
ON QCD SUM RULES OF THE LAPLACE TRANSFORM TYPE 
AND LIGHT QUARK MASSES 

Stephan NARISON*> 
ICTP, Trieste, Italy 

and 
Eduardo de RAFAEL 

Centre de Physique Théorique, Section 2, CNRS, Marseille, France 

ABSTRACT 
We discuss the relation between the usual dispersion relation 

sum rules and the Laplace transform type sum rules in QCD. Two specific 
examples corresponding to the Ç-coupling constant sum rule [lb] and the 
light quark masses sum rules [2j are considered. An interpretation, within 
QCD, of Leutwyler's formula [lia] for the current algebra quark masses 
is also given. 
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There has been some progress during the last 'ow years 
in extending the applicability domain of Quantum Chromodynamics (QCD) 
to obtain predictions on low energy parameters : masses and coupling 
constants. The approach is based on sum rules which the spectral func­
tions associated to specific two-point functions of current operators 
must obey as a consequence of general analyticity properties. Depend­
ing on how these an&iyticity properties and the positivity of the 
spectral functions arc exploited there follows a variety of sum rules 
which have been discussed in the literature. Of particular interest for 
low energy phenomenology are the sum rules of the type 

w 

F(fi'). if/t <?"""* J^Tf(t) (i) 
it J t 

proposed by Shifman, Vainshtein and Zakharov (SVZ) [l] and collaborators. 
Here 1 I* ftft) denotes a specific spectral function (e.g., the hadro-v + _ nic vacuum polarization measured in the annihilation e e —^ Hadrons) 2 
and F(M ) is a quantity which in principle can be computed asymptotic­
ally in QCD. Equation (i) is a sum rule of the Laplace transform type : 
F(M ) is the Laplace transform ' of the spectral function -l ] • . lift) . 

The sum rule (1) is to be contrasted with the usual dispersion 
relation ( Q 2 > 0) 

1 r J t+Q* ' ' 

I.e., the Hilbest transform of I I-7fM . It is clear that the r.h.s. 
in (1) is much more selective on the low energy behaviour of the spectral 
function (small t) than the r.h.s. in (2). Hence the interest to work with 
the Laplace transform instead of the Hilbert transform if what we aim at 
is to obtain constraints on low energy parameters from QCD. 

The purpose of this letter is to report on some results which 
clarify the relationship between the asymptotic Hilbert transform //f(Q), 
directly calculable in QCD, and the corresponding asymptotic expression 2 for the Laplace transform F(M ) in general. This is best illustrated 
with a discussion of two specific examples corresponding to the two-point 
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functions 

«'for t f* <•! T(Jf[*> Jty "> * '(ff- f/f) ty/, (3) 
where >V{x) denotes the isovector component of the electromagnetic 
current, and 

f€(fl.- ife€-'fx «(Tfeaw$ fa1) 10 , (4) 
where i.Aff*) denotes the divergence of the axial current with 
the quantum numbers of the H* . As we shall see, there emerges a consis­
tent picture which puts on a firm common framework the SV2 calculation of 
the o - parameters [lb] and our previous work with Becchi and Yndurain 
(BNRY) [z\ on light quark masses. 

We are interested in the short-distance behaviour of the two-
point functions (3) and (4). This can be analyzed via the Wilson's oper­
ator product expansion method. In practice we shall only retain the unit 
operator (i.e., the usual asymptotically free perturbative contributions), 
and the operators which contribute to the leading non-perturbative '/£* 
power. In order to avoid the dependence in the external renormalization of 
the two-point function (subtraction terms in the Hilbert transform) 1t is 
convenient to work with derivatives of the functions 7f(<\ ) and £(<! ) 
i.e., moments of the Hilbert transform. One derivative is required for 
^(q ) and two for i£(q ). In general, for an arbitrary number N of 

2\ ft 2 2 
derivatives ', we have (Q = -q > 0) : 

(M! (dur 

/ > JL / _ £ ! } " J i - i r m . m' (5) 

and 
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f/t Ml /JL f*. 1» $ (t). »>, 2 . 
i (Witt**/ * Tç ' (6) 

The limit advocated by SVZ is : N - > a» and Q 2—^«» with Q 2/N £ H 2 

fixed '. It can be readily seen that this limit, when applied to the 

r.h.s. of equations (5) and (6), leads to the Laplace transform of 

the spectral functions .' J» ff/tf and .' I* <l ft) respectively. With 

H *» / 'ft 

follows from equations (5} and (6) that 

L rm - k i* *'""l ***** > 
and 

£fW'pf**m*k'é*'A/*-

V) 

(8) 

6 

The problem now is to evaluate in QCD the limits on the l.h.s. of these 

equations. This we discuss in the next two paragraphs. 

Once we choose a renormalization scheme, say the MS-scheme 

for convenience, the functions X (Q ) and jfe '(Q )• besides 
their dependence on Q , also depend on the renormalired quark masses 

o 

ro^N), i = up, down, ... ; on tt, = g M / i y • where g(i>) is the 

renormalized QCD coupling constant ; and on V , the arbitrary mass 

scale introduced via renormalization. The functions 7( (Q ),lr (Q ' 

as well as their successive derivatives ^ v (Q ) r H > 1 s and 

l£ '{(,- ;. H > Z obey simple rsnormalizat'on group equations '. Using 

the fact that the renormalization group operator is an homogeneous 

CPT-81/P.1287 



2 
function in Q and in m.(V), it then follows that the SVZ-limits 

L77C5') a n d l-^j'(Q) also obey simple renormalization group 
equations / ^ * ? .8*2- -> fi* ^ ) : 

I à?» " H »% MV 
* \ 

uit .awl. ifHifa)*!. )[L

fY!U^ 
( In1 ' ?*, i ' a* HI ff'(^' 

where x.j = i».j(V)^; and fl(*t) and ffibj a r e the usual functions 

associated to the coupling constant renormalization and the mass renor-

malization (which in the MS-scheme is the same for all quark flavours). 

From this result and equations (7) and (8) we then conclude that, in 

the SVZ-limit, the natural choice for the scale variable V * in the 

renormalized coupling constant and the renormalized masses is v=H* '. 

We have carried out this procedure explicitly for the two two-point 

functions in question '. The details of the derivation will be published 

elsewhere. The final results are given in equations (11) and (12) below. 

An alternative procedure is to scale the asymptotic QCO result 

for # ( Q ? ) and jr-LZ'(Q2) at >>*= Q2, as it is usually done, and 
then compute the limits £ ft{Q2) and t $ Z * ( Q 2 ) - From the practical 

point of view what one then needs to do is to evaluate limits of the 

type 
A 

L -L ' 
(If)!*" 

where A= / . i 
A 

This can be done in a very suitable way, once i t i s recognized that 

—'— — is the Laplace transform of the function ju/t A it) 

defined by Erdëlyi et aK., [_5j. He f ind af ter some algebra, that 

L J^RE»'}/*(}+>*)•***rP n 
and the asymptotic expansion, for large y, gives then ' 

/ _L _L_ = --L- - I - ~L- / / 
/"' Mr rM f (p;r I 
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where fan £,%». 
Using either of the two procedures described above we finally 

obtain the following results : 

M*L J 3 ff* 

and, for the If*- chsnnel, 

.o» 

(11) 

At* 

-I'M*"' ?)<lp *(*-' ruw] +ïà*6t> 

*0(tf * ô(à*>) * 0&) 1 • 
Hers, *»''"y5r ' '~A> /Â ' ™i a r e t h e invariant quark masses in 
the MS-scheme at the two-loop level ; Y is the Euler constant {Y = 0.5772.. . ) ; 
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R, is the 3-loop calculation \b] of the ratio R : R, = 1.986 - 0.115 n-, 
• • 1 1 1 

with n f the number of flavours ; A , « - -y- + -j n f ; )̂ = 2 ; A" " T + if nf' t 7] '• and ^ = T7 " IF" nf* W ' For the K+-Channe1 

there is a corresponding expression like equation (12) with the replacement 
d -* s. The leading non-perturbative contributions are parametrized by 
the vacuum expectation values i^f> and ^"j &,,<. o ^ " ^ . These 
contributions can be fixed from the PMC relation : /'*•,'<v/^«4,tt'^ &> 
ar - t ft >1 ; and the recent estimate [9], via charmoniuro 

sum rules, <*,&'> ° (0.044 * °2°06 ' GeV'"-
It is instructive, for the purpose of simplicity, to discuss 

equations (11) and (12) at the approximation where all the corrections 
to asymptotic freedom except for the leading non-perturbative contribution 

(et, &*y are neglected. From the contribution of the G to the l.h.s. 
in equation (11), and from the contribution of the IT to the l.h.s. in 
equation (12), one can then respectively derive the SVZ inequality ' 

fr - « ( "J At* / ' 
9) 

S O.S . (13) 

and the BNRY inequality 

w_ */*** * 33/fey . <"> 
V * i<«,6x>* 

The significance of these interesting results can be now examined in 
a more rigorous way if the full information contained in equations (11) 
and (12) is taken into account. 

One can use equation (11) to make a comparison of QCD with the 
low energy data (Jt < 2 GeV) on e*e" -> Hadrons in 1 = 1 . This is 
precisely what the authors of ref.[lo], EKV, have done. In doing that 
EKV have also included a non-perturbative contribution of order I» 
but not the (^("V/irJ corrections we show in equation (11). We have 
checked that this correction does not change significantly their conclu­
sions. From their analysis, EKV find that 
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70 MeV < /\ < 210 MeV 

Lower bounds on m. 
fact that the W-pole eontr 

m + nr, follow from equation {12} from the 
ibution to the l.h.s. : * £ I * * ) H e ' * ' ' " * 

has to he larger than the calculated r.h.s. Kà.?»h(t) >, o for all t). 
The lower bounds thus obtained are shown in Fig. 1 as a function of H 
for the accepted range : 70 HeV < A * 210 MeV. The bounds are rather 
sensitive to the value of A • They show that for A > 150 HeV there 
are important corrections to the rough approximation made to derive 
equation (14). For each value of A there is an optimum for m + m d 

with an error from the uncalculated corrections. Taking as an estimate 
of this error a value equal to the square of the calculated corrections 
to the asymptotic freedom term we find : 

m u + m d ̂  30 i 7 HeV , A = 70 HeV 

%i + md *• 2 0 * 5 M e V • ^ -= 1 4 0 H B V 

\ + %j £, 1 3 t 3 HeV , A = 210 HeV . 

The corresponding lower bounds for the combination m + m are 
sliowif ifi-Fiiguré-2. Herev'the mass correction term Q f - ' ) is important 
and has been taken into account by an iterative procedure. Because of the 
vicinity of the continuum threshold, we expect the bounds to be less good 
in the case of m + m than in the case of m + iru. 

It would be nice to be able to compare these results with 
previous estimates of the so called current algebra masses [ll] . Sometime 
ago, Leutwyler [lia] , using SU{6) symmetry to relate the matrix elements 
&fji?t tl/TT> and &/ÂJL v (f> , obtained the 

formula 

/N^-,V>< r 
"f 

Inspired by the symmetry assumption in the derivation of this formula, 

we suggest comparing the two sum rules equations (11) and (12) at the 
2 2 2 

same H -value. Fixing M = HI , a choice which reproduces well the 
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y-coupling constant, and is consistent with the bounds we have derived 

for m u + iSd within the range 70 MeV_< /[ £ 210 MeV, we obtain the 
relation 

? { r 

+ o(~«LV) * û(;t) } • ( 1 6 > 

We consider this result to be an improved QCO-version, at the one-loop 

approximation, of Leutwyler's formula, equation (15). Numerically, the 

r.h.s. in equation (16) gives 

»*("()* ^("{l - Ut ** ( 1 7 > 

which, for 70 M e V * ,A < 210 HeV, corresponds to 

i^fUV < 4„ * v . < 31 HeV . (18) 

From these results, it seems fair to conclude that the combination of 

current algebra quark masses m + m d , if interpreted as the running QCD 

masses at Mf (or as the scale invariant masses m + m^ ) , have very 
likely been underestimated by a factor of two (or of three). 
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FOOTNOTES 

1) Ue consider the terminology of Laplace transform more suitable than 
that of Borel transform used by SVZ. We have found that several 
properties of Laplace transforms help usefully in deriving some of 
the results below. 

Z) The interest to work with moments of the Hilbert transform in connection 
with the comparison between 0"(e e" •> hadrons) and QCD was first 
recognized by Yndurain, ref.[3], 

3) The same limit appears in ref.fz] in the optimization of moments of 
the Hilbert transform of -' I* U• ((•) 

4) See e.g. refs. [4] and [2]. 
5) The authors are grateful to Jan Dash for an enlightening discussion 

on this point. 
6) Useful formulae to do that can be found in the appendix of BNRY, ref.JVJ. 
7) Our result for the leading term in equation (10) agrees with the one 

quoted by SVZ (their equation (S-.22) in ref.flal). Me find, however, 
1 1 

that the corrections are of order • * •- and not 0(. ' ) as 
stated in their equation (5.22). The relevance of these 1/1og y 
corrections already appears at the two-loop level. This is why we 
give explicitly the coefficient of the next to leading term. 

2 •* 
8} Notice that the coupling constant g» of SVZ is 4 times our J 

2 2 s ' 
SVZ choose H = Hç> and in fact they write their result as an "estimate" 
and not as an inequality. 

9 
9) BNRY choose M so as to optimize the lower bound expression for mà. This corresponds to ff'z /*<*i&>)* 

CPT-S1/P.1287 



10 

- FIGURE CAPTIONS • 

Figure 1. Lower bounds for the sum of invariant quark-masses m + nr, 
versus M (see equation (12)) for various choices of A . 

Figure Z. Lower bounds for the sum of invariant quark-masses m + m 
versus M (replace m. -» m in equation (12)) for various choices 
of A • 
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