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Abstract •—— . 

An improved Krook model collision operator is presented for usi' in 

calculations of low-frequency microinstabilitles in toroidal geometry. A 

comparison is made with results from calculations which use a Lorent;: 

collision operator and with a previously employed Krook operator. The results 

with the new Krook operator agree with the results obtained using the Lorenrz 

operator in the small collision frequency limit, whrreas those wi til the oln' 

Krook operator do not. 
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T. Introduction 

The study of rnicrninstabi li t tes so far can be divided into two 

categories: (i) simplified geometry or dynamics with a realistic collision 

operator involving velocity space derivatives, such as slab geometry using the 

Lorentz operator; and (ii) realistic geometry and dynamics with a simple 

collision operator that is algebraic in velocity space, such as toroidal. 
1 2 geometry and a Kronk model operator. ' The advantage of using an algebraic 

collision operator for realistic geometries is that a closed-form solution of 

the gyrokinettc equation can be obtained, thereby reducing the dimensionality 

of the problem to he solved numerically by two, since the velocity variables 

only appear parametrical ly. We must incorporate into the algebraic operator 

as much of the essential physics, described by the differentia] collision 

operators, as possible. In this paper we present a Krook model collision 

operator which gives better agreement with the Lorentz operator results than 

previous Krook operators. 

Previous toroidal calculations ' have employed u ~ v^/ld - c) - AI , 

where v is the effective collision frequency of species a, ^ aj is the 

familiar Spitzer collision frequency, c is the local inverse aspect ratio, and 

A is a dimenstonless pitch angle variable. In this form the collision 

frequency diverges at the velocity-space boundary between trapped and 

circulating particles. It is the precise nature of the divergence which is 

important. This form automatically accounts for the enhancement in the 

effective collision frequency of trapped and barely circulating particles It 

is quite accurate in the large collisionality limit but becomes quite 

inadequate in the small collisionality limit. An operator of the form v Q ~ c 

v i/l(l-e) - AI has all of the desired properties of the old operator but is 
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much more accurate in the small colltsionallty limit. The accuracy of the 

operators is determined by comparison with an analytic solution of Rosenbluth 

et al. for a simple form of the Crapped-ion mode in which a Lorentz collision 

operator was employed. 

The outline of this paper is as follows: In Section 11 we analyze tbp 

new collision operator by calculating analytically the el^enfrequencies of the 

trapjjed-ion mode in the radially local limit and then compare the results with 

the Rosenhlnth results. One operator valid in both the high and low 

collisionality regimes is then constructed. In .Section III we use the new 

collision operator to calculate the eigenfrequencies of the trapped-electron 

mode and compare the results with the results obtained using the old 

operator. A summary of results and some concluding remarks are given in 

Section IV. We note here that the new operator is not only applicable to the 

trapped-particle drift modes but can he applied to any of the tokamak low-

frequency microinstability calculations. 

IX. Analysis of the New Collision Operator and 

Application to the Trapped-Ion Mode 

Marchand et_ jĴ . derived a linear eigenmode equation which describes the 

trapped-ion instability in a large-aspect-ratio toroidal system. tn the 

radially local limit, when the ion banana width is much smaller than the 

radial wavelength and the equilibrium scale length, the elgeranode equation is 

I C 4> (r) » 0, (1) pm ro m 
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where the 5 (r) are the coefficients of the poloidal Fourier components of the m 
perturbed electrostatic potential, and r is the radial distance from the 

magnetic axis. To obtain a form for the matrix elements C of the matrix C 

which are analytically tractable, the followinE assumptions are made: (1) the 

plasma is in the banana regime, 

- I. « «.. I. , (2) 
>- l, e b l, e 

where v, is the ion (electron) collision frequency and ai. . is the typical !,? bi,e ' v 

ion (electron) bounce Frequency; (ii) the aspect ratio is larpe, 

(3) 

where R n is the plasma major radius; (iii) the dissipative limit (within the 

banana regime) is appropriate 

-^ « U\ « - ^ . (4) 

where m is the mode frequency; and (iv) 

(u/ « 3 f a l . (5) 

In investigating the accuracy of our new model collision operator, to be 

discussed below, either species could be in either collisionality limit, 

v /e l«l « 1 or v /tluil y> 1 • However, the trapped-Ion mode encompasse:; 
ai al 

both limits among the two species involved; this is convenient. 



-5-

Further considering a weakly ballooning mode which is localized halfway 

between rational surfaces, the elements of the C matrix become 

c = -TH I f^ / <3Y /Y expC-Y) — ; J J pm 5/2 ' L, iu op om n 1 - e b o e 

¥ 1 ~ £ b O 

— - i — ~) J J 
a (u u + i v ' op om 

n n>0 ] - E b o 

-= ^ - J J + ^ / ^ J dY /Y exp(-Y) 2 2 2 np nm 5/2 J L J r 

ui - n to , , ii o t o 
b i 

<u(u - ai ) 
K „ K _ - (1 + T ) 6 , (6) '• ^ r „(m.) i^ npm nnim pm 

n w - [n + S u ) 

from Ref. ! where Y = E/T i s the d imens ion less energy v a r i a b l e , u . i s the ion 

t r a n s i t f requency, T i s the e l e c t r o n to ion tempera ture r a t i o , 

u* T - a JI + n(Y - 3 / 2 ) 1 , ( 7 . a ) 

* 
in cT j ^ dn_ 
r eB n dr ' ( 7 . b ) 
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- d(ln T)/dr 
n " d(en n)/dr ' U ' c ) 

m is the poloidal mode number, B Q the toroidal magnetic field on the magnetic 

axis, and n and T are the equilibrium particle density and temperature 

respectively. L. and L are integrals over the poloidal angle 9, 

,7 ir -1/2 , -1/2 1/2 
\ = 2^ -1 ^['"hteTl - - f 1 " coaO 3 K!(2/coSBo) 1 (8.h) 

where h f i ) = I + c c o s ^ , 3 o = arccosffrt - J ) / K ] and FC(x) i s tfie compiete 

e l l i p t i c i n t e g r a l of the f i r s t k ind . Also, S^ ( r ) = l q ( r ) - m, where v i s 

t he t o r o i d a l mode number and qCr) i s the l o c a l s a f e t y f a c t o r . J i s a 

t r a p p e d - p a r t i c l e o r b i t i n t e g r a l and K n m p i s an u n t r a p p e d - p a r t i c l e o r b i t 

i n t e g r a l both of which a re desc r ibed in Ref. I and w i l l not be d i scussed 

h e r e . For mir purpose we only need the r e s u l t 

J ~- *fJ2t . (9) 
om 

The s u c c e s s i v e terms ' n Equat ion (6) a r e the t r a p p e d - e l e c t r o n , the 

c o l l i s ionlesis and c o l l i s i o n a l t ime-averaged (n = 0) t r a p p e d - i o n , the non- t ime-

averafied (n*0) t r a p p e d - i o n , the c i r c u l a c i n g - i o n , and Che adiabatic 

c o n t r i b u t i o n s . 

To ob t a in the s igenf requency from Eqs. (1) and (6) we only need to 

s p e c i f y the c o l l i s i o n terms v and u^. Following a sugges t ion of Marchand, we 

t a k e v and Uj t o be Krook model c o l l i s i o n o p e r a t o r s with the form 
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e Y 3 / 2 1(1 - O - Al 2 

and 

u.(Y,A) = a.e 4 W ^ ^ =• , OO.b) 
1 Y 3 / 2 |(1 - t) - Al 

2 — 2 
where H(x) 5 e*p(-x )/(/«) + [1 - l/(2x )] erf(x) and erf(x) is the error 
function. Equations (10.a) and (10.b) are different from the Krook collision 

operators used in previous analyses t>f tokamak trapped-particle modes ' where 

fv »̂  ei 1 + H(/Y) ... , 
ve(Y,A) --372 |C1 - 6 ) - A| <"•»> 

and 

v.(Y,A) = - 1 7 I T T T _ _ T - T T (11. h) 

were employed. The new collision operators give new values for the time-

averaged trapped-particle contributions to the growth rate. These 

contributions are defined in Ref. 1 as y and y.. Proceeding as in Ref. 1, 

the new values for y and y. are 

* . •if? J' > ( 2 > „ ( 1 > U * „ E 3 / 2 (2) , 
~ = 2 r r + T T - l1 + "e(-TTT'T)] • ( 1 2 - a ) 

o e ei a 
Y i , -2 V^ ^ i f \l (1 + Q _ , 1 / 2 . f " i i 0 + T ) , „(„) 
U o " < X ( ° > > 3 / 2 L , c 3 / 2 2 ' \ t £

3 / 2 2 ] 6 

* e * e 

* t l + n i { ^ 7 " l ^ • ( 1 2 - b ) 



where the, lowest o rder ( r e a l ) mode frequency i s 

2 / E 

o 1 + (13) 

and 

. (n) _ , ' k"dk 
o K(/l - k) 

(14..-,) 

(n) d Y n+l exn(-Y) 
1 + H(/7) 

(14 .h) 

and 

j ( n ) - d Y Y n - l / 4 [ H ( y Y ) ] 1 / 2

 e x „ ( - Y ) . (14.c) 

f(x) was calculated numerically, and can be approximated to within 4"? hy die 
-12 — 3 function g(x) in the range 10 < x < 10 where 

f(x) •1/2 , dk 
' . 2 ' (H.a) 

o K(/l - k) k + x 

and 

g(x) H 2.79[tn(17//^)] •1.055 (15.b) 

A very similar dispersion relation was obtained by Rosenbluth et al. 

Using a variational principle and a Lorentz collision operator, they found 

I, 



and 

„ = 0.58 ~ — < u 4 , 0 6 . a ) 
o ] + T *e 

3/2 

— = 0.84 (1 + 1.41n ) T-Z , ( l f t .b) 
o e i 

u u i + r , 1 / 2 

- i - - o . 3 i (i - o . 5 7 n i ) C ^ T T - S " 
*e 

3/2 1/2 - 3 / 2 
: l n r 1 7 . ; l _ ^ £ _ | _ ) j | . ( l f t . c ) 

We perform the I n t e g r a l s In Equations (14.a) - (14 .c ) numer ica l ly and then 

t-hnose a p and a., so t h a t the numerical c o e f f i c i e n t s l ead ing Ens. CI 2 .a ) -

(12 .b ) a re the same as those l ead ing Eqs. ( 1 6 . a ) - ( 1 6 . c ) . The r e s u l t s a r e 

a „ = 1-31 ( 1 7 . a ) 

and 

a , = 9.42 x 1 0 " 3 . (17.b) 

Inserting Eq. (17) Into Eq. (!2) we have 

E3/2 
^ 0 . 8 4 ( 1 + 1 ^ ) ^ ^ - , (18.a> 

o ei 

and 
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^ - - 0 . 3 1 (1 -0. 57n t) [ ^ 2 - ^ - p 1 ] 
O U>. £ 

v.. n . , 1/2 -1.055 
* ! * n i 1 7 / r 172 2 1 2 ) II • n 8 - h ) 

*e 

Comparing Eqs. (18. a) - (18. b) to Eqs. (16.a) - 06.c) we see that the new 

operator gives a definite improvement over the old operator, i.e., the ion 

collisions! Rrowtli rate now has the correct dominant scaling in y.. and ••.; the 

old operator did not. The relative error between (16. c) and (18.b) is i 2Yf. 
3/2 in the ranee indicated above of x = v..(l + T)/(2{D. E ) . n xe 

Finally, from Eqs. (If).a) - (10. b) and Eqs. (17. a) - (17.b), we construct 

an operator which makes a smooth transition from Ifjl << v to iu| >> v . The 
ct u 

result is 

* i +H(/Y) 0 . ] ] ] M + , . 3 , 
on ae ai (19) 

V 3 / 2 1(1 - r) - Al 2 11.79^-4 1 
ai 

where i labels the species, v, as defined above elves the same contributions, 

in both the high and low collistonality limits, as would be obtained with a 

Lorentz collision operator. 

III. Application to the Trapped-Electron Mode 

To investigate the effect of the new collision operator we calculate the 

eigenfrequencles of the tokamak trapped-electron mode using the new operator 
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2 and compare the results with the results of using the old operator. The code 

used is an improved version of that described in Ttef. 4, The old electron 

collision operator Is given by Eq. (11.a) while tor the new operator we have 

__ 0.111 - ^ + 1.-31 
v (Y,A) = -w, j 1—I , (20) 

6 Y 3 / 2 |(1 - E) - h\2 n.79 M + 1 
Uei 

with the corresponding operators being used for the ions. The real parts of 

the mode frequencies, w /w A , and the growth rates, Y/OJ* , for each operator 

are shown as a function of \>e 5 "ei/1- ute * n *̂-8* ̂ * ^"e parameters \ised 

in the comparison are E = 0.1, T e = 1 keV, Tf = 0.5 keV, q = 2.5, q'r/q = 1, 
;it = n e = 0, r n e/r = 1, m 1 /ir,e = 3672, R Q = 132 cm., and k n P i = 0.63, in 

standard notation. The density varies roughly proportionally to vi . On a 

semi-log scale the new collision operator has t'-.1 effect of shifting the 

eigenfrequency curves to the right. This is because the dominant scaling of 

the colHsional contribution to the low collisionslity eigenf requency scales 

as v=,. for the old operator but as /v . for the new operator. 
?i ex 

IV. Conclusions 

We have compared the dispersion relation of the trapped-ion mode obtained 

using a new Krook model collision operator with thf -esults obtained using the 

more exact Lorentz operator. The new operator is seen to be ac2urate in both 

the high collision frequency limit (|u| << V/E) and in the low collision 

frequency limit (\u\ » V / E ) . In particular, the dominant scaling of the 

growth rates in the parameter ual/e|cul was correct in both limits, so that we 

file:///ised
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were able to construct one operator which is valid ior any species and which 

makes a smooth transition from low to high collisionality. rhe Krook 

collision operator previously employed ' did not have the correct dominant 

scaling of the growth rate in v ./rljil in the low collision frequency limit. 

A comparison between the old and new collision operator was marfr by 

calculating the eigenfretjuencie=j of the Lr.-ipped-electron mode. When plotffd 

on a semi-log seal" the new operator has the effe.t of shift inf. the mmlp 

frequency , -ves to the right. The new Krook operator is a definite 

improvement over the old operator and can be used in any micrninstflbi i i t» 

calculation in which a pitch angle dependent Krook operator is convenient. 
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