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Abstract

Using a phenomenological ansatz for the Lagrangian of baryon- and

lepton-number violating interactions we calculate the effective baryon-

lepton coupling constant within the framework of a relativistic quark

model. Apart from a calculation of B-number violating cross-sections and

decays this ansatz allows for a definition of the parity of leptons

relative to baryons.
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I. Introduction

The most attractive feature of quark-lepton unification schemes

[ l f 2] is the prediction of a new baryon-number violating force. Although

the relative strength of about 1O seems to be of no relevance in present

time, it is argued that cosmological implications are important and

probably one can explain the observed baryon excess in our universe.

Several selection rules for the new force have been stated. In particular,

AB = AL transitions seem to be dominant, and processes with inter-family

mixing are suppressed by Cabibbo-like angles. An effective Lagrangian for

transitions between three quarks and anti-lepton"* has been given by

Weinberg [3] and Wilczek and Zee [4].

In order to compare predictions with experiments still one problem

has Lo be solved, namely the binding of three quarks to baryonic states,

since we do not observe free quarks. In the literature two different

approaches have been used: SU(6) wave functions [5-10] and bag models [11-

13]. It is the purpose of our paper to present a baryon-antilepton

transition amplitude using a relativistic quark model proposed by Bonns

and Meyer [14] and Kielanowski [15], where the baryons are described as

three-quark bound states in terms of a Bethe-Salpeter amplitude. This

model uses a harmonic oscillator potential in four Euclidian dimensions

to describe the space part of the interaction kernel, whereas the spin

part is determined by consistency requirements.

The definition of a baryon-antilepton transition amplitude

gives rise to a lot of interesting questions like parity of

leptons, provided the interaction conserves P. This is in general not the

case, buth the strength of the P-violating transition is subject to renor-

malization and shown to be zero at the grand unification point in certain

unified models. Even there, this is only true at the tree-graph level,

loop corrections with certain Higgs mesons may change the ratio and may

even violate CP, but their effect can be considered to be a small per-

turbation. As can be seen in Sec. II, we find that the positron behaves

like a proton and the electron like an antiproton; i.e. the former is a

P = +1 state.



This paper is organized as follows: We present in Sec. II an

effective Lagrangian and discuss the familiar renonnalization group

techniques for our special case. It is further shown that B-violating

cross-sections can be easily calculated using the effecting baryon-

lepton coupling constant. In Sec. Ill the Bethe-Salpeter amplitude is

used to calculate this coupling constant. Finally/ in Sec. IV, we com-

pute nucleon lifetimes and branching ratios of two-body decay channels

for the grand unification groups SU(5) [2], SO(10) [16,17], and the

class of unified models where the effective low-energy electroweak inter-

action is described by the gauge group SU(2) ® SU(2) ® U ( l ) , using our
L R

effective coupling constant and the empirical meson-baryon couplings.



II. The Phenomenological Lagrangian

Neglecting all the angles and phases resulting from the diagonaliza-

tion of the fermion mass matrices, the general form of the low-energy

effective Lagrangian for baryon- and lepton-number violating nucleon decay

mediated by gauge bosons is given by [3,4,18]

,c „ xi \ r t*, c,.Pj \ i i.. C..VY da )[(voVd. ) + (v Vs. )]} + h.c. (1)

where the fermion labels u, d, s, e , p , v , and v stand for the corre-
e p

spending field operators. The parameters r , £ = e or \i, denote the ratio

of the coefficients of the effective four-fermion operators involving a

left-handed charged lepton to the one involving its right-handed counter-

part. They are identical with those introduced by Wilczek and Zee [4].

The values of these parameters depend on the grand unification group and

the details of symmetry breaking and are furthermore subject to renormaliz-

ation effects due to radiative corrections involving SU(2) ® U ( 1 ) gauge

bosons. The unrenormalized values of the r. are listed in Table I for

three different unification models already considered in Refs. 4 and 13.

This Lagrangian, Eq. ( 1 ) , obeys the selection rule AB = AL as required

by the invariance of the effective four-fermion operator of the low-energy

theory under Su(3) <8> S U ( 2 ) ® U ( 1 ) transformations [3,4].

In analogy to the Lagrangian on the quark level, Eq. ( 1 ) , we write

down an effective Lagrangian, which describes the transition of any anti-
C C "i" ~h C C

lepton £ , £ = e , n , v or v , into the corresponding baryon B linkede |j
to it by the kinship hypothesis of Wilczek and Zee [4]:

— - i+Y5 i-Y5
Leff = f *l (— - r — ) * B + h . c . (2)

Q

Here f denotes the coupling strength of the right-handed antilepton £ to
R

the baryon B. The left- to right-handed lepton ratios r are the same as

in E q . ( l ) for charged leptons. For massless neutrinos the ratio r is equal

to zero. Again, this ansatz is consistent with the selection rule AB = AL.



Finally, the effective baryon-lepton coupling constant f is defined

by rewriting the Lagrangian of Eq. (2) in the form

Leff

where f and a expressed in terms of f and r are given by

f = f (1 + r) ,

(4)

l -t- r *

The parameter a measures the relative strength of parity violation in the

transition H •*-> B. The value a = O, corresponding to r = 1, means parity

conservation. Like r, a depends strongly on the employed unification group

and on the scale of external momenta at which matrix elements of L ,_ are
eff

evaluated. The coupling constant f depends on the unification scheme «s

well as on the three-quark wave function inside the baryon.

The effective four-fermion operators which build up the Lagrangian

of Eq . ( l ) result from the exchange of superheavy vector bosons whereas the

matrix elements of these operators are calculated on a mass scale e.g. for

nucleon decay of 0(1) GeV. Therefore these operators have to be renormalized

by exchange of S U ( 3 ) , SU(2 ) and U ( l ) gauge bosons using standard renonna-

lization group techniques.

A closer inspection shows that the radiative corrections due to SU(3)

and S U ( 2 ) gauge bosons lead to an identical renormalization for all opera-

tors appearing in E q . ( l ) whereas the U ( l ) boson exchange distinguishes

between the operators containing a left-handed lepton field and those

containing a right-handed one. The effects of these radiative corrections

can be expressed in terms of short-distance enhancement factors A and
L

A_. The necessary computations have been performed independently by three
K

groups [4,18,19] who agreed within their results:

a ( y ) 33-4n
A = t^—-] [-
L a « . - ( 5 )
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Here ct., a , a , and a are the coupling constants of SU(3), SU(2) / U(l),

and the grand unification group. The typical mass of O(l) GeV at which

the operators are renormalized is denoted by \i, m stands for the mass

of the W-boson and n is the number of fermion generations. Assuming n = '.

and using as input [9]

a
e.m.

(V =

sin28H(mw) =0.21 , (6)

a = 0.0244 ,

the renormalization factors A and A obtain the following numerical
L R

values:

AT = 3.7 ,
Ll

A R=3.5 .

(7)

Taking into account the renormalization of the coefficients of the effec-

tive operators showing up in the Lagrangian by the short-distance enhance-

ment factors, the relations (4) between the renormalized quantities f and a. on

the one hand and the bare constants f and r on the other' hand are modified

to

f = f (AR + r AL)

(8)

The values of 0. resulting from Eqs.(7) and (8) are also given in Table I.

It is obvious that the renormalized value of a would agree with the bare

one if A,, and A were equal, i.e. if the renormalization procedure made
Jj R



no difference for operators with right- and left-handed leptons. This is

the case if the effective electroweak interaction theory is described by

the gauge group SU{2) ® S U ( 2 ) „ ß ' U ( l ) , v/hich is broken to S U ( 2 ) ® U ( 1 )
L R Jj

at an energy scale well below the grand unification mass. Of course, the

breaking of the SU(2) -symmetry induces a small amount of parity violation
R

in Eq.(3). Assuming the gauge bosons of SU(2) to be 5 times heavier than
-3

those of SU(2), m, = 5 m [35], we obtain 0. = 1.3*10 , a value which
L WR ŴL

is of the order of common CP-violation but which is clearly negligible

for cross-sections and decay rates of B- and L-violating processes since

their order of magnitude is determined by the expression f2(l + |a|2}.

The phenomenological Lagrangian of Eq.(3) immediately gives rise to

two interesting observations:

i) Parity of leptons;

The smallness of the parameter a. in certain transitions (listed in

Table I) means, that there exists an (almost) parity-conserving transition

between baryons and leptons. We are far away from the maximal parity

violation of conventional weak interactions. It is therefore meaningful

to assign an intrinsic parity quantum number to the leptons, after one

has chosen the parity of the proton to be + 1. Obviously we find, that

the leptons e and y behave as antiprotons, therefore their parity - 1.

Let us look more to the cases yielding a. = 0. If we adopt the gauge

group SU(2)T ©SU(2) ®U(1), the bare value of a and a is exactly zero,
L R e y

and the renormalization factors from q2 = m2 ^ (4OO GeV)2 down to low
_3

 WR
energies yield a = 1O ; therefore parity violation is of the order

e, y
of possible CP-violation effects.

The situation is more complicated in the gauge group SU(5). Here,

the transition E ->• y has bare value 0. equal zero; this value becomes

renormalized to ̂  - 0.029. Parity violation is therefore a 3% effect;

treating it as a small perturbation, we are allowed to define the parity

of the muon. On the other hand, the transition of proton •> e starts with

an unrenormalized value a = - 1/3; therefore we cannot make any con-

clusions. However, there exists a transition between positron and a

C = 2, S = O ccd-state (N:: ), which yields the bare value a = O, and we
cc e



find similar arguments as for the muon. Assuming the N" to have the same
cc

parity as the proton (via strong interactions), an (approximate) defini-

tion of the parity of the electron can be given even in S U ( 5 ) .

If the unification group is SO( lO) , we have to make specific assump-

tions on the breaking mechanisms to find how many gauge bosons are re-

levant for baryon decay. Following the line given in Wilczek and Zee [4],

we find a pure left-handed transition with a = 1 , therefore no conclusion

about parity can be done.

It should be noted that in all our values of a, we have neglected the

Cabibbo angle. However, sin 0 enters quadratically in the expressions

for a. and will shift the values of the parity violating amplitude by

^ 5%, still a small perturbation. Finally, this conjecture can be extended

to t-leptons by looking to transitions between T and (hypothetical)

baryons containing a b-quark.

ii) Diffractive production of baryons by antileptons

We now look for the cross-section of a positron (momentum q ) to

scatter on some target (e.g. a proton) yielding only hadrons; i.e. the

process e p -+• X . The corresponding amplitude is given by
n

X X* J. Xi 1 X* X»

where we have suppressed spinor indices on the quantity O and used a

shorthand p. for the other momenta involved. If we make an off-mass-shell

extrapolation in the variable q2, we find a pole in the amplitude for

q2 = m2 , the mass of the proton:

lim 0(q ,p . . . ) ( t f „ -m ) = 6(q ,p ...) f ( l + ay.) . UO)
9 9 X I X p X I 3

Here we have defined the strong interaction amplitude for a proton to

scatter on the same target, yielding hadrons; i.e. pp ->• X
H

VVpi •••) =ö(qp,Pi -..) VV • (11)



We therefore find that antileptons produce baryons diffractively by an

off mass-shell lepton-baryon transition. Neglecting lepton mass effects

we have

Since the value f/m turns out to be about 1O , the cross-sections have

the order of magnitude of 1O rab and therefore seem to be of no impor-

tance for creation of baryons in our present universe.



III. Calculation of f

In order to calculate the effective coupling f we make use of the

Bethe-Salpeter (BS) formalism developed by Bethe, Salpeter, Gell-Mann, Low,

Wick and Mandelstam [20-23]. Within this formalism a baryon B with mass M,

momentum P and spin projection s is described as a bound state of three

quarks by a three-field BS -amplitude, which is defined by

* (Vx2'*3>aBYiabc,ABC " «WV WV *YcC(x3)

Here J B ( P , s ) > denotes the baryon state; a ,ß ,y are the spin indices, a,b,c

the colour indices, and A,B,C the flavour indices of the renormalized

quark fields tfi (x) . Separation of the center-of-mass motion leads to

.. . -iPX ..1 1 1 1 2 , . , . .<t(x1 ,x2 ,x3) = e 4(-s + -r, -s - -r, - - s) , (14)

where the center-of-mass coordinate X and the relative coordinates r and

s are given by

X = J (X1 + X2 + X3) '

r = x t - x2 , (15)

s = — ( X j + x2 - 2x3) .

Note that X belongs to the symmetri;-. representation S, whereas s and r

belong to the mixed representations M and M , respectively, of the

permutation group of three elements S . The Fourier transform of <J>(x ,x? ,x-)

is defined by

,k2 ,k3 ,-P,s) 6 ( 4 ) (P-k1-k2-k3) =

. 3
= — - — / dVd4x d4x exp [i £ k .x . ] *(x ,x ,x ) . (16)

( 2 T T ) 6 i=l "• 1
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With the help of Eq.(14) the BS-amplitude in momentum space x mav be

rewritten to

The center-of-mass momentum P and the relative momenta p and q are defined

in terms of the quark momenta k. (i = 1,2,3) in the following way:

P = k + k + k

P = 2 (kl ~ k2)

The graphical representation of the BS-amplitude x ^s given in Fig. 1

The BS-amplitude x(P,q? p , s ) is the solution of the homogeneous

BS-equation for bound states [20]

s' ) x (p /q ;P , s ) =
l
3
I S

F
 (ki} !^P[ Ki(pi'Pi;V XtPi^.-P/s) + (19)

/ dVdV K(P ,q ;p ' , q ' ;P )

The physical significance of this equation becomes probably more trans-

parent in its graphical representation, Fig. 2. S (k) denotes the quark

Feynman-propagator which for heavy quarks is assumed to be of the form

of the free Feynman propagator [24]

V k ) = i r ' (20)

but with m being interpreted as an effective quark mass the numerical
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value of which has to be determined by comparison of the theoretical

predictions resulting within the framework of the BS formalism with

experimental data, e.g. for the pion decay constant f [25-27]. The

relative momenta p. and q. are obtained from Eq. (18) by cyclic permutation

of the quarks:

' >

p

5.

=

• i

q*

=

> \ 3-,
~ 2 4 Pl

= (21)

The momentaK. are defined as sums of the quark momenta k. :
i i

K2 =
(22)

The dynamics of the theory is contained in the interaction kernels K.. and

K, where the K . (i = 1,2,3) denote the two-particle kernels and K. the

three-particle kernel. These kernels may be considered as phenomenological,

relativistically generalized potentials describing the two-quark and

three-quark interactions which lead to the three-quark bound state B.

At this point one has to decide how one wants to approximate the

forces between quarks. That means one has to choose a reasonable form

of the interaction kernels. We adopt the model of Kielanowski [15], because
«

its predictions are in good agreement with experiment. It reproduces

correctly the baryon spectrum [15] and it gives reasonable results for the
3+

strong decay widths of the —- baryon resonances and for the electromagnetic
1+

and weak form factors of the ——baryons [28]. Furthermore, one even can

obtain a not too bad value for the ratio of axial vector coupling constant

to vector coupling constant G,/G for nucleons [15].

The model of Kielanowski is characterized by the following features:

It assumes strong binding, i.e. the quark mass is large compared with Ute

mass of the bound state:

M
•r- « 13m (23)
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The two-particle kernels K. and the three-particle kernel K. are assumed

to be of the "convolution type"

(24)

K(p,q;p' ,q 'P) = K(p - p1 ,q - q 1 ) ,

and to factorize into a spin part U and a space part V each of which has

to be a Lorentz scalar:

K. (p. - p!) = V (p - p' .) U ,
1 1 i 1 1 1 1

(25)

K ( p - p ' ,q - q 1 ) = V(p - p ' , q - q 1 ) U .

A consequence of the factorization of the interaction kernels is a similar

factorized structure of the BS-amplitudes. The space parts of the kernels

are approximated by kernels of the harmonic oscillator type:

(4 )
VPi ~ Pp = (ot ~ %.> 6 (Pi ~ Pj[> '

1 •

V(p - P ' ,q ~ q1 ) = m[cx -B (|o + 2D )] 6 ( 4 ) (p - p 1 ) 6 ( 4 ) (q - q 1 ) .
\J \J £ \J CJ

(26)

Here the parameters 3 and 3 are related to the level spacing of the baryons.

The potential depth parameters a and a are expected to be of the order of
o

a = 0(m 2 ) , a = 0(ra2) , (27)
o

so that they may compensate the large quark mass m in order to achieve the

desired small bound state mass M. The structure of the spin parts U. of

the two-particle kernels is taken from the meson case, where it has been

used with great success [24,26,27]:

U1 = 1 x YS x ys , U2 = Y5 ••< 1 x YS , U3 = Y5
 x YS x 1 . (28)

The spin part U of the three -particle kernel is a straightforward generaliz

ation of the corresponding two-particle kernels U, i
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U = (UlU2 + U2U1 + U1U3 + °3U1 + °2U3 + U3U2} = °1 + °2 + U3 ' (29)

It is clear that this generalization is not unique. The only justification

of all of this phenomenological ansatz can be done by successfully

predicting experimentally available quantities, such as hadronic couplings,

etc.

Under these assumptions the BS-equation, Eq.{19), can be solved [15]

after Wick-rotation of its space part [22]. The validity of Eq.(23) allows

one to expand the solution x into a power series in 1/m,'

X = I £> Xn - (30)
n=O

The parameters a, a , 3 and 3 are then specified to take the values

a = m , a = 0 , - = - ! . (31)
3 o 3Q

The mass spectrum one obtains from the eiyenvalues of the radial equation

of the orbital part of the BS-equation is given by

M2 = M2 + 36/fF [n, + n. + 2 ( r . + r.)]
0 1 2 1 2 '

(32)

n. = 0,1,2, . . .
1 for i = 1,2 .

* = 0,1,2, . . .

M denotes the mass of the ground state solution, the n. and r. correspond

to the quantum numbers of the angular momentum and radial excitations,

respectively. Note that the resulting spectrum is linear in mass squared.

Therefore the baryon resonances described by this model lie on linear

Regge trajectories. The comparison of Eq.(32) with the experimental mass

spectrum yields for the so far undetermined parameter 3

/3~ = 0,029 GeV2 . (33)

The BS-amplitude x ^ay be written in the form
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P s _ N 1+_L y +_i_ + + +0 J_
i=l 4m^ m^

(34)

where N denotes a normalization constant and '£ , y. , ]i are short for

X. x 1 x 1, I x X - X l , 1 x 1 x X , » respectively. For the octet baryons

X is given by

Xc

(35)
p| q|

6/3 8/fF

The notation for the spin wave functions \— O;— s;+M+> and |y 0;— s;+M >

is the following [29]: the first two numbers denote the type of the irre

ducible representation of the group O ( 4 ) according to which the states

are classified; the next two numbers denote the spin of the bound state

and its projection; the sign gives the parity of the spin state and the

last character the symmetry under permutation of the quarks: M and M

denote states of mixed symmetry with left-' and right-handed spinors un-

mixed, symmetric and antisymmetric with respect to permutation of the

first two quarks. The spin wave functions may be expressed in terms of

quark-diquark amplitudes [14,29]:

(36)

Here C stands for the charge conjugation matrix. The mixed-symmetric

SU( 3) -flavour wave functions denoted by Xortr^ an<3 Xo ,is are representedo , sSU ( 3 )
e.g. for the proton by

(37)

XsU(3)(pr°t0nW " - Vc - VW *



15

X_ symbolizes the colour wave function of the bound state, which for
L*

baryons is totally antisymmetric:

*C abc = = Eabc ' (38)

X_ guarantees the whole BS -amplitude to be totally antisymmetric as it

must be in order to describe a baryon correctly, wherr-as the spin-flavour-

space part alone is obviously symmetric under exchange of any pair of

quarks. The subscript E in the exponential term stands for Euclidean;

p and q are the relative quark momenta after Wick rotation: p2 = -p2,

q* - ̂ . .

For .the applications of Eq. (34) the value of the normalization con-

stant N is of great interest. The normalization condition for B S -amplitude s

is provided by the inhomogeneous BS-equation [23]. If the baryon states

are normalized according to

< B ( P ' , s ' ) l B ( P , s ) > = < 5 ( 3 ) ( P - P ' ) 6 , (39)
' ss '

insertion of Eq. (34) into the normalization relation yields for N

N = - ̂  -- — (40)
(2TT) ' /2JT" 3/m"o

for the ground state solutions (n = n = r. = r„ = O in Eq. (32)).
l «L JL £•

The first and simultaneously main step in the calculation of f is to

write down the matrix element for the virtual (off -shell) transition
c

B •*-*• ü expressed in terms of a BS-amplitude describing the hadronic part

of the process. This BS-amplitude serves to decompose the baryon into

quarkSj the baryon- and lepton-number violating interactions of which are

already given within the framework of grand unified theories. The usage

of the BS-formalism is therefore nothing else but a convenient way to treat

the so far unsolved problem of the confinement of colour nonsinglets for

our special case. Neglecting Cabibbo-suppressed interactions there are

seven types of off-shell transitions of this kind:
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+ _+ -t-
p -w- e E -w- u

•ij Jj
(41)

C „0 Cn -M- v E -M- v
e R p R

A -W v ° *
U R

Considering, for example, the strangeness-conserving nucleon decay into

an anti-neutrino

N H- v C X (42)

(N denotes the nucleon, X a nonstrange hadronic state) we have to deal

with the effective Lagrangian

I*., Ml . (43)

Defining for convenience a pure quark operator 0 by
q

(x)] (44)*V"" — i j k L V X i 's '^d. V ~ ' J L X W % ~ ' l A T r s ' v d .i k j

we find for the desired S-raatrix element

<v (k,o) | s | N ( P , s ) > =
(45)

= ( 2 T T ) 1 » 6 ( 4 ) (P-k)— <v (k,o) |i|»v
C(0) |o> <o|o ( 0 ) | N ( P , s ) >

where <0|o ( O ) | N ( P , s ) > has necessarily to involve the BS-amplitude for

the nucleon N. Then, by inspection of Eq.(17) , it is easy to convince

oneself that this matrix element is given by the expression

< 0 | 0 ( 0 ) | N ( P , 8 ) > - I l l e a b c(dÄuBd c)[T f j l(l-Y5)]^l
& , ß , Y a,b,c A,B,C ' 5 ' J0a

(46)
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The integration over the relative qu?rk momenta p and q is the remnant

of the integration over the internal quark momenta k , k , and k when

taking into account energy-momentum conservation:

, k , k ; P ' ,s) 6 ( 4 )

/ d^'dW+q x(p»q ; i " fS ) < s ( p - p ' ) = /
(47)

(4)

It can be seen from Fig. 3, which shows Eq. (45) in a symbolical manner,

that the matrix element of Eq. (46) has to be a two-loop integral as stated

by E q . ( 4 7 ) .

Inserting the BS-amplitude found by Kielanowski, Eq. (34) , into Eq. (46)

and comparing the matrix element obtained in this way with the phenomeno-

logical matrix element resulting from Eq. (2) , one can extract the effective

coupling f. Our result is identical for all seven cases of Eq . (41 ) :

f = _ { f - - _ f - ) [ 6 + + 7 2 j H . 0 ( _ ) (48)

/2~ it2 /inM m m2 m2 m3

where f and f denote the scalar products of the flavour part of the

quark operator Oq with the flavour wave functions of the BS-amplitude
and XOM/-^ which talce e.g. for the proton the values

+ f (M+) 2
f (proton) = l u u d x* ' (proton) = — ,

t\ O L* »3 U l J / riov^ rr
A, B , C • /O

f"(proton) = l uau_d X™,^ anr(proton) = ° '
_ A o U b U ^ J J AÜL

A,B ,C

The relative minus sign between the terms involving f and f is due to

the definition of O , E q . ( 4 4 ) , in terms of left- and right-handed quarks,q
A definition of 0 in terms of only one kind of quarks, either left- or

right-handed, which can be given by application of the transformation

— c — c

would manifest itself in a relative plus sign between f and f . It is
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remarkable that in f the lowest order of the power series in 1/m vanishes.

This is due to the fact that the effective Lagrangians we are dealing with,

like Eq. (43) , are formed by the exchange of vector bosons. As a con-

sequence of that f depends decisively on the quark mass m.

When one tries to find an acceptable numerical value for f one has to

be aware of the fact that there are a number of uncertainties entering in

this attempt. The most uncertain aspect is the size of the effective quark

mass m. Although there exist different estimates of m [24-26] we follow

the choice of Ref. 27 and Ref. 28 and choose m = 1 GeV . Of less impor-

tance, however, is the arbitrariness in the choice of the model for the

BS-kemel caused by our lack of knowlwdge about the interactions taking

place between quarks. Tt has been shown [14] that one is able to obtain

in other reasonable models quite similar results for the BS-amplitude,

differing only slightly in the value of the internal momentum cut-off

Another already well-known problem is the magnitude of the effective

four-fermion coupling G [9,3O]. Taking the values of Goldman and Ross [9]

for the grand unification group SU(5) , a - 0.0244 and m = 4.2-1O11* GeV,
X

one finds

— = 2.17-10~31 Gev"2 . (51)

With this value for the coupling strength G we obtain in the case of the

transition p •<-»• e (i.e. M = O.938 GeV)

f (proton) = 1.61-10"33 GeV . (52)

Similar results are obtained for the other transitions of Eq . (41 ) . In

Table II we listed the values of the effective coupling strength, f

= f /l+|a|2 for different processes and unification groups.

+) This value is, of course, a lower limit to the initial

assumption of heavy quarks, Eq . (23) . An increase of m would lead to

a better agreement with this assumption but on x:he other hand it
3/2would reduce f proportional to m .
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IV. Application: The Proton Decay

Apart from the applications of the effective Lagrangian of Eq. (3)

already mentioned in Sec. II one may use the baryon-lepton coupling

constant f in order to calculate the decay rates for the baryon- and

lepton-number violating decay of the nucleons. There are already seine

calculations of that sort present in the literature. They can be classi-

fied into two types according to the way they treat the problem of bind-

ing quarks to hadrons. One method uses the static SU(6) spin-flavour wave-

functions of quarks inside of hadrons for weighting the possible tree-

graph processes described by E q . ( l ) [5-lo]. The other method uses a bag

model for estimating the initial diquark overlap in the nucleon bag and

the quark-antiquark overlap in the various exclusive final state meson

bags [11-13]. All of these works contain a direct treatment of the three-

quark system called baryon. We propose here a new kind of handling the

puzzle of confinement for the special case of proton decay: A use of the

effective baryon-lepton coupling constant is equivalent of taking the

baryon pole in the three-quark system.

We calculate the exclusive two-body decay rates of proton and neutron

according to Pig. 4: The nucleon N decays with a probability determined

by the phenomenological meson-baryon-baryon coupling constant g [31J into

a pseudoscalar meson P or vector meson V and an off-shell baryon B which

converts into the antilepton £ with a strength given by the baryon-lepton

coupling constant f . We take into account only pole contributions of the
P 1+ +relevant baryons with lowest mass, i.e. of the J = — baryons p, n, E ,

Z and A, because higher baryon states are represented by angular excita-

tions in the harmonic oscillator potential and it turns out that the con-

tributions to the amplitude of the correctly normalized corresponding

solutions of the BS-equation are suppressed at least by a factor

—— = 0.26m

where M^/MjJ denotes the mass ratio of ground state to excited state solution

of the BS-equation. We therefore think that confining ourselves to the
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P 1 +

J = -r- baryons of the 56 representation of static SU{6) and ignoring the
P 1~

in principle possible poles of the J - —baryons N(1535), N ( 1 7 O O ) ,

A(1650) and so on should give the major contributions to the decay widths.

Denoting by M , M^, m , and m the masses of the nucleon, the off-shell

baryon, the pseudoscalar, and the vector meson and by g , g , g the

pseudoscalar, vector, and tensor baryon-baryon-meson coupling constants

and neglecting the lepton mass the nucleon decay rates are given for

production of a pseudoscalar meson by

g2 (M2 - 1*2)2
£ . f 2 ( 1 + | a |2j _J< Z_ f (53)

and for production of a vectorraeson by

g - (M ~ m ) 2
r ( N , V l C > l I V f 2 ( 1 + |*p, -l*—*

"H (54)

mj <2 (M2 - »J)

2 2 4 „2 '
Hfl V

where K means the ratio tensor to vector coupling constant

K = — . (55)
gv

Using the values of a. given in Table I and the empirical data for the

phenomenological meson-baryon-baryon coupling constants reported by Nagels

et al. [31] we obtain for the various mesons M the two-body branching

ratios

F (N -»- M£C)
r ( N -»• two-body)

listed in Table III separately for proton and neutron. If the final state

contains a muon, its mass has been taken into account.

Comparing our results for the two-body branching fractions with those

of Refs. 7, 8, 1O to 13 we find a good qualitative agreement with Machacek

[7], Gavela et al. [8], case (a) of Din et al. [ll] and the recoil model
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of Kane and Karl [10] except for a larger enhancement of the decay modes

involving a pion which is due to the different orders of magnitude of the

phenomenological coupling constants [31]. For the discrepancy of our

results with those of Donoghue [12] and Golowich [13] see footnote 1 of

Ref. [8], In addition we found the kaon modes somewhat more suppressed

than cited in Ref. [8],

For the estimation of the lifetimes of proton and bound neutron we

include the three-body decays of the nucleons. As already pointed out by

Wise et al. [32] the three-body non-resonant background yields a non-

negligible contribution to the total decay rate. Using simple Born terms

for the meson-baryon amplitude we found the semi-inclusive branching

ratios

T ( N •*• £C + hadrons)
F ( N -»• all)

of Table IV. Our computations show a particular large contribution of the
+ + — c + —decay modes p ->- e IT ir and n ->• v IT IT due to the absence of the inter-

ference term between s- and u-channel. Our results are not very different

from those found by Jarlskog and Yndurain [6], Machacek [7] and Goldman

and Ross [9].

Adding up all calculated decay widths we obtain the ratios T /T of
p n

the proton lifetime versus that of the bound neutron given in Table V.

In contrast to most of the already published values for this ratio

[33], in our work for the case of SU(5) the proton lifetime appears to

be larger than that of the neutron. This fact is brought about by the

dominance of the pion decay modes in connection with the isospin relation

[34]

F(n ->- eV") = 2F(p -*• e+TT°) . (56)

The nucleon lifetimes resulting within the SU(5) model are mainly deter-

mined by the value of the baryon-lepton coupling strength f, Eq . (52) ,

T = 2.6«103 1 yr ,

(57)

T = 2.3'1O31 yr .
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These estimates are of course affected with all the uncertainties con-

sidered in Refs. 9 and 30.

We have shown that the description of the new baryon-number violating

force in terms of an effective Lagrangian yields a convenient way of

treating phenomenologically the corresponding processes, like decay rates,

branching ratios and cross-sections. All one has to know are the coupling

constant f and the ratio a. of parity violation, as well as the usual

strong interaction meson-baryon coupling constants. In addition, the

smallness of the parameter d in certain transitions allows for a definition

of parity of leptons with respect to nucleons.
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SU(5) SO(1O) SU(2)T®SU(2)L R

r 2 0
e

r 1 0
V

a - 0.359 1e

a - 0.029 1
P

1

i

0

0

Table I. Unrenormalized values of r and renormalized values of

a. for three different unification groups.

feff

transition SU(5) SO(1O) SU(2) ® SU(2)
L R

p -w- e 14.87 6.35 8.98

n •*-> v C 6.35 6.35 6.35e

Z+ •<-*• U+ 9.25 £.35 8.98

E° -f-»- v ° 4.50 4.50 4.50

A •«-»- v C 2.59 2.59 2.59
U

Table II. Values of f = f /l + lal2 in units of 1O~ -^- m3 Anert -̂ p R

-34(= 6.3-1O GeV for SU(5)). Here m denotes the proton mass.
P
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Branching ratio [%]

Decay mode SU(5) SO(1O) S U ( 2 ) T ® S U ( 2 ) „ ® U ( l )
Li K

+ 0p ->- e IT

p ->• e n

+ 0
P •»• e p

p -»• e u

c +
p -»• v ITe

c +
P •* v

e P

P - y V

y
P - Vy

CK==+

n ->• e ir

n •*• e p

c o
n ->• v ire

n t- ve
Cn

C 0
n •*• y

e P
c

n •* v we

n H- v Vy
C„„0n ->- v K"y

44.4

1.2

8.1

16.4

16.1

2.9

7.5

3.3

0.1

73.3

13.4

6.7

0.2

1.2

2.5

2.7

O.O

20

O

3

7

41

7

10

8

O

45

8

23

O

4

8

9

O

.6

.6

.8

.6

.O

.5

.4

.5

. 2

.8

.4

.O

.6

.2

.5

.5

.2

29.4

0.8

5.4

10.9

29.2

5.4

12.8

6.1

0.1

59.5

10.9

14.9

0.4

2.7

5.5

6.0

O. 1

Q

P (N ->• 2-body)
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Branching ratio [%]

Decay mode SU(5) SO(lO) SU(2) T ® SU(2}_, ® U ( l )
ii K

P - e+Xns

p -»• v X
* e ns

P •»• P+xa
cp ->• v xy s

n -> e+Xns

n •*- v CXe ns

n •*• y X

n -v v CX
V ^

Table IV.

73.0

17.1

6.8

3.1

85.1

12.0

0.2

2.8

Inclusive nucleon

35.7

46.0

9.9

8.4

51.0

39.6

0.2

9.1

decay branching ratios

50.0

32.2

12.0

5.8

67.6

26«,!

0.3

6.0

F(N -»• £CX)
rtot(N) '

X and X denote non-strange and strange hadronic states.
ITS S

Unification group T /T
P n

SU(5) 1.11

SO(1O) O.90

SU(2) ® SU(2) o 0 U ( l ) 0.96
•u R

Table V. Comparison of the ratio T /T for the different grand

unification groups.
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Figure Captions

Fig. l Baryon BS-amplitude x ^or a bound state B of three quarks q.

(i = 1 /2 ,3 ) with momenta k . , spin indices o, ß, Y » colour

indices a, b, c, and flavour indices A, B, C,

Fig. 2 The homogeneous three-particle BS-equation for bound states,
3

multiplied by H S (k. ) .
1

Fig. 3 The transition B -*-»• £C decomposed into B- and L-violating

effective four-fermion interaction with strength G and BS-ampli-

tude x-

rt

Fig. 4 The decay of a nucleon N into an antilepton £ and a pseudoscalar

meson P or a' vector meson V.
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