(\tau,\psi,m) = \frac{1}{5\kappa_j(\tau)} \sum_{z} \mathcal{C}_i^{ock}(\sum_{j} \delta_j \sum_{n} E_{ijn} \mathcal{J}_{ijn} n_{ijn}) = \sum_{z} \mathcal{C}_i^{ock}(\tau;\tau)$$

 $\pi'_{i}(\tilde{\iota})$ - эффективный дозовый спектр продуктов деления возраста \tilde{c} [5,6]. Аналитический вид функций $\bar{c}^{OCK}(E,h,y,m)$ приведен в табл. 4. Значение $\mathcal{K}_{\gamma}(t)$ для продуктов деления урана-238 дано в работе [5], а для продуктов деления урана-235 и плутония-239 значения Ку(С) легко получить, используя приведенные в работе [6] значения полных активностей $Q(\mathcal{I})$ и гамма-эквивалентов $M(\mathcal{I})$ [7]. При Р_{оск} [мкР/ч] и б [Ки/м²]формула (7) примет вид

$$P_{oc\kappa} = 0,628 \cdot 10^{6} \kappa_{\gamma}(\tau) \overline{C} (\tau, \psi, m) \delta.$$
(8)

При расчетах $\tilde{\mathcal{C}}(\mathcal{I})$ был использован дозовый спектр продуктов деления урана-238 [5], но, поскольку эффективный дозовый спектр слабо зависит от типа делящегося материа-

		•					· · · · · · · · · · · · · · · · · · ·
ψ	E _i , M3B	0,3	0,5	1,0	2,0	4,0	~
80 ⁰	2,25	1,63	1,71	1,76	1,76	1,77	1,79
	1,56	1,73	1,82	1,87	1,89	1,90	1,91
	0,76	1,54	1,68	1,69	1,71	1,72	1,74
	0,50	1,76	1,79	1,80	1,80	1,80	1,91
	0,17 ^x	5,56	4,92	3,63	2,67	2,14	1,83
90 ⁰	2,25	2,84	3,27	3,83	4,33	4,72	5,61
	1,56	2,84	3,29	3,84	4,31	4,75	5,67
	0,76	2,54	2,98	3,56	4,04	4,43	5,34
	0,50	2,90	3,32	3,87	4,36	4,75	5,63
	0,17 ^x	10,9	11,7	12,6	13,2	13,7	14,6

Значения функции $C^{OCK}(h, t_i, \psi, m)$ для различных $E_i, m, h = 1M, \psi = 80^{\circ} u 90^{\circ}$ $(1 \le i \le s)$

^X Значения $\mathcal{C}^{\partial \mathcal{C} \mathcal{K}}$ при $\mathcal{E}_{S} = 0,17$ МэВ следует рассматривать как ориентировочные, так как представление фактора накопления по дозе в соответствии с формулой (12) в этом диапазоне энергин, строго говоря, не является корректным.

ла [6], приведенные в табл. З значения с погрешностью не хуже нескольких процентов, можно считать характерными для любых продуктов деления, там же приведены усредненные по возрасту значения $\mathcal{C}_{(\Psi, m)}^{ock}$. Поскольку параметр заглубления радионуклидов *m* в определенной мере коррелирует с возрастом продуктов деления \mathcal{T} , в табл. З выделены значения $\overline{\mathcal{L}}_{(\mathcal{T},m)}^{ock}$, соответствующие наиболее вероятным сочетаниям этих параметров. Значения Соск и среднеквадратические отклонения для них получены в рамках наиболее вероятных значений Соск.

Приведенные данные отражают сильную зависимость истинного значения мощности дозы $P_{OCK} (\psi = 90^{\circ})$ от параметра m при постоянном суммарном запасе радионуклидов. Однако применение даже незначительной коллимации датчика дозиметра ($\psi = 80^{\circ}$) позволяет практически исключить зависимость регистрируемого значения P_{OCK} от параметра m. Зависимость регистрируемого значения P_{OCK} от параметра m. Зависимость P_{OCK} от возраста продуктов деления определяется, главным образом, через $\mathcal{K}_{f}(\mathcal{I})$, функция же С^{ОСК} (\mathcal{I}) меняется с возрастом довольно слабо. Поэтому при практических вычислениях можно пользоваться значениями С^{ОСК}, усредненными по m и \mathcal{I} .

Очевидно, что эффективность регистрации тем выше, чем в меньшей степени коллимирован измерительный преобразователь. Поэтому максимальная чувствительность соответствует неколлимированному измерительному преобразователю. Однако погрешность определения запаса продуктов деления, который рассчитывается по формуле

снижается по мере увеличения коллимации.

В качестве критерия оптимума коллимации (по аналогии с работой [8]) следует рассмотреть условия минимума функции $U = \frac{\alpha_1}{C^{OCR}}$, где функция α характеризует погрешность в определении δ (в рамках заданных значений $\chi_{f}(I), P_{eCR}, P_{KOCM}$ при заданной погрешности $\delta_{\beta'}$, с которой известно значение m, т.е. в условиях приближенного знания этого коэффициента). Функция α_1 определена следующим образом:

$$\alpha_{1} = \frac{1}{C^{OCK}(E, \psi, m)} \frac{\mathcal{E}}{\mathcal{E}\beta^{\prime}} \left(C^{OCK}(E, \psi, m) \right) \Delta \beta^{\prime}, \qquad (10)$$

Значения функции $\bar{C}^{ock}(t)$ и C^{ock} для различных $m, \tilde{t}, \psi = 80^\circ, \psi = 90^\circ u$ h = 1M

		The second s						مەربى يەربى باردىن مەربى كەربى كەربى باردىن بىرى بىرى بىرى بىرى بىرى بىرى بىرى بى		
W	I I	Ig	10 <i>g</i>	30g	·70g	180 g	1r	3r	5 <i>1</i>	Среднее по
<i>T</i>	$m, \frac{\sigma_T}{r}$									возрасту Соск
	0,3	2,03	2,02	1,96	2,03	1,81	1,69	1,80	1,74	1,74 <u>+</u> 0,05
	. 0,5	2,06	2,05	2,00	· 2,07	1,89	1,79	·1,87	1,83	1,84 <u>+</u> 0,04
	1,0	1,94	1,95	1,93	1,94	1,82	1,76	1,83	1,79	1,83 <u>+</u> 0,06
0	2,0	1,86	1,87	1,87	1,85	1,78	1,73	1,80	1,77	`1 , 80 <u>+</u> 0,04
800	4,0	1,81	1,83	1,84	1,80	1,76	1,74	1,78	1,76	1,79 <u>+</u> 0,04
	\sim	1,79	1,81	1,83	1,78	1,76	1,71	·1,78	1,76	1,78±0,04
	0,3	3,52	3,49	3,37	3,54	3,08	2,84	3,05	2,93	2,94 <u>+</u> 0,09
	0,5	4,00	3,97	3,84	4,02	3,54	3,29	3,50	3,38	3,43 <u>+</u> 0,10
	1,0	4,60	4,56	4,42	4,63	4,13	3,87	4,08	3,97	4,14 <u>+</u> 0,26
90 ⁰	2,0	5,09	5,05	4,91	5,12	4,62	4,35	4,57	4,45	4,67 <u>+</u> 0,27
	4,0	5,50	5,47	5,33	5,53	5,02	4,74	4,97	4,85	5,13 <u>+</u> 0,29
	~	6,41	6,37	6,23	6,44	5,92	5,64	5,87	5,75	6,17 <u>+</u> 0,29

где $\beta' = \frac{m}{\kappa}$; $\Delta \beta' = \delta \beta' \beta'$; κ - коэффициент ослабления гамма-излучения с энергией E в почве. Аналитический вид функции $\frac{\delta}{\delta \beta}$, $(C^{ock}(E, \psi, m))$ приведен в табл. 4.

Были проведены расчеты функции U/E, w, m) для ряда значений параметров ψ и m в условиях приближенного знания m(m=m±0,5mn) для энергии 0,66 МэВ эначении. близком к средней энергии на гамма-квант для продуктов деления любого возраста старше 1 суток [5,6]. Оказалось, что в области $\Psi = 70-80^{\circ}$ при всех значениях $m(\infty)/m$ 7 0,3 <u>см</u>²) обнаруживается резко выраженный справа минимум функции U/ψ . Можно констатировать, что в условиях постоянного запаса продуктов деления в почве, но при изменяющемся параметре заглубления *m*, регистрируемая часть мощности дозы Роск (ψ =80°) практически будет изменяться лишь в зависимости от возраста продуктов деления, HO HE OT /77.

Корстко рассмотрим влияние погрешности в определении высоты датчика дозиметра над уровнем почвы \hbar на точность определения δ . Эта погрешность связана как с инструментальными погрешностями в определении \hbar , так и с неровностями почвы. Введем функцию $\alpha_2(E, \psi, m, h)$ (по еналогии с приведенной работе [8] для первичного излучения)

$$\alpha_2 = \frac{1}{C^{OCK}(E, \psi, m, h)} \frac{\partial}{\partial \mu h} \left(C^{OCK}(E, \psi, m, h) \right) \delta(\mu h) \mu h. \quad (11)$$

Аналитический вид функции $\frac{\partial \mathcal{L}^{\partial \mathcal{L}h}}{\partial \mu h}$ приведен в табл. 4. Соответствующие расчеты показывают, что погрешность в определении б из-за неточного знания h (значения α_2) при заданных $\mathcal{K}_{\mathcal{J}}(\mathcal{I})$ и радиационном фоне не превышает 2%, если погрешность в определнии h составляет 10%. Указанное значение справедливо при любых m для E = 0.66 Mabи $\Psi = 90^{\circ}$. При использовании коллимированного датчика эта погрешность резко убывает с уменьшением Ψ .

В табл. 4 приведены аналитические выражения для функций С^{оск} и С^{ест}, связывающих запас радионуклидов в почве с их мощностью дозы.Часть приведенных соотношений (П, Ш, 1У и УШ) известна из литературы [9, 11]. При выводе соотношений рассматривали почву и воздух как среды различной плотности, но одинакового химического состава [10]. Многократное рассеяние гамма-квантов учитывали с помощью аналитического представления дозового фактора накопления точечного изотопного источника в виде

$$B_{II}(E,\mu x) = 1 + \mu(x)x + \frac{[\mu(x)x]^2}{7E^{2.4}}, \qquad (12)$$

где \mathcal{X} – расстояние между источником и детектором; $\mathcal{M}(x)$ – коэффициент ослабления гамма-излучения с энергией \mathcal{E} (МэВ) в рассматриваемой среде.

В табл. 4 \mathcal{M} – коэффициент ослабления гамма-излучения в воздухе; \mathcal{K} – в почве; $\beta = \frac{m}{\kappa} + 1$, $\beta_1 = \frac{m}{\kappa} \cos \psi + 1$, $E_1(x)$ и $E_2(x)$ интегрально-показательные функции 1 и П порядка соотственно.

В работе [7] получены оценки погрешности в определении кончентрации продуктов деления при характерном пля настоящего времени уровне $\delta \lesssim 1.10^{-6}$ Ки/м², показано, что эта погрешность при неизвестном значении параметра *т* для "свежих" продуктов деления (*€* < 1 месяца, Kr≈ ≈3p. см²/ч.мКм) составляет 45-55% (меньшее значение COOT ветствует измерениям с неколлимированным датчиком). При таких уровнях загрязнения применение коллимирующих ycтройств не дает какого-либо выигрыша, поскольку компенсация неопределенности в геометрической функции Соск (т) снижает чувствительность измерений. Для продуктов деления большого возраста (Г.> 0,5 года) погрешность в определении б возрастает с применением коллиматоров до П**О**рядка 150% (около 80% без их использования). При уровнях 6 > 10⁻⁵ Ки/м² применение коллимированных датчиков позволяет снизить погрешность с 40-45% приблизительно до 25%. Аналогичные выводы можно сделать, если оценить значения минимальных обнаруживаемых концентраций продуктов деления. Для поискового радиометра СРП-2 ("Кристалл"), наиболее чувствительного серийного прибора пригодного для полевых дозиметрических измерений [7], можно оценить относительную флуктуацию среднего значения тока (I) через микроамперметр: $\delta'(I) = (2\pi T)^{-1/2}$, гле Л скорость счета (ими/с): $T = R\ell$ - постоянная времени интегрирующей цепочки.

Это соотношение справедливо и в том случае, если угол отклонения измерительного прибора пропорционален падению напряжения. При измерениях с коллимированным и неколлимированным датчиком средние значения уровня фона $P_{qp} = = P_{RCM} + P_{RCM}$ соответственно равны 8,2 и 9,1 мкР/ч. Зная эти значения, объем кристалла V = 6,28 см³ и постоянную времени T = 2 с помощью соотношения $\Delta P_{qp} = \delta(I)P_{qp}$ можно получить утроенные среднеквадратические отклонения сред-

Таблица 4

Сводная таблица геометрических функций

			· · · · · · · · · · · · · · · · · · ·
Номер	Распре- деление	Параметры	Аналитический вид функции
I	Экспонен- циональ- ное	ħ, Ē, ψ, m	$\mathcal{L}^{ock} = E_{I}(\mu h) - E_{I}\left(\frac{\mu h}{\cos\psi}\right) - e^{\left(\frac{\beta}{\beta}-1\right)\mu hf}\left[E_{I}(\beta \mu h) - E_{I}\left(\frac{\beta}{\cos\psi}\right)\right] + \frac{e^{-\mu h}(\beta-1)\left[1 + \frac{1}{\beta}\right]}{\beta} + \frac{1 + \mu h + \frac{1}{\beta}}{7E^{2}+1}$
Ē		$\hbar, E, m, \psi = \frac{\pi}{2}$	$\mathcal{L}^{OCK} = E_{f}(\mu h) - e^{(\beta-1)\mu h} E_{f}(\beta \mu h) + \frac{\beta-1}{\beta} e^{-\mu h} \left[1 + \frac{1+\mu h + \frac{1}{\beta}}{7E^{2,4}} \right]$
Ш	Пленочное	h,E,ψ, <i>m</i> =∞	$C_{nn}^{OCK} = E_2(\mu h) - \cos \psi E_2\left(\frac{\mu h}{\cos \psi}\right) + e^{-\mu h}\left[1 + \frac{2 + \mu h}{7E^{2}, 4}\right] + e^{\frac{-\mu h}{\cos \psi}}\left[\cos \psi + \frac{2\cos \psi + \mu h}{7E^{2}, 4}\right]$
<u>1</u> <u>y</u>	•	$h, E, m = \infty,$ $\psi = \frac{\pi}{2}.$	$C_{nn}^{OCK} = E_2(\mu h) + e^{-\mu h} \left[1 + \frac{2 + \mu h}{7E^{2,4}} \right]$
Ŷ	Равномер- ное в ко-	ћ,£, _₩ , l	$C^{ecm} = \frac{1}{\kappa} \left\{ E_2(\mu h) - E_2(\mu h + \kappa l) - \cos \psi \left[E_2(\frac{\mu h}{\cos \psi}) - E_2(\frac{\mu h + \kappa l}{\cos \psi}) \right] + e^{-\mu h} \left[1 + \frac{(2 + \mu h)}{7E^{2,4}} \right] - e^{-\mu h + \kappa l} \left[1 + \frac{2 + \mu h + \kappa l}{7E^{2,4}} \right] - e^{-\frac{\mu h}{\cos \psi}} \left[\cos \psi + \frac{(2\cos \psi + \mu h)}{7E^{2,4}} \right] + e^{-\frac{(\mu h + \kappa l)}{\cos \psi}} \\ \times \left[\cos \psi + \frac{2\cos \psi + \mu h + \kappa l}{7E^{2,4}} \right] \right\}$
<u><u>y</u>1</u>	нечном слое	$h, E, l, \psi = \frac{\pi}{2}$	$C^{ecm} = \frac{1}{\kappa} \left\{ E_2(\mu h) - E_2(\mu h + \kappa l) + e^{-\mu h} \left[1 + \frac{(2 + \mu h)}{7E^{2,4}} \right] + e^{-(\mu h + \kappa l)} \left[1 + \frac{(2 + \mu h + \kappa l)}{7E^{2,4}} \right] \right\}$

ħ,*Ε*,ψ, Равномер- $C^{ecm} = \frac{1}{\kappa} \left\{ E_2(\mu h) - \cos \psi E_2(\frac{\mu h}{\cos \psi}) + e^{-\mu h} \left[1 + \frac{(2 + \mu h)}{7E^{2,4}} \right] + e^{\frac{-\mu h}{\cos \psi}} \left[\cos \psi + \frac{(2 \cos \psi + \mu h)}{7E^{2,4}} \right] \right\}$ УП 1=∞ ное в полупростра $h, E, i = \infty,$ $\Psi = \frac{F}{2}$ $C^{ecm} = \frac{1}{K} \left\{ E_2(\mu h) + e^{-\mu h} \left[1 + \frac{(2 + \mu h)}{7E^{2}, 4} \right] \right\}$ <u>yii</u> нстве $\frac{\partial \mathcal{C}^{out}}{\partial \beta^{r}} = \mu h e^{(\beta-1)\mu h} \left[E_{2}(\beta \mu h) - \frac{E_{2}\left(\frac{\beta,\mu h}{\cos\psi}\right) \cos\psi}{\beta,\mu h} \right] + \frac{e^{-\mu h}}{\beta^{2}_{r}} \left[1 + \frac{(\mu h + \frac{2}{\beta})}{7E^{2,4}} \right]$ acour de h, E, ψ, m <u>1X</u> $-\frac{e^{-\frac{\mu h}{\cos \psi}}}{R^2} \left[1 + \frac{\left(\frac{\mu h}{\cos \psi} + \frac{2}{\beta_1}\right)}{\frac{7F^2}{7F^2}}\right]$ $\frac{\partial \mathcal{L}^{DL}}{\partial (\mu h)} = -(\beta - 1)e^{(\beta - 1)\mu h} \left[\mathcal{E}_1(\beta \mu h) - \mathcal{E}_1\left(\frac{\beta_1 \mu h}{\cos \psi}\right) \right] - e^{-\mu h} \frac{(\beta - 1)}{\beta} \left[1 + \frac{(\mu h + \frac{1}{\beta})}{7E^{2} + 4} \right] +$ ћ,Е**,** , X $+e^{-\frac{\mu h}{\cos \psi} (\beta-1) \left(1 + \frac{(\mu h)}{\cos \psi} + \frac{1}{\beta_1}\right)}$

него фона при измерениях с коллимированным и неколлимированным датчиками (З Д Рф), которые будут соответственно равны 2,24 и 2,38 мкР/ч. Значения чувствительности легко получить с помощью соответствующих формул и данных табл. 3.

В результате получим значения $\delta_{\text{МИН}}$ для "свежих" и "старых" продуктов деления соответственно: а) при измерениях с коллимированным датчиком 6,5·10⁻⁷ и 2·10⁻⁶Ки/м²; б) при измерениях с неколлимированным датчиком – 2·10⁻⁷ и 1·10⁻⁶ Ки/м² (в последнем случае для оценок использовалось значение С^{ОСК} (/л) = 4,14 – см.табл.3).

Из нестандартных дозиметров для полевой ramma-103Hметрии могут быть рекомендованы ионизационные камеры под давлением, ионизационные камеры большого объемат, счетчики Гейгера-Мюллера с фильтром для выравнивания хода с жесткостью. Исследованная ионизационная камера объемом 50 л имела рабочее напряжение 50 В, темновой ток 0,12.10-13 А. ток 4,7.10-15 А при мощности дозы 1 мкР/ч. Высокостабильный счетчик Гейгера типа B12, имеющий рабочую длину 120 мм при диаметре 17 мм, paбочее напряжение 675 В, при испытаниях дал следующие результаты: собственный фон - 184 импульса за 30 мин, чувствительность - 16 импульсов за 30 мин, при мощности дозы 1 мкР/ч изменение хода с жесткостью в пределах 0,084-2 МэВ+(9-5)%. Погрешность, обусловленная статистическими флуктуациями собственного фона, составляет 0,5 мкР/ч при времени измерений 30 мин.

В заключение авторы приносят благодарность заведующему кафедрой Прикладной атомной физики и радиохимии. ТСХА профессору В.В. Рачинскому и доценту той же кафедры А.О. Фурману за предложенную тему исследований.

СПИСОК ЛИТЕРАТУРЫ

<u>1. Коган Р.М., Назаров И.М., Фридман Ш.Д.</u> Основы *у*спектрометрии природных сред. М., Атомиздат, 1969.

2. Иванов В.И., Моисеев А.А. Справочник по дозиметрии и радиационной гигиене. М., Атомиздат, 1974.

Дозиметры с использованием ионизационной камеры и счетчика Гейгера-Мюллера разработаны и исследованы с участием одного из авторов статьи в Атомном институте австрийских высших школ, Вена.

3. <u>Beck H.L.</u> Environmental gamma radiation from deposited fussion products, 1960–1964. – Health Physics, 1966, v. 12, N 3, p. 313–322.

<u>4. Павлов В.В., Константинов И.Е., Федоров Г.А.</u> Экспоненциальный источник как модель радиоактивных загрязнений почвы. М., Атомиздат, 1968.

<u>5. Гусев Н.Г.</u> Защита от гамма-излучения продуктов деления. Справочник. М., Атомиздат, 1968, с. 49-86.

<u>6. Гусев Н.Г., Рубцов М.П., Коваленко В.В.</u> Радиационные характеристики продуктов деления. М., Атомиздат, 1974, с.3-45.

<u>7. Моисеев И.Ф.</u> Определение содержания продуктов деления в почвах методами полевой гамма-дозиметрии. Методические разработки по сельскохозяйственной радиологии. Ч.Х. Изд-во ТСХА, 1975, с. 3-18.

<u>8. Наземная *f* -спектрометрия</u> радиоактивного загрязнения местности. - "Атомная энергия", 1971, т. 31, вып. 1, с. 35-40. Авт.: Е.М. Артемов, Н.Д. Балясный, Р.М. Коган, А.Н. Пегоев, И.Н. Назаров, Ш.Д. Фридман.

9. Израэль Ю.А., Стухин Е.Д. Гамма-излучение радиоактивных выпадений. М. Атомиздат, 1967, с. 76-136.

<u>10. Павлов В.В., Константинов И.Е.</u> К методике расчета мощности дозы при радиоактивных загрязнениях почвы от глобальных выпадений. – В кн.: Вопросы дозиметрии и защиты от излучений. Вып. 8, М., Атомиздат, 1968, с. 93-101.

КОМПЛЕКТ ИОНИЗАЦИОННЫХ КАМЕР ДЛЯ ВНУТРИРЕАКТОРНОЙ ДОЗИМЕТРИИ

Е.Г.Тихонов

При исследованиях радиационной стойкости полупроводников и материалов, проводимых в экспериментальных каналах ядерного реактора, необходимо энать поглощенную дозу и эффективную энергию гамма-излучения как на работающем, так и на остановленном аппарате.

В МИФИ был разработан комплект ионизационных стеночных прецизионных камер, включающий камеры со стенкой из материала с различным атомным номером z (от 6 до 92) Для повышения точности и создания изотропной чувствитель-