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Introduction

Q fundamental oroblem in quantum many-body theory is formulation of a micro-

scopic theory of collective motion. For self-bound, saturating systems l ike f i n i t e

nuclei described in the context of non-relat iv ist ic quantum mechanics with stat ic in-

teractions, the essential problem is how to formulate a systematic quanta! theory in

which the relevant col lective variables and their dynamics arise direct ly and naturally

from the Hamiltonian and the system under consideration. In collaboration with Shimon

Levit and Zvi Pa l t ie l , significant progress has been made recently in formulating the

quantum many-body problem in terms of an expansion about solutions to time-dependent

mean-field equations. The technical details of this approach are presented in detail

in Refs. 1-3, and only the essential ideas, principal results, and i l l us t ra t i ve ex-

amples w i l l be jummarized here.

The mnt" i- r ield is an obvious candidate to communicate collective information.

Possessir> the in f in i te number of degrees of freedom of the one-body density matrix,

i t has a"cess to a l l the shape and deformation degrees of freedom one in tu i t ive ly be-

lieves to be relevant to nuclear dynamics. The stat ic mean-field theory with appro-

priate effective interactions, comnonly referred to as the Hartree Fock approximation,

quantitatively reproduces the radial distr ibutions and shapes of spherical and deformed

nuclei throughout the periodic table. The time-dependent Hartree Fock (TDHF) approxi-

mation and i ts RPA l imi t for infinitesimal fluctuations similarly yields a reasonable

description of transit ion densities to excited states, fusion cross sections in heavy

ion reactions, and strongly damped col l is ions.

Whereas the mean f i e ld is thus a compelling foundation for a microscopic theory

of col lective motion, the TDHF i n i t i a l value problem is an inappropriate starting

point for a systeratic quantum theory. Stimulated by developments in quantum f ie ld

theory in which systematic expansions are developed about the solution to the corres-

ponding classical f ie ld equations, we have developed a conceptually unambiguous

quantun theory of collective notion. An exact expression for an observable of interest

is written using a functional integral representation for the evolution operator,

tractable tino-dependent mean f ie ld equations are obtained by application of the sta-

tionary-phase approximation (SPA) to the functional integral, and corrections to the

lowest-order theory may be systematically enumerated.



Outline of Approach

The essential steps in the method are as follows. First, one selects a few-body

operator corresponding to a physical observable of interest and then one expresses its

expectation value in terns of the evolution operator. Tor example, to calculate the

bound state spectrum and the expectation value of any few-body operator 9" in any bound

state, one may evaluate the poles and residues of the following expression:
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Mext, one utilizes an appropriate functional integral representation for the many-bo'.y

evolution operator. One particularly simple choice is the Hubbard-Stratonovich" trins-

fortnaticn used in Ref. 5
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and T denotes a time ordered product. The evolution operator corresponding to a

Hamiltonian containing two-body interactions is thus replaced by an integral over an

infinite set of evolution operators containing only one-body operators. A second al-

ternative is to break the evolution into very small time steps between each of which

an overcomplete set of Slater determinants is inserted'•
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The theory is rendered manageable by virtue of a simple choice of the measure du{;)

which efficiently handles the overcompleteness. A third alternative is to use Grassman

variables as in field theory,0 so that the trace of the exponential of the action

becomes9

f
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Finally, for any of these functional integral representations when suitably

generalized to include exchange, application of the SPA yields TDHF equations plus a

systematic hierarchy of corrections.

The essence of the program is exemplified by applying it to the trivial pr&Her

of one-dimensional quantum inechanics in the potential sho^jn in F!rj. 1, for ivhv'i c<ise

we may write-

Fig. 1 Sketch of a double well with two
classically allowed regions separated by
one classically forbidden region.
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.. . :q{t)=q(0)=q ' ( 7 )

where S[q(t)] in the Feynman path integral denotes the classical action. Application

of the SPA to ,'D[q(t)] requires that q(t) must satisfy the classical equation of

motion

(8)q = - W
dt"

and application of the SPA to /dq requires that the momentum at time T equal that at

time 0. Thus, we obtain

: j d T iW(T)
(9)

where S(T) is the action for a periodic solution to the classical equation of motion

and the sum includes all such periodic classical solutions.

"c;

Finally, the SPA is applied to the time integral in Eq. (9), giving rise to both

rui and complex stationary values of the period. Real periods simply correspond to

multiples of the fundamental periods for classical oscillations around minima (a) and

(c) in Fig. 1 such that the classical energy equals E. The period and contribution

to the reduced action U(T) of Eq. (9) for periodic solutions in region a (and simi-

larly for region c) are

and

: pqdt = Z./2ni(E-V(q))dq .

(10)
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The meaning o f c l a s s i c a l s o l j f . i ^ ' f o r i - n . 1 ' - / , t "

s i m p l j r e p l a c e s \ i t ; by ir. tne e",uJt : .H of r , . : v o . Tn

i n Eq. (3 ) a r e then e q u i v a l e n t to r e v e r s i n g t»e ••'•' r f

t h i s has t h e e " e c t o f i n t e r c ' . j r ; i r ; c l a . O c a l ' . . I ' luwf-^

one nov. has p e r i o d i c s o l u t i o n ^ in re^ i i o r !: w i t n ;-,a ; ' ' \ v
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Combining al l integral numbers of periods ir. the t^ree reqions thus yields an

infinite sequence of stationary points T = .T +"7 -in?, and the corresponding sur

over classical periodic trajectories in Eq. (18) yields multiple geonwetric series

which sum to
iW -Q. iw

e a
+ e b

+ e c

(11)
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For the case of a single well, in which case reqions (b) and (c) don't exist, this

yields poles at energies L such that

H(En'i = Jpdq = 2n- . (lrj''

Eq. (15) differs from the usual Bohr-Sornerfeld quantization condition (2n+l) only

because we have neglected phase factors arising from quadratic corrections to the

SPA. In the case of spontaneous decay of a quasi-stationary state, region (c) is

elongated to extend throughout an arbitrarily large normalization box, and one ob-

serves that W then yields a vanishing contribution to the smoothed level density

do)

The level density, Eq. ( 1 6 ) , exhibits quasi-stationary states, with energies given by

Eq. (15) and widths

-CUEJ
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which agree with the familiar WKB result to within a factor 1/? discussed in =e f. '0.

Application to Many-Body Problem

Straightforward application of the same progra-. to the many-body proble" result .

in application of the SPA to the T and integrals in an expression of thy for"

_iHT ! iET r T iS[-]
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•,'<' J t ions f j '.••>.• S'".' eqjeMons reproduce f a - I l i a r l : r theo ' ' / .

i . jni to '>'•"• prodj ' .e the V>- ground s ta te c o r r e l a t i o n s , and f .o

of higher- cor i ( j : ' . ions generates standard pe r tu rba t ion t hec r ; .

»\si'j--' *<'O" ; . ro» ' id i i / ; a *ers(j at.r' «W' r ia^t d e r i v a t i o n or pe r tu rba t i on theory , t n i ' .

f unc t iona l i n t e i r a l approac1-. h^-, the add i t i ona l advan'age i f dea l ing e f f i c i e n t l y

^•it r i c o n s t r a i n t s , sucn as t^ose a r i s i n g in gauge t h e o ' i e s .

" second cla:>s co -"prises tin:e-de;iendent s o l u t i o r s w i t i i rea l per iod whi_h cor re c
; -

Dond to e iqenfunct ions of large-ar.pl Hude c o l l e c t i v e n o t i o n . A set of V, s i n g l e -

a a r t i c l e wave f j n c t i c n s obey the fo l l ow ing eigenvalue equation

• - i - ^ C + t r - • : . ( x , t ) = . . - ( x . t )

s u b j e c t t o the p e r i o d i c boundary c o n d i t i o n

where the s e l f - c o n s i s t e n t mean f i e l d s a t i s f i e s

• ( x , ' . ' , t ) - •"{>.' , t ) : f ( x , t ) ,
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K denotes the kinetic energy operator and the allowed ve.ues of the period ^re speci-

fied by the quantization condition

; • T/2
dx dt: (x,t)i-j-:(x,t) = n? . (22)

' -T/2

Cleavly the non-linear differential Eqs. (19-21) in four space-time dimensions

have the sane general structure as t^e static Hartree equations in three space dimen-

sions, and t^ey nay be solved by tne usual iterative procedure- Application of this

method to the ground state multiplet of the spectrum of the lipkin model yields the

results shown in Fig. 2. further discussion of large amplitude collective notion

using this general approach may be found in Ref. 1.

The third class of solutions is made up of time-dependent solutions with imagi-

nary period corresponding to tunneling phenomena in classically forbidden dorains.

in t'"ij case, tne single-particle Equations (19) a>"e replaced by

^ T '* r w_ • i ' x > ' 'i • i

with the sane periodic boundary condition (20) and the self-consistent mean field

Of p a r t i L i l a r p h y s i c a l i n t e r e s t are s o l u t i o n s wh i cn i n t he l i ^ i t as - T / 2 - - ' a p p r o i : h

the Mr s t a t i o n a r y l o c a l n-ini:«um f o r a f i s s i o n - ' n ; n u c l e u s and e v o l v e near T 0 t owa rd

t h e e n t r a n c e t o t he c l a s s i c a l l y a l l o w e d dona in nea r t h e s c i s s i o n p o i n t f o r two f i s s i

f r a g m e n t s . Such s o l u t i o n s w i l l bp denoted " b o u n c e s " , f o l l o w i n g C o l e r . j n , - and t e a r



9reat forna! sifflilanty to tne "psejdcparttc

and "instantons" -»• investigated exten-

sively in field theory. Whereas the

Euclidean solutions arising in 'ield

theory have trivial spatial dependence,

being either constant or spherically

symmetric in space-time, the non-

trivial spatial dependence of the

present "bounce" solutions is crucial

to the physics and precludes analytic

solution even for schematic models.

Furthermore, for a nucleus possessing

many decay channels ^uch as symmetric

fission, asymmetric fission, alpha,

proton, or neutron decay, there will

exist several distinct well-separated

bounces, and the analog of the width

in Eq. (17) is the sun of partial

widths:

: - •. : ( m ) , (ZS1

m

where n c h partial width is calculated

from the action determined for the bounce

solution for the appropriate channel
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Fig. 2 Exact L ' p H n spectr

compared with the mean-field

tion as a function of " •-NV/

particle number fJ in this cas

v is the strength of the inte
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lutions and the other curves

degenerate.
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To make these bounce solutions more concrete, it is useful to consider

rating model system of nuclei in one spatial dimension interacting wit'i -in

interaction of the Skyrme form. The analog of the Coulonb force is iCjjst

that a 16-particle system is unstable with respect to f i &:. I or m fi- two w-;.i

daughters which are m turn stable with respect to fur trier cle«.a/ into '.-:,d'-

granddaughters. The constrained HF energy as a fJnet.io»i o* • for r.ht- lf

system is shown in Pig. 3, and displays tne expected fom; of a M s s i o n t'di

self-consistent single-particle solutions to E(js. (23), assunin;j - pin-1 ',o'r.-

eracy 4, are shown in Fig. 4 at the two turning p'jinto, "•'.'; jnc •' ', '"'•

the determinant of these wave functions corresponds ro i'.c >.-^r" re io • •

tion at " T/2 and closely appro* :-:u?os the '^'oJoi* J* v.n •; -.•*' >• o* '-• •

nearly-separated fragments at =.. *m? '.orrp Jti-ir:.j v; .leu/'.,. •.' ; •, -

Fig. 5 for successive times betweer : -T ? •)• •:

a satu-

1 f f <? i' *' v e

Fig. 3 The constrained energy

of a 16-particle model systen

as a function of •x •. J.U.-1.

Solution of Eqs. (22) in

four space-1i'r.e di;"ensions is

obv ion si v cor.putat 'C.til ) y more

cu^bersone, but has been accor-

plished fcr a range of nuclei up

to A=3i. in tnese calculations,

the proton charge has been in-

creased to obtain appropriate

values of the fissility, and

preliminary results for the

fission of "Be are shown in

Fig. 6. Although spurious cr1

motion problems prevent quanti-

tative comparison of this parti-

cular calculation with experiment,

this result does demonstrate the

tea si Ii1it / of obtaining bounce

Fig. J Self consistent single-particle wave
funct'ons as a function of x at times T=-T/2
and ^0 for the bounce solution for spontaneous
fission of a 16-particle model system.

ort w*-j LV-0 shows trat M l ihe

•,Mrt of.J;• c degrees of freedor

i ncor;u'"i)ted in t M s ie 1 *- con s , jtent theory. _ae..

r i q . 5 The densi ty - ( x , ) ?or the some
system as in F iq . 4 as a func t ion of \
at successive t in i fs from •-'!/? to " 0 .

a n , ' • t i l - ; - . I L , ; ' ' ! . , ! * 1 ^ r . <j* ' j u a n t ^ i " n i P d n - f i e l d a p p r o x i m a t i o n s a r i s i n g

*' ! i o r \ ' ! • • t f \ ; ^ i ' • • ; • ; • • " ( • • M o r 1 , a r e p o s s i b l e . O n e s h o u l d e v e n t u a l l y t - p

1 • ' t a t v * ' 1 . , - : : - T r • : n i t '-,o s v -.tc1 '1 j t i r *• o f f i s s i o n l i f e t i i ' i e 1 ^ i n h e a v y



n u d e '. i nc 1 u( in ; :.he • ' ef '•:• ' -v ' " '••

com net "• t m r . p f t w r r " s /--vet••*' ir ' i ." •

fetri c d e : d j c n a n r G i s ', \- • 1 •-•',,

G\; i \.<iZ s t a t e s fit SO*'' ! •"•ir;:,; * • v n

nuclei T W O " ! virvj v e r , i <irg<j ar~:.) ",.,'>•

d e s c r i b e d try the p r e s e n t f n - . ' ,•.

Reaction t'.'-ory poses ',dn> i -• >• •

and challenging proMe'ts. /"-ithOjT 1-

is possible to write e*.act functu^.i'

integra 1 expressions for S-p"a'' '"

elements,' the key to a nes-in:/ jl

reaction theory is findinq an

appropriate functional inte^ra1

expression for relevant expec*atior

values of few-body operators, such as

mean fragment charge, mass, or exci-

tation energy, which vv-l-js r.jmericall>

tractable mean-fiela e^jations. In

contrast to the FDHF initio'. "*lue

problem, which describes the most

probable outcome, suts functional

integral expressions for specific

observables can address specific

components of interest, even those

which are exponentially small relat.ve

to the most probable component. This,

then, is a natural language to address such divers? and inportant Questions \', S.JDF

heavy nucleus formation in heavy ion collisions, and tunnel m a phenonena 'ri lif:M-i

collisions associated with quasi-molecular states ind the resonance henavmr T- s.j.

systems as -"'Iq-. Generalization to finite temiierature is •straiQhtforwart' arid o'^er

an ideal framework from which to con^der *he enu.K'on jf state o* hot 'idt'or -it s,

nuclear density in neutron stars, as well as A vafif t.? o' ot^er finite ttv- •.••'••!•. '̂-t-

many-body systems.

In summary, the quantum mean-field theory presented here offers p r c •• sc 1- .t

variety of applications in non-relativisMc many-bo.1y theory. The pt-in-.'^a1 .tr,re-

solved challenges at present are understanding the val ici tv and accura: v of the ' ;v

and developing more powerful approximation techn:|ues to deal i-.ith the r^s..1' r ;

time-dependent me^' field equations.

f"iq. 6 Three dimensional per^pe. 11 •:•'
lots of surfaces of constant density
or frs;on of "Be. The inner and

outer ..'•faces correspond to dcrs^ies
of 1/3 and 2/3 nuclear natter dcsit,
respective1]/ and th- sequence of shapes
run frot" = -TV? to =0.


