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ALGORITHMS FOR SPARSE, SYMMETRIC, DEFINITE
QUADRATIC A-MATRIX EIGENPROBLEMS

David S. Scott and Robert C. Ward
Computer Sciences Division

Union Carbide Corporation - Nuclear Division
Oak Ridge, Tennessee 37830

ABSTRACT. Methods are presented for computing eigenpairs of the
quadratic A-matrix, MA2 + CA + K, where M, C, and K are large and
sparse, and have special symmetry-type properties. These properties
are sufficient to insure that all the eigenvalues are real and that
theory analogous to the standard symmetric eigenproblem exists. The
methods employ some standard techniques such as partial tri-diagonal-
ization via the Lanczos Method and subsequent eigenpair calculation,
shift-and- invert strategy and subspace iteration. The methods also
employ some new techniques such as Rayleigh-Ritz quadratic roots and
the inertia of symmetric, definite, quadratic A-matrices.

1. INTRODUCTION. Quadratic A-matrix problems consist of deter-
mining scalars A, called eigenvalues, and corresponding n x 1 nonzero
vectors x, called eigenvectors, such that the equation

(MA2 + CA + K)x = 0 (1)

is satisfied, where M, C, and K are given nxn matrices. In addition,
we assume that M, C, and K are symmetric or Hermitian, M is definite
(either positive or negative definite), and the eigenvalues of (1) are
real and can be divided into two disjoint sets P and S with the follow-
ing properties:

PI) If A- e P and A, e S, then A. > A..

92) If Â  e P (S) and x^ is its associated eigenvector, then A-

is the larger (smaller) root of the quadratic equation

(x* Mx.) A2 + (x* C x . ) H ( x j K x . ) » 0.

The eigenvalues in P will be called primary eigenvalues, and those in S
will be called secondary. Their eigenvectors will be referenced
similarly.

Problems of this nature occur in several application areas; we
will briefly discuss two of them. Lancaster [2j states that the deter-
mination of sinusoidal solutions to the equations of motion for
vibrating systems which are heavily damped results in such a quadratic
A-matrix problem. In these overdamped systems M, C, and K are



symmetric, M and C are positive definite, K is non-negative definite,
and the overdamping condition

(y*Cy)2 - 4(y*My)(y*Ky) > 0

is satisfied for all vectors y * 0. Proof that the eigenvalues for
overdamped systems are all real and obey properties PI and P2 above can
be found in Lancaster [2]. Problem (1) also arises in the dynamic
analysis of rotating structures where the gyroscopic effects cannot be
ignored. (See Wildheim [8] and Lancaster [2].) In gyroscopic systems
M, C, and K are symmetric (Hermitian), M is negative definite, and K is
positive definite. One can determine (Scott and Ward [7]) that all the
eigenvalues are real, that p and s are the positive and negative
eigenvalues, respectively, and that properties PI and P2 are satisfied.
In both overdamped and gyroscopic systems, the M matrix is usually
called the mass matrix and K the stiffness matrix. Thus, we have
chosen the notation given in (1) rather than the more standard mathe-
matical notation using A, B, and C for the matrices.

In this paper we present various methods for computing eigenpairs
of these quadratic A-matrices when M, C, and K are also large and
sparse. Due to the simplicity of the properties of gyroscopic systems,
our model problem for presentation of the methods will be from this
application area. That is, we will discuss algorithms for computing
eiqenpairs of equation (1) where M, C, and K are large, sparse, and
symmetric, M is negative definite, and K is positive definite.

In Section 2 we discuss the approach of transforming the quadratic
problem into a lineer one. Some methods based on the factorization of
a nxn matrix are presented in Section 3 with methods not requiring any
factorization presented in Section 4. We close the paper by summa-
rizing our results.

2. LINEARIZATION. It may be immediately verified that the
eiqenpair (A, x) satisfies the quadratic problem (1) if and only if it
also satisfies the 2n x 2n linear problem

= 0 , (2)

which we denote as (A-XB)z = 0. By the hypotheses on M, C, and K, A
and B are symmetric and B is positive definite. Thus from well known
linear theory, there are 2n real eigenvalues. Applying the Cauchy
interlace theorem to the n x n zero block of A leads to the conclusion
that exactly n of the eigenvalues are positive and n are negative.
Finally, the eigenvectors of the linear problem are B orthoqonal so
that if (Aj, Xjj and (A2, x2) are different eigenpairs, then

* *
Xj K x 2 - Ax A 2 X j H x 2 = 0. (3)



Unfortunately, equation (3) involves both Aj and A2 and does not lead
to a useful deflation technique.

Sparse linear eigenvalue problems have.been studied in some detail
and good solution techniques exist. However, a qeneral linear solver
may not be the best choice for solving a quadratic problem in that the
linear problem has dimension 2n even though the original problem has
dimension n and no advantage will be taken of the special structure of
A and B. Also, A-aB is not banded even if M, C, and K are so that
factoring A-aB, which is an integral part of most linear solvers, will
require special care to preserve sparsity.

For these reasons we will investigate solution techniques which
take advantage of the underlying quadratic problem.

3. FACTORIZATION TECHNIQUES. In this section we show that the
linear problem (2) can be solved usinq well-known techniques by
factoring an nxn matrix only. The Lanczos algorithm and subspace
iteration appear to require the factorization of the 2n x 2n matrix
A-oS. However what is actually needed is the ability to multiply
vectors by (A-aB)"1B. The special structure of the A and B matrices
allows this operator to be realized by factoring only the nxn matrix
W(a) = Ma2 + C a + K.

Theorem 1. Let A and B be as in equation (2) and let
W(o) = Mo2 + Co + K. Then

1) The number of negative eigenvalues of W equals the
number of eigenvalues of A-AB between a end 0.

(A-oB) B | J - ^ i ( ) J

The proof is given in Scott [5]. Once the operator (A-aB)-^ has
been realized then it is straight forward to implement subspace
iteration or the Lanczos algorithm (as described in Scott [4]) to find
the eigenvalues of A-AB near a. The number of negative eigenvalues of
W can be easily determined as a byproduct of the factorization and so
the index of the computed eigenvalues can be found.

If many eigenvalues are desired then a seouence of shifts o can be
used. The eigenvalue count then gives the number of eigenvalues be-
tween two consecutive shifts so that no eigenvalue can be knowingly
missed.



4. NONFACTORIZATION TECHNIQUES. In this section we assume that
the factorization of M, C, K, or any linear combination of them is
either impossible or undesirable. Thus, we are basically limited to
algorithms similar to the Lanczos Rayleigh Quotient algorithm presented
by Scott [6] for the linear pencil eigenproblem which uses only matrix-
vector multiplications.

We have developed an algorithm based on techniques for determining
the "best" approximation to an eigenvalue given an approximate eigen-
vector and the "best" approximation to an eigenvector given an
approximate eigenvalue. The algorithm alternates between these approx-
imations until convergence, as the following outline illustrates:

I. Set the vector x0 to random numbers.

II. For i = 1, 2, ... until convergence, do a and b.

a. Determine "best" o from x

b. Determine "best" x1 from a17
i i

Step II.a uses a generalization of the Rayleigh quotient different
from that of Lancaster's [2] and specifically designed for the
quadratic problem. Given any nonzero vector x, potential eigenvectors
of the linear pencil (A,B) given by (2) would be linear combinations of

the vectors [x, 0] and [0, x ] . Using the Rayleigh-Ritz procedure,
the "best" approximations to eigenvectors in this space and corre-
sponding eigenvalues can be determined. Best in this context means
minimizing the Frobenius norm of the 2 x 2 scaled residual matrix (see
Parlett [3]). The characteristic equation of the reduced linear pencil
in the Rayleigh-Ritz procedure is equivalent to the quadratic equation

(x*Mx] o2 + (x*Cx) e + (x*Kx) = 0. (4)

Thus, the approximations to two eigenvalues of the quadratic A-matrix
are given by its roots, e+(x) and e~(x), which can be easily determined
by the quadratic formula. If we are trying to converge to a positive
(primary) eigenvalue, then the larger root e+(x) is chosen for a-;

conversely, the smaller root Q"(x) is chosen when trying to converge to
a negative (secondary) eigenvalue. The roots of (4) are identical to
the primary and secondary functionals discussed by Duffin [1].
However, Duffin does not present a theoretical basis for how and why
these roots along with x most closely approximates an eiqenpair of the
quadratic A-matrix. A more thorough discussion of Rayleigh quotient
generalizations can be found in Scott and Ward [71.

Step II.b is based on the observation that if a is an eigenvalue
of the quadratic A-matrix with x as its eigenvector, the matrix W( a)
defined in Theorem 1 has the eigenpair (0, x). Theorem 1 relates the



eigenvalues of the symmetric matrix W(<x) to the primary and secondary
eigenvalues of the quadratic X-matrix. Thus, to which eigenvalue we
are converging can be controlled by the selection of the appropriate
eigenvector of W(a) to be used in Step II.b. For example, the
following algorithm is used to converge to the m smallest positive
eigenvalues:

I. Set the vector x 0 to random numbers.

II. For k = 1, 2, ... m, do 1 and 2.

1. For i = 1, 2, ... until convergence, do a and b.

a. Set a. = e+(x,- , ) .
i I —i

b. Set x- = y,,, where (p-, y^) are eiqenpairs of
IK J J

W(ai) with pi < u2 < . . . < Pn
 a n d y-i un i t - length .

2. Set x0 to the computed in step l.b above.

From Scott and Ward [7], we know that the sequence for k = 1

converges nonotonically downward to the smallest positive eiqenvalue,
and the convergence is asymptotically quadratic. Also, the algorithm
is expected to quadratically converge to the other m-1 eigenvalues, but
convergence is not guaranteed.

A minor modification can be made to the algorithm to guarantee
quadratic convergence to interior primary or secondary eigenvalues.
This modification requires the solution to a 2k x 2k dense linear
pencil eigenproblem in step II.1.a. and the computation of k eigen-
vectors in step II.l.b. The following algorithm is guaranteed to
quadratically convergence to the m smallest positive eigenvalues:

I. Set the vector yx to random numbers.

II. For k = 1, 2, ..., m, do 1 and 2.

1. Set the r — column of the nxk matrix X to y

from step I if k = 1 or from step II.2.b otherwise.

2. For i = 1, 2, ... until convergence, do a and b.

a. Set a.j = 0. where 9_̂  < ̂ k+i* ••• < °-i <
0 < 8j <...«; ê  are the eigenvalues of

b
K

K"

c - e
"K

0
o"



b. Set the r — column of X. to y , where (n., y.)

are the eiqenpairs of W(a-) with px < v2 < ... < v^
and y- are unit-length.

Similar algorithms can be developed for computing the m largest posi-
tive eigenvalues and the m larqest and smallest negative eiqenvalues.

5. CONCLUSIONS. In this paper we have presented several tech-
niques for solving symmetric, definite, quadratic X-matrix problems.
These techniques are more efficientm, in general, than applying linear
techniques to the equivalent ?n x 2n linear problem. The convergence
rates of the methods based on factoring W( a) are superior to the
convergence rates of the nonfactorizetion methods presented in Section
4, and so the factorization methods should always be used if the
factorization is possible. If the nonfactorization methods must be
used, then it is still possible to use preconditioning techniques as in
Scott [6] to improve the convergence, if desired. Portable software
implementing these algorithms should be available in the near future.
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