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& fundamental problem in quantum many-body theory is formulation of a micro-
scopic theory of collective motion. For self-bound, saturating systems Tike finite
nuclei dascribed in the context of non-relativistic quantum mechanics with static in-
teractions. the essential problem is how to formulate a systematic quantal theory in
which the relevant collective variables and their dynamics arise directly and naturally
from the Hamiltonian and the system under consideration. In collaboration with Shimon
Levit and Zvi Paltiel, significant progress has been made recently in formulating the
guantum many-body problem in terms of an expansion about solutions to time-dependent
mean-field equations. The technical details of this approach are presented in detail
in Refs. 1-3, and only the essential ideas, principal results, and illustrative ex-
amples will be ummarized here.

The meen- “ield is an obvigus candidate to communicate collective information.
Possessir the infinite number of degrees of freedom of the one-body density matrix,
it has a--ess to all the shape and deformation degrees of freedom one intuitively be-
lieves to be relevant to nuclear dynamics. The static mean-field theory with appro-
priate effective interactions, commonly referred to as the Hartree Fock approximation,
quantitatively reproduces the radial distributions and shapes of spherical and deformed
nuclei throughout the periodic table. The time-dependent Hartree Fock (TDHF) approxi-
mation and its RPA limit for infinitesimal fluctuations similarly yields a reasonable
description of transition densities to excited states, fusion cross sections in heavy
ion reactions, and strongly damped collisions.

Whereas the mean field is thus a compelling foundation for a microscopic theory
of collective motion, the TOHF initial value problem is an inappropriate starting
point for a systeratic quantum theory. Stimulated by developments in quantum field
theory in which systematic expansions are developed about the solution to the corres-
ponding classical field equations, we have developed a conceptuatly unambiguous
quantur theory of collective motion., An exact expression for an observable of interest
is written using a functional integral representation for the evolution operatnr,
tractable time-dependent wean field equations are obtained by application of the sta-
tionary-phase approximation {SPA) to the functional integral, and corrections to the
Towest-order theory may be systematically enumerated.



Outline of Approach

The essential steps in the method are as follows. First, one selects a few-body
operator corresponding to a physical observable of interest and then one expresses its
expectation value in terms of the evolution operator. For example, to calculate the
bound state spectrum and the expectation value of any few-body operator & in any bound
state, one may evaluate the poles and residues of the following expression:
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Hext, one utilizes an appropriate functional integral representation for the man:-bo-.y
evolution operator. One particularly simple choice is the Hubbard-Stratonovich® trains-
formaticn used in Ref. 5
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where the brackets denote the following integral
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and T derotes a time ordered product. The evolution operator corresponding to a
Hamiltonian containing two-body interactions is thus replaced by an integral over an
infinite set of evolution operators containing only one-body operators. A second al-
ternative is to break the evolution into very small time steps between each of which
an overcomplete set of Slater determinants is inserted s~
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The theory is rendered manageable by virtue of a simple choice of the measure du(z)
which (fficiently handles the overcompleteness. A third alternative is to use Grassman
variables as in field theory,” so that the trace of the exponential of the action
becomes®
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Finally, for any of these functional integral representations when suitably
generalized to include exchange, application of the SPA yields TDHF equations plus a
systematic hierarchy of corrections.

The essence of the program is exemplified by applying it to the trivial protler
of one-dimensional quantum mechanics in the potential shown in Fig. 1, for which case
we may write
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ta)
te) Fig. 1 Sketch of a double well with two
classically allowed regions separated by
o one classically forbidden region.
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where S[q(t)] in the Feynman path integral denotes the classical action. Appiication
of the SPA to .D[q{t)] requires that q(t) must satisfy the classical equation of
motion

g = - (8)
dt-

and application of the SPA to fdq requires that the momentum at time T equal that at
time 0. Thus, we obtain
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where S{T) is the action for a periodic solution to the classical equation of motion
and the sum ° includes all such periodic classical solutions.
q..
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Finally, the SPA is applied to the time integral in Eq. {9), giving rise to both
reay and complex stationary values of the period. Real periods simply correspond to
multiples of the fundamental periods for classical oscillations around minima {a) and
{c) in Fig. 1 such that the classical energy equals E. The period and contribution
to the reduced action U(T) of Eq. (9) for periodic solutions in region a (and simi-
larly for region ¢) are

- o (10)
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u, oot = 2/ an(E-ila))de (1)
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Combining all integral numbers of periods ir the trree regions thus yielgs an
infinite sequence of stationary points T . Ya¢n7c-infb and the corresponding sur

over classical periodic trajectories in Eg. {18) yields multiple geormetric series
which sum to
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For the case of a single well, in which case reaions {b) and {c) don't exist, this
yields poles at energies En such that
W (En? = [pdq = 2n- . (15

{15) differs from the usual Bohr-Sormerfeld quantization condition (2n+1} only
because we have neglected phase facturs arising from quadratic corrections to the
SPA. In the case of spontaneous decay of a quasi-stationary state, region (c) is
elongated to extend throughout an arbitrarily large normalization box, and one ob-
serves that Nc then yields a vanishing contribution to the smoathed level density
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The level density, Eq. {16}, exhibits guasi-stationary states with energies given by
(15) and widths
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which agree with the familiar WKB result to within a factor 1/2 discussed in Ref. 10,

Application to tlany-Body Problem

Straightforward application of the same progran to the many-hody nrabler resalt.

in application of the SPA to the T and integrals in an espression of the fore
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e Ladvety ooreectiong to SPR produse the REL ground state correlations, and tne
Seatet it evaluaetion of Migher carrectiong generates standard perturbation thesr,.
Aside fran nrgeiding @ terse and eledanrt derivation of perturbation theory, tni-
functionai intezral approach has the additional advantage of dealing efficiently
witr constraints, sucn as those arising in gauge theo-ies.

A second class comprises time-dependent solutiors with real period whi_n carres-
pong to eigenfunctions of large-amplitude collective motion. A set of i single-

particle wave functicns obey the following eigenvalue equation
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subject to the periodic boundary condition
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where the self-consistent mean field satisfies
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f. denotes the kinetic enerqgy operator and the allowed vé.ues of the period are speci-
fied by the guantization condition
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Clearly the non-linear differential Eqs. [19-21) in four space-time dimensinns
have the same general structure as the static Martree equations in three space dimen-
sions, and they may be solved by the usual iterative procedure. Application of this
method to the ground state multiplet of the spectrum of the Lipkin model yields the
results shown in Fiy., Z. further discussion of large amplitude coilective motion
using this general approach may be found in Ref. 1.

The third class of solutions is made up of time-dependent solutions with imagi-
nary period corresponding to tunneling phenomena in classically forbidden dorains
In tri, case, tne single-particie fguations {12} are replaced by

t.;‘»,wzn;rw/':1(x, [T E TR A (23)
with the sare periodic boundary condition {20) and the self-consistent mean field
xax’y )= ':i(x'.-'}:i(xy) . (24)
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Of pavticilar physical interest are sclutions whicn in the Timit as -T/2-+ approch
the HE stationary local minimum for a fissionin: nucleus and evdlve near T O teoward
the entrance to the classically allowed domair near the sgission point for two fissic

fragments. Such solutions will be denoted "bounces™, following Coleran, -  and tear
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great formal similarity to tne “pseudcparticles

and “instantons" -+° investigated exten- T -
sively in field theory. ihereas the “T
Euclidean solutions arising in ield |
theory have trivial spatial dependence, s ) :
being either constant or spherically { E
symnetric in space-time, the non- °
trivial spatial dependence of the : )
oresent "bounce" salutions is crucial “t . .
S e
to the physics and precludes analytic A P
RIS -
solution even for schematic models. E g » .
Furthermore, for a nucleus possessing k s ' />,>’
ap _—
many decay channels such as symmetric L
N
fission, asymmetric fission, alpha, L 7
b o
proton, or neutron decay, there will o e T
exist several distinct well-separated A SRR
: Ga kR L
bounces, and the analog of the width ° e o
in Eq. (17} is the sum of partial X L
. Fig. 2 Exact Lipkin spectruw [crosses)
widths: corpared with the mean-field appro<ima-
S m) tion as a function of ~-=N¥/ . Tne
= . (25) particle number 't in this case ‘s 14,
m v is the strength of the interactint

cuupling pairs of particles in the tuwc
levels, and . is the energy separatian
from the action determined for the bounce of the two levels. The dot-dasr curves

i i denote doubly de;jenerate aporcscrate so-
solution for the appropriate channel lutions and the other curves are non-
degenerate.

where fach partial width is caiculated
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To make these bounce solutions more concrete, it 1s useful to consider a satu-
rating model system of nuclei in one spatial dimension interacting with an ef “ective
interaction of the Skyrme form.. The analog of the Coulomt force 's ic,usted such
that a 16-particle system is unstable with respect to fisiiun 1n*e twc -3
daughters which are 1n turn stable with respect to furtner decav 109 4-uarti le

granddaughters. The constrained HF energy as 2 function ot For the T€-g ey e

system is shown in Fig. 3, and displays tne expected form of a “ission barrre: Tre

self-consistent single-particle solutions to Fqs. (23), aSSUMING THin- 160551y jeqer-

eracy 4, are showr in fig. 4 at the two turnin; points, =-707 ang ¢ 0. AL el ten,
the determinant of these wave functipns correspongs o tre ioparticie -+ rgn oLl
ton at - 7/2 and <losely approsimates he peodul® Lt twy ooy ot Yoo Loy o .

nearly-separated fragments at :.. “ne corre,pond nooqen. Lt )

Fig. 5 for successive times betweer < -7 7 a0 7

Fig. 3 The constrained energy
of a 16-particle model system

as a function of - x -, du-b {0
x x
in}
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Fig. 4 Self consistent single-particle wave
functions as a function of x at times 1=-T/2
and =0 for the bounce solution for spontaneous
5 1% fission of a 16-particie model system.

Sclutror of Egs. (227 in
four srace-time dirension
obvicusly computatieneily more
cumbersome, but has been accor-

plished fcr a range of nucled up

to Az32. Ir tnese calculations,

the proton charge has been in-
creased to obtain appropriate

values of the fissility, and A"’//,_____-____,______\\\\\\_k
creliminary results for the | —

fission of "Be are shown in

T 1

Fig. 6. Although spurious cm
motion problems prevent guanti-

tative comparisen of this parts-
cular calculation with experiment,

this result does demonstrate the

feasit 1ity of obtaining bounce

+

SClatiomg it the aprocriate fig. 5 The density -{(x, )} for the same
system as in Tig. 4 as a function of w

OLOYLios and show ) 3 e ! B =
nronorties and shows trat all the 31 successive timps from -:-1/2 to =0.

retevart onave degrees ot freedor

are incorpurated in ts self-cons.stent theory. .
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Tear b —an, mtres aorttoattone of gquantur meen-field approximations arising

v Vo tiara cte wove Stons are possible.  One should eventually te

G Letal v, Lmserttand tne systen stice of fission Tifetimes in heavy



nuclei, tnctucing shell efea 1 e 0 ma

competitiorn bDetwepr /et ar o4 -

meptric dezay cnanreis Ll

exoatel states of sofc trapsitouny

nuclel invoiving ver, iarge a
collective viorations shouid be we'’
describted by the present the.r,.
Reaction tredry poses t.any 1w <ty *
and challenning protdens,  Altnoucr 1t
is possible to write exact functioma
integral expressions for S-vatvrx
elements, - the tey to a mearinzfyl
reaction theory is finding an
appropriate functional inteqral
expression for relevant expectatior
values of few-body operators, such as
mean fragment charge, mass, or exci-
tation energy, which vi:lds rnumerically
tractable mean-fielu eyiations. In
contrast to the TDHF initial vajue
probiem, which describes the most
probable outcome, suc™ functional
integral expressions for specific
observables can address specific
cnmponents of interest, even those
which are exponentially small relat.ve
to the most probable component. This,
then, is a natural language to address

heavy nucleus formaation in heavy ion collisions, and tunnelina phenomena in 1iait.aoy
collisions associated with quasi-molecular states ind the resonance henavicr v
systems as -“!lg. Generalization to finite ‘empevature is

an ideal framework from which to consider *he edquat-on 37 state 0f hot matter 1t s

Fig. 6 Three dimensional perspe. tive
Tots of surfaces of constant density
or firsion of "Be. The irner and

outer ..-~faces correspond to dens>ties

of 1/3 and 2/3 nuclear matter density

respectively and th seauence of shapes

run from =-T/Z to -=0.

such diverse and important cuestions 1% super-

nuclear density in neutron stars, as weil as a varipty of ctner fonite tes:orat,on

many-body systems.

In summary, the quantur mean-field theory presented here offers provvoe or g

variety of applications in non-relativistic many-tody thesry. The prin. pal unre-
solved challenges at present are understanding the valicity and accuraiy of the *oF

and developing more powerful approximation techrijues to deal with the rog.)e r;

time-dependent me.- field equations
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