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Abstract

An improved Krook model collision operator is presented for usv in
calculatlons of 1low-frequency microinstabilities in Ftoroidal peometry. A
comparison is made with vresults from calculations which use a Larentz
collision operator and with a previously employed Krook operator, The results
with the new Krook operator agree with the results obtained using the Lorent=z
operator in the small collision frequency limit, whrreas those with the nld

Krook operator do not.
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1. Introduction

The study of micreoinstabilities so far can be divided into two
categories: (i) simplified geometry or dynamics with a realistic collision
operator involving velocity space derivatives, such as slab geemetry using the
Lorentz operator; and (1i) realistic geometry and dynamics with a =imple
vollision operator that is algebraic in wvelocity space, such as toroidal
geometry and a Krook model operator.l’2 The advantage of using an algebraic
collision operator for realistic geometries is that a closed-form splutinn of
the gyrokinetic eguation can be obtained, thereby reducing the dimensionality
of the prohlem to be selved numerically by two, since the velocity variahles
only appear parametrically. We mst incorporazte into the algebraic operatnr
as much of the essential physics, described by the differential collision
operators, as possible, In this paper we present a Krook model c¢ollirion
operator which gives better agreement with the Lorentz operator results than
previous Xrook operators.

Previous taroidal calculationsl‘2 have employed v, ~ Vui/l(] ~ ) = al,
where v is the effective collision frequency of species a, Vai is the
familiar Spitzer collision frequency, ¢ is the local inverse aspect ratio, and
A is a dimensionless pitch angle wvariable. In this form the coilision
frequency diverges at the veloclty-space boundary between (Crapped and
circulating particles. It is the precise nature of the divergeace which is
important. This form automatically accounts for the enhancement in the
effective collision frequency of trapped and barely circulating particles It
is quite accurate in the large <collisionality 1imit but becomes quite
1

inadequate in the small collisionality limit. An operator of the form vy~ €

uaill(l—:) - Al? has all of the desired properties of the old operator but is




much more accurate in the small collisionality limit. The accuracy of the

operators is determined by comparison with an analytic solution af Rosenbluth

et al.? for a simple form of the trapped-ion mode in which a Lorentz collision

operator was employed.

The outline of this paper is as follows: 1In Section 11 we analyze the
new collision operator by calculating analytically the etgenfrequencies of the
trapped—ion mode in the radially local limit and then compare the results with
the Rosenbluth results. tne operator valid 1in both the high and 1nw
collisionality regimes is then constructed. In Section TII we use the new
collision operator to calculate the eigenfrequencies of the trapped~electron
mode and compare the results with the results obtained using the old
operator. A summary of results and some concleding vemarks are given in
Section IV, We note here that the new operator is not only applicable to the
trapped-particle drift modes but can be applied to any of the tokamak low-—

frequency microinstability calculatiens.

I11. 4Analysis of the New Collision Operator and

Application to the Trapped-Ion Mode

Marchand _5“_1.\ derived a linear eigenmode equation which describes the
trapped-ion instability in a large~aspect~ratio toroidal system, In the
radially local 1limit, when the ion bhanana width 1is much smaller than the
radial wavelength and the equilibrium scale length, the eigenmode eguation is

é Cp tbm(r) =0, 1)
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where the ﬁm(r) are the coefficients of the poloidal Fourier components of the
perturbed electrostatic potential, and r is the radial distance from the
magnetic axis. To obtain a form for the matrix elements Cpm of the matrix C
which are analytically tractable, the following assumptions are made: (i) the

plasma is in the banana regime,

w1, )
£ 1,e
where ¥ o 18 the ion {electron) collision frequency and ;bi . is the rypical
’ 3 €
ion (electron) bounce frequency; (ii) the aspect ratio is larpe,

LT
SRR (3}
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where R, is the plasma major radius; (iii) the dissipative limit (within the

hanana regime) is appropriate
Vij Yei
—= << ful << —, %)
I3 £
where w is the mode frequency; and (iv)

Jul << be . (5)

In investigating the accuracy of our new model ccllision operator, to be
discussed below, either species could be in elther collisionality limit,

v i/e|w| << I or v 1/Elwl »> 1 . However, the trapped—-ion mode encompasses
o a

both limits among the two species involved; this is convenient.
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Further considering a weakly ballooning mode which is localized halfway

between rational surfaces, the elements of the C matrix become

— 1 + ¢ L) w = w
YE dA = *Te
c_ = i — f dY /Y exp(-Y) —— J
pm ~ 5/2 4, _ el o v, op”om
~ l+e -
+ t';;z f E—A [ dY VY exp(-Y)
™ 1-¢™ o
ru T Werg B ii_ w - m*Ti) ,
o W w w+ ivi op om
— 1 + ¢ o
+ g—;’/,—; Y ] %A [} JY exp(-Y)
n n0 I - "b o

wlw = w, ) - 1 -¢ o
*T T [V, v -
x =3 5y np Jnm + 5/2 / L [ dY VY exp(~Y)
- w bi L o t o
wlw - )
i ’('T;‘ FK K- (+1)s (6)
nw —{n+Smwti] pm P

from Ref, | where Y = E/T is the dimensionless energy variable, we g is the ion

transit frequency, 71 is the electron to ion temperature rattio,

Opp = w, Il + n(Y - 3/2)], (7.a)

w, =-Mmel ldn (7.%)
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m is the poloidal mode number, Bo the toroidal magnetic field on the magnetic
axis, and n and T are the equilibrium particle density and temperature

respectively. Ly and L, are integrals over the poloidal angle 3,

VR : R
Lb =50 j_a de ) - E?ETJ = L(SIHBO/Q) {(8.a)
7o
Vrs r A -1/2 2 -1/2 1/2
= = - " ~ = - 1 I
L, =% f_“ de|1 h(e)] - (1 = cos ) K{(2/cos8 ) (B.h)
where h(5}) = I + ¢ cos3, G, = arceos{ (A ~ 1)/cl and R(x}) is the complete

elliptic integral of the first kind. Alsa, S(m)(r) = gq(r) ~ m, where ¢ is
the toroidal mode number and q(r) is the local safety factar. Jom s a
trapped-particle orbit integral and Knmp is an untrapped-particle arbit

integral hoth of which are described in Ref. 1 and will not be discussed

here. Far our purpose we only need the result

J =2, (9

om

’

The succecsive terms n Equation (6) are the trapped~electron, the
collisionless and collisional time-averaged {n = 0) trapped-ion, the non-time-
averaged (n+0) trapped-ion, the circulating-ton, and the adiabatic
contributions.

To nbtaln the eigenfrequency from Eqs. (1) and (6) we only need to

specify the collision terms Va and vy- Following a suggestion of Marchand, we

take Ve and vy to be Krook model colliston operators with the form

-t

A e h o mees
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Vel 1 + B
v {¥,A) = ae —= (10.a)
e e 32 ¢! —e)'A|2

and

N _

ii H{YY) (10.b)
a,ct y .
Uy 0 - e - al?

ui(\',f\) =

where H(x) = exp(—xz)/(/;x) + (1 - 1/(2x2)] erf(x) and erf(x) 1is the error

function. FEquations {10.a) and (10.b) are different from the Krook collision

1,2

aperators used in previocus analyses «f tokamak trapped-particle modes »>“ where
(Yoa) = ~gb 1 HOY) (1)
Velln B2 T -y -l *
and
v, . v
i H{/Y) (11.1)

vy (Ya8) = 2T - -4l

were employed. The new collision operators give new values for the time-
averaped trapped-particle contributions to the growth rate, These
contributions are defined in Ref. 1 as Yo and y;. Proceeding as in Ref. 1,

the new values for Y and y; are

3/2

Y 5/2 /3 aC (1) v e (n
S s [t Cay -2 (z.a
o e el [*1
M SR (oL x)]”z ¢ (il 0 +D) ()
R N VN1 S T 72 2
Wig € Wy E

x

B(l) 3
[l + ny (;GT - ~2-)] . (12.b)



where the lowest order (real) mode frequency is

2V ew
w = 0.577 ___*e (1
Y5 " 1+1°
and
I n
LMk dk (l4.3)
‘o K(/T = k)
) [ av y™oexpCV) (14.h)
o 1 + H(/Y)
and
S ey eI exncen (14.¢)
o)

f{x) was calculated numerically, and can be approximated to within 4% by the

function g{x) in the range 10-12 < X < 10-3 where

1 2

) rox 2 e (15.a)
o KWT =K Kk~ +x
and
g(x) = 2.790an(17/vx) 1 1033 (15.5)

A very similar dispersion relation was obtalned by Rosenbluth.gigl.3

Using a variational principle and a Lorentz collision operator, they found
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- 2/€ (16
w, = 0-38 T+ 1 Y% ° -a)
3/2
Ye 4 25 e (16.1)
el 0.84 (1 + 1. lnE) T v .
o ei
and
1, v 172
i if 1 +1
T 0.31 (1 0.57r]i) ( Yp) 2 ]
o £ Ty,
3/2 1/2 =3/2
e E Yo 2
< Inil7] =) . (16.0)
Vit T
We perform the 1integrals in FEquations (l4.a) = (l4.c) numerically and then

choose a, and a; so that the numerical coefficients leading Eas. (l12.a) -

(12,b) are the same as those leading Eqs. (16.a) - (1h.c). The results are

a, = 1.31 (17.a)
and
a, = 9.42 x 1073, (17.5)

Inserting Eq. (i7) into Eg. (12) we have

" E3/2
e _ 2 *e
- = 0.84 (1 + 1.4lne) T sy -

s} el

Y
(18.a)

and
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Y v 172
M _ ii (1+1)
el 0.31 (1 0,57r|i) l——w? ——2—-—1
o Wie®
Y 1/2 -1.055
ii {1 + 1)
< L 17/(——75 ———5—") ] . (18.h)
Wy
Comparing Fgs. (l18.a) - (18.b) to Eqs. (l6.a) - (l6.c) we see that the new

nperator gives a definite improvement over the old operator, i.e., the ion
collisional prowth rate now has the correct dominant scaling in Yij and <} the

nld operator did not. The relative error between (16.c) and (18.b) is ¢ 297

in the ranpe indicated above of x = vii(l + T)/(Zm*ecalz) .

Finallv, from Eqs. (10.a) - (10.b) and Eqs. {i7.a) - (17.b), we construct

an operator which makes a smooth translition from lu] << v to lu] > v . The
a

A3

result is

[wl

b5+ RO 0,111 55+ 1,31
R i ae ai (19)
* v3’2|(1-r.)-/\|21|.79%’—T+1

ai

where « labels the species. v, A5 defined above gives the same contributions,
in both the high and low collisionality 1limits, as would be obtained with a
Lorentz collision operator.

111. Application to the Trapped-Electron Mode

To {nvestigate the effect of the new c.llision operator we calculate the

eigenfrequencles of the tokamak trapped-electron mode using the new aperator



"

and compare the results with the results of using the old operator.2 The code
used is an improved wversion of that described in Rel. 4, The old electron

collision operator is given by Eq. (ll.a) while for the new operator we have

_Vei® I + H/Y) Vai
v (VA = —3p5 ——— 2 Tl . (20)
Y f(1r - e) =l —

with the corresponding operators being used for the icens. The real parts of
the mode frecuencies, mr/m*e, and the growth rates, Y/m*e' for each operator

*
are shown as a function of v, = vei/q3/2wt in Fig. l. The parameters used

e

in the comparison are ¢ = 0.1, T, = 1 keV, T; = 0.5 keV, g = 2.5, q'r/q =1,

Ay = org = 0, rofro= 1, mgfm, = 3672, R, = 132 cm., and kppy = 0.63, in
standard notation. The density varies roughly proportionally to ue*. On a
semi-laog scale the new collision operator has t'.: effect of shifting the
cigenfrequency curves to the right. This is because the dominant scaling of
the collisional contribution to the low collisionality eigenfrequency scales
as v_: for the old operator but as /3;; for the new operatar.

el

IV. Conclusions

We have compared the dispersion relation of the trapped-ion mode obtained
using a new Krook model collision operator with the results obtained using the
more exact Lorentz operator., The new operator is seen to be accurate in beth
the high collision frequency 1imit (Jwl << v/e) and in the low collision
frequency limit (lwl >> v/e). In particular, the dominant scaling of the

growth rates in the parameter vai/elml was correct in both limits, so that we
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were able to construct one operator which is valid for any species and which
makes a smooth transition from low to high collisionality. The Krook
collision operator previously employedl’2 did not have the correct dominant
scaling of the growth rate in u“i/rlnl in the low collision frequency limic,

A comparison bhetween the old and new collision operator was made by
caleulating the eigenfrequencies of the irapped-electron made. When plotted
on a semi-log scals the new operator has the effe.t of shiftiny the mode
frequency . -ves to the right. The new FKrook aperator is a definite
improvement over the old operator and can be used in anv wicroinstabilicvy

calculation in which a pitch angle dependent Krook operator is convenient.
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