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Classical, time-independent solutions of the Yang-Mills 
equations are studied for spherically symmetric situations, 
in presence of charge- and current distributions the same 
tyiM of solutions are found as for purely electric sources: 
besides the abelian (Coulomb-Biot-Savart) solution there are 
two nonabelian types, one of which requires minimal »ource 
strengths and comes in two branches. The solution pattern i» 
investigated by rough numerical calculations for a simple 
source model corresponding to spherical shell distributions. 
In absence of charge distributions an additional type is 
found, which has zero electric field and a magnetic field 
corresponding to a monopole of fixed strength. This type 
of solution Lists for a large class of reasonable source 
currents. Some analytical examples are given in addition to 
numerical results for the shell model. Stability problems 
are not touched. 



1. Introduction 

Because of the steadily growing interest in nonabelian gauge 
theories on the level of quantum field theory it seems 
desirable to know as much as possible about classical solutions 
of these theories. In abellan electrodynamics one of the 
oldest problems Is the determination of the field of a given, 
static charge distribution and its magnetic counterpart, a 
stationary current. The corresponding problem in Yang-Mills 
theory has been investigated for spherical charge distributions 
as sources [1] and revealed a host of unexpected solutions 
with interesting stability properties [2]. We shall follow 
here the program of (1] including stationary current 
distributions without touching the stability problem. Reasons 
for the study of magnetic situations are both the possibility 
of magnetic monopoles in nonabelian theory and the question, 
whether some of the multiplicity of solutions found in the 
electric case is reduced by the presence of magnetism. 
We shall follow the notation of ref.lll as close as possible 
and refer the reader to this paper for any details omitted 
here. In particular the basic field equations for static 
situation» can be taken from ref.fi] equ. (2.2)-(2.5) with 
the only change, that we add a source current j on the 
r.h.s. of equ. (2.4). 

2. Abellan solution 

It is known since a long time, that the Coulomb solution of 
elctrodynamics is also a solution of the nonabelian field 
equations, if the fields and sources In the latter case point 
into a fixed direction in SU(2) space. If we take 

... i i r. = £« f(?) 
then the potential 

,, , 4> *-£ lift ** 
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Is a solution of the field equations. We shall consider 
this solution for reference purposes in spherically 
symmetric situations. For convenience we shall take an arbitrary 
length scale r out of the source functions and use the 
dimensionless variable x«r/r instead of r. A spherically 
symmetric situation is then described by 

O) 3r.V*.,q(x) , 3r'i> = - £ > " e « w ( x ) 

where e. is the radial unit vector. The solution (2) has the 
energy 

r 

3. Nonabelian solutions; general pattern 

Now ye shall consider situations, in which spherical symmetry 
is not manifest, but can be restored by gauge transformations 
A Lorentz vector v£ carrying an SU(2) Index a will describe 
such a situation, If it has the form 

(Sa) 

(5b) Vi = eaehVB(r).(eft6k-UV>) - iaktet V x % 

The suffices 11 resp J_ 
refer to radial resp. angular components. The form (5) 
refers to a class of gauges, which we shall call the 
radial gauge. Within this class we may still perform gauge 
transformations, which change only the coefficients V , 
V„ etc. by radial functions. We shall start with an 
ansatz (5) for the current vector V* describing the 

a 

(stationary) sources. For the coef f ic ients of Ja we write 
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(6) r o M r = ^ * *.* .?=?<«> 

Note that v corresponds to a radial flow and cannot be 
removed by gauge transformations within the radial gauge. 
Because of the continuity equation such a flow is not 
possible in an abelian theory, unless the source is singular 
at x=0. In a nonabellan theory the situation may be different, 
since source and field contributions can compensate 
each other. For the Yang-Mills potentials AJj we shall use 
again an ansatz of type (5). Here we may start with A,, >K), 
since this can be achieved by a gauge transformations within 
the radial gauge. Thus we write 

(7, ^r K = {GO , V A f = p(*) , 9«-Af = 4̂ oc6c) 

For the e l e c t r i c resp. magnetic f i e lds we obtain again 
form (5b) with 

(8., 3r' E B = -(-**' , y* Ef- <*{ , ̂ E f c M 

(8b) ^B„ = W-f\ y'Bf = x< yB^xp' 
Here the prime denotes the derivative with respect to x. 
The field equations amount to a coupled system of ordinary 
differential equations, which reads 

a(«p'-(w) = xV 
The covarlant divergence relation 
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for the source current amounts to 

(10) XV' 4-217 + 2((*P -»- V«) =0 

It is observed, that one may determine f,a,P from the 
first three equations (9) for given q,M»v and then compute 
v from the last equation. Equ. (10) is fulfilled, since it 
is a consequence of (9). The obvious symmetries of eqa. 
(9) allow for another choice, which is simpler. If we 
introduce 

(11) m(x) - pony -v**»i<p , ^ 6 0 = £-***»¥ * vcocp 
we obtain the systems 

2 

( 1 2 ) ft' + ^ M 5 x > r i 4 - M d 

xV 

and 

(13) 
2 a V = xTV 
xy/i-lv = -2.<m 

Thus we may start with sources q,m,v to solve the system 
(12)'and determine the remaining pieces from system (13). 
For vanishing sources m and v we recover the equations 
(4.4ab) of ref. M l . 
The field energy can be written as 

3 
0 
{ix^f.^-W*^] 
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The last form is obtained using the continuity equation 
for the energy-momentum tensor and requires partial 
integrations, if. (1). 
Next we shall consider the behavior of the solutions at small 
resp. large values of x. We shall start with 

<'5> { M - 0 , a(0)=1 

These conditions are necessary, if the energy is required 
to be finite; in fixing the sign of a(o) we have used 
a residual gauge freedom, cf.HJ. For the source functions 
we shall require, that q,p,v vanish at the origin and 
decrease faster than x" 4 at infinity. If f is regular 
at zero and infinity and a does not Increase for large x, 
we find from equs. (11) and (13), that v and n behave as 
M. and v at the origin and infinity, whereas «f vanishes 
stronger than x at the origin and falls off faster than 
* for large x. From the differential equations (12) 
we obtain for small x 

(16) {= | lx 1+f,x* + ... , a = 4-*-alxt + a,,xV.. 

For the f ie ld strengths (8) we obtain 

(17) v i B H M = -Zo2 , of, &* Ä Ut, If to) a 0 

For the behaviour at large x it is crucial, whether the 
electric source term is present or not. We shall first consider 
the case q>*0, fjft). Then we find from the differential 
equations, that we may have two types (1,11) of solutions 
(as for vanishing magnetic sources), which differ in their 
asymptotic behavior 

del) {= &*'**- / <*» * + <*ix-'*---
d e n ) -(= f.*x" 14--/ a = - 1 •«• a* x"1*--• 



- 6 -
• t-

The vector potential tends asymptotically towards a pure 
gauge potential in the second case, as discussed in H I . 
The leading condonents of the field strengths at large x are 

(i9i) <jr; ^ = -la* x-V- / fltfBf r -a 1 , x"V-

(1911) 

The components E \ , B j. decrease faster than x in 
both cases. It is not easily possible to distinguish the 
types of solutions by considering local characteristics 
at zero reap, large x. If we take, for instance, Roskie's 
classification (3) based upon invariants, we find both 
types of solutions in the most general class (III) on both ends, 
The same fact happens, if we use a recent group-theoretical 
classification scheme (4 Is here both types are in class G 
for small and large x. One difference can at least be 
recognized: it is observed, that the sign of the products 
BE',' and BJBj^' has opposite values at the origin and infinity for 
type I, whereas it has the same value for type II. This 
sign corresponds to the helicity (or handedness) defined by 
the two (orthogonal) directions, in which E M reap. E \ 
have the same sign. 

Now we shall consider the case of vanishing electric 
source q=0. From the first equation (12) it can be read 
off,.that f must vanishi the second derivative of f has 
the same sign as f in this case; if we start at the origin 
with growing (reap, falling) f, this behavior will continue 
for all values of x; the energy can therefore be finite only 
for vanishing f. Thus we have only a magnetic field in this 
case. The behavior of a for small x is still given by equ. 

W^W*W"^'iii.,lMiWKIUHW •.i„IW RMSff«*»*"' 



(16) . At large x we can s t i l l have solut ions of type I 
resp. II behaving according to equ. (191,11). If, however, 
f=v=n»0, ii*m, we encounter a third type, for which a 
decreases as x or faster at large dis tances . As a consequence, 
we have a long range radial f i e ld with fixed strength 

- 1 . 
(19III) 3 r / ^ l | = X 

whereas the (only)angular component B^ decreases as x 
or faster. For appropriate source this configuration can even 
be realized with an exponential fall-off of a and B\ 
(we shall give some examples below). It has to be noted, 
that this monopole type field (191II) is not a gauge 
artefact. This can be seen either directly by considering 
the action of a gauge transformation or with the aid of 
the classification scheme of ref.pjt solutions of type (1,11) 
belong still to class (.'II), whereas the monopole asymptotic 
field is In class (II). 

4. Special solutions with electric and magnetic sources 

It is, of course, always possible to start from an ansatz 
for f, a,f> (with the right behaviour at small and large x) 
and to calculate the corresponding source functions, which 
turn out "reasonable". It is very hard, however, to see in 
this way, whether there are several solutions for the same 
sources, which is an Important result for purely electric 
situations (1). We have therefore performed numerical 
calculations with a special model, which is the simplest 
extension of the one (1] studied for the electrical case. 
We assume, that ther« is no "radial" current 

(2i) i > « n = 0 
and that the remaining sources are concentrated at x«1 

p 
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(22) <\ - Q S M , W - M S(x-1) 

where 0>O and M are parameters. The numerical Integration 

of equs. (12) can be done as In MI » with the only difference 

that now also a' has a discontinuity (which is M) at x=1. 

The energy (14) becomes 

(23) = Q (*(«> - i f'«*>" i ('«'>) ~ M ( a ' « + ) x *'«*>) 

and is to be compared with the energy (4) of the abelian 

solution with the same distributions (22) 

(24) £ t = -J •»• y 

We have considered only a limited number of values for 

(Q,M), since it was only our Intention to obtain a rough 

feeling of how the presence of magnetism may influence 

the situation. The calculation was performed as follows. 

The source-free equations (12) were integrated numerically 

from x»0 to x«1, starting from the behavior (16) with a given 

set (f-, «2^* Ä t x = * t n e discontinuities (-Q,M) were added 

to the computed values of (f',a'). The results (together with 

f(1)f a(D) were used for further numerical integration for 

x>1. The initial set (f2,«2*
 w a B discarded, whenever the 

computed functions (f,a) did not show the corresponding 

asymptotic behavior (18) for sufficiently large x. The procedure 

has turned out inaccurate for larger values of 0 and/or |M|. 

As far as type I Is concerned, we have observed no drastic 

change in comparison with M«0. In general f becomes larger 

a smaller with increasing M. Typical curves are shown in figs. 

1 and 2 for 0*10» 

The type II solution was known to exist only for 

Q*Q0*5*8 'or M*Or whereby Q was a bifurcation point. We have 

controlled the M-dependence of this pattern for 0=10. Jn this 

case increasing M tends to Increase the spacing between the 



two branches (i.e. the distance between the corresponding 
curves for f resp. a). Some curves are shown in figs. 3 
and 4. Therefore one expects, that the two branches will 
meet for sufficiently small M. For Q«=10 this happens indeed 
at M-H^-2-65. Below this value we have not found solutions 
of type II. The point HQ IS therefore a bifurcation point. 
The same pattern occurs for 0=5: for M=0 no type II solution 
has been found, but there are two branches for positive values 
pf H, which start at M-t^'O'SS. Thus we have found three 
points on a "phase diagram", i.e. a curve in the (Q,M) plane 
marking the onset of bifurcation. A smooth curve through 
these points (including results at 0=0 to be discussed below) 
is displayed in fig.5. 

Finally we shall discuss briefly the spacing of the solutions 
with respect to the field energy. At 0*10 type I (which has 
the lowest energy) is well separated in energy from both 
type Il-branches, which are in train well separated from the 
abelian solution (which has the highest energy). Starting, 
from My^-2'65 the separation of the two branches of type II 
In energy increases up to M=0, but decreases again for growing 
positive values of H (whereas the spacing between the f's 
and a's increasesl). Due to the limited precision of our 
numerical program we are, however, not able to make any precise 
statement about what happens in this respect above M*3. 

For smaller values of Q the sequence (I,II, abelian solution) 
persists for M«0, cf. [1]. For increasing |M| the energetic 
separation between nonabelian and abelian solutions decreasesi 
e.g. for Q=5 the value of e c is about 25 t larger than e for 
the upper branch of type II for M-O'5, whereas this difference 
amounts only 2 t for MM. For 0*1 the abelian solution may 
even compete in energy with type It for M«0 we have cc«0°5, 
Cj-0'16, for M—1 we have cc-0*6, Cj«0'44. 
It can therefore be expected, that the abelian solution has the 
lowest energy for sufficiently small 0, if|M|ls large enough 
(this is corroborated by the results for 0-0 to be discussed below). 
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S. Special solution» without electric source; 

Next we consider a situation (21) without radial current 
and without electric source and field q»f=0. Then we have 
to solve 

(25) <*' + ^ (<-**) = X * * 

It Is easy to find analytical solutions for type III. A 
notorious example of such a Monopole solution is 151 

(26a) O- sr X/ahiKx 

which corresponds to 

(26b) m r (l-xaMx^/x^sinhx 

The field energy of this solution resp. Its abelian counterpart 
i 8 i = Vi *c » ° ^ 5 

Another simple example i s 

< 2 7 a ) o = ?M e*p(-x) T(x) = 1 * x + % 
which corresponds to 

( 2 7 b, w=[RW-?W(-^]x"W-"), R--l«-5^ 
Here we have 

Further examples with exponential decrease can be found 
adding higher powers to P and corresponding terms to R. 
There are of course many more possibilities as e.g. gausslan 
or rational form« for a. Monopole fields are apparently 
quite natural phenomena In this context. One should not 
forget, however, that they get "killed" by electric sources 
and fields. 
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Usually monopoles are found in node la with scalar-
isovector Hlggs fields #) coupled to the Tang-Hills fields 
(6). This implies, however, a rather detailed dynamic« 
for the sources, which we have instead considered as an Inpc*. 
Even within our sore general framework one say ask, however, 
whether the saunetlc field can be written as the gradient 
of a scalar-Isovector potential 

In a Higgs model this la Bogosolny'e condition |7}. With 

y.\* *•*<*) 
ws obtain for such a field ( A 

whereas our ansatz (0b) reduces tor vanishing electric 
field to , «*ttl i -»CO ^ 

8r^, = 1-** , r Bf= **, ̂  = 0 
Thus the representation by Magnetic scalar potential is 
only possible, if 

which can be valid only in special situations: in fact 
these relations hold for solution (2(a), but not for (27a). 
Therefore Otis representation is not possible in general. 

Finally we discuss the shell source Model (22) with 0=O. 
In this model we samt have , . , 

so,* a'(v) * - sy» M , *- Wm) * lM» 
since the field energy (23) is positive. Furthermore the 
differential equation (25) implies, that any type I 
solution nost tend to Its asymptotic lisit «1 fron above 
(a*I ), whereas any type II solution must tend to -1 fron 
be lowt this Is easily recognized by expansion of a in power«» 
of y*l/K, use of the dlfferentisl equation (25) and deter-
nlnation of the second derivative of a with respect to y. 
Taking Into account the curvature of the solution (which 
changes s'.gn, whenever a reaches the values 0,f 1) one may 
discuss all possibilities (for Instance graphically). The 
result« can he described as follows. First of all, there 
In no possibility for bifurcation or "coexistence" of 
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types I, II, III: for any value of K we may have at most 
one solution belonging to one of these types (and of course 
the abellan solution). Type I can be found for M<0 whereby 
82>0 must be such that 
-2a,(l")<M<-a'(1-) 
Two numerical examples are 
M^-2 c »= 0*961 E ' 0*444 

c 
M=-4 t » 3*16 c c = 1*77 
There is only one monopole solution for a fixed value 
M=Mo>0. The numerical result is 
M 0» 1*438 e = M* = 2*126 e c = 0'236 
For this solution a vanishes for x>1. Type II solutions can be 
found only for 
The numerical value M. Is characterized by the fact, that for 
the corresponding solution a=-1 for all xjl. By numerical 
analysis we have found for this solution 
Mt - 2-33 e « M*5 - 5*43 e c - 0'603 
A further numerical example for type II is 
M » 4*5 c*10 c c «2 
There can be no (nonsingular, nonabellan) solutions for 0<M<M0 

and « Q<M<M r 

It is observed, that for all of our examples the field energy 
Is larger than the one of the corresponding abelian solution. 
This Is In accordance with the trends found for Q/O in the 
preceding section, but we have not found a general proof. Another 
observation concerns the value M«M.. If the solutions are 
smooth in Q and M, this point should lie on the bifurcation 
line as drawn in fig.5. Since there is no bifurcation at Q~0, 
thi» point is an end point. Thus one should expect, that there 
exists another line marking the onset of bifurcation, which starts 
at M 1 and lies above the curve drawn in fig.5. We were not 
able to determine points on this curve (which could also coincide 
with the M axis above M^fO with our procedure. It is also 
not clear at present, how the region without nonabellan solutions 
continues for QYO. There might be a curve in fig. 5 above the 
Q-axls, above which no type I solution exists. 
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6. Conclusion 

It has been demonstrated, that the multiplicity of static, 
spherically symmetric solutions of the Yang-Mills equations 
for given charge distributions is not Increased by additional 
stationary source currents, If the charge density is different 
from zero. The source currents may, however. Influence the 
bifurcation pattern of those nonabelian solutions, which 
require a minimal source strength for their existence. This 
is demonstrated by numerical calculations with a special 
model describing spherical shell distributions. For vanishing 
electric source we encounter an additional type of solution, 
if the current does not contain a radial flow. This type 
corresponds to a magnetic monopole field with fixed strength 
and can be realized with a large class of reasonable source 
currents. Also the shell model allows for such a solution, 
as well as for the other types. In this case we have, however, 
neither coexistence of different types of nonabelian solutions 
nor any bifurcation (in contrast to the situation, in which 
electric sources are present).Instead there are no nonabelian 
solutions for a certain range of the magnetic source strength. 
It Is not known at present, whether such a range exists also 
in presence of electric sources. 

The abelian solution (which exists in any case) has a higher 
energy than the nonabelian solutions, if the electric sources 
are strong enough. For sufficiently weak electric sources 
this pattern changes, if magnetism is present. For vanishing 
electric sources the abelian solution has the lowest energy 
in all examples, which we have considered. 

With respect to monopoles the situation is therefore 
completely different with and without electric fields. The 
monopole type is only possible in the latter case. It is 
not clear at present, whether this remains also true for 
nonspherical situations in a multlpole expansion. The situation 
suggests also to look for more general solutions of the field 
equations with £ a*0. The most Important problem left open is 
of couise the question, which of the solutions presented above 
are stable. This problem is hard enough to solve in absence of 
magnetism f2J and has therefore not been attacked in this work. 

~ m m i - . . , > ,i| — - ' •••••- • • • . . » i , i i r j 
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Figure captions 

Fig.1. Profiles of the function of ftype .1 solutions with 
0=1O. Dotted llnei M—2, solid linet M-O, broken 
line: M«*2 

Fig.2. Profiles of the function a for type I solutions with 
Q»10. Dotted linei M*-2, solid lines M=0, broken 
line:M=+2. 

Fig.3. Profiles of the function f for type II solutions with 
Q-10. Dotted linest M«-2r solid linest M=0, broken 
linest M»+2. The upper three curves correspond to the 
branch 11/1 with lower energy. 

Fig.4. Profiles of the function a for type II solutions 
with 0=10. Dotted lines: M«-2, solid lines* M-O, 
broken lines* M-+2. The upper three curves correspond 
to the branch II/1 with lower energy. 

Fig.5. Region in the Q-M plane searched for solutions. 
Open circlesi type II, full clrclest bifurcation 
points, crossest type I. The broken line on the M 
axis denotes the region without nonabelian solutions. 
The monopole is denoted by H . ' 
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