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Abstract

Collisionless tearing instabilities and the associated

electron heat transport are investigated by using a two-and-

one-half dimensional particle simulation code. It is shown

that a collisionless drift tearing instability saturates at a

low amplitude and turns into a nonlinear pure tearing insta-

bility. The electron internal energy profile is flattened

within the magnetic island. The electron heat conductivity

obtained from the heat flow across the singular surface is

4 2

proportional to W in the linear phase and to (dW/dt)W in

the nonlinear phase of the tearing instability. Here W is

the half width of the magnetic island. A theoretical model

to explain these results is also presented.
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1. Introduction

Anomalous electron heat transport associated with

magnetic perturbations, even when their amplitudes are

small, have been disclosed by the experiments on tokamaks .

The observed flattening of the electron temperature profile

around a rational magnetic surface suggests large electron

heat flux across it. Tearing instabilities are thought to

be one of the most probable mechanisms causing anomalous

heat transport in tokamaks at such surfaces.

The electron heat transport caused by tearing instabili-

ties in the MHD regime has been studied by Hazeltine and
2)

Strauss. Their basic idea is that a small magnetic

perturbation allows the parallel heat transport to contribute

to the heat transport in the radial direction. If any small

magnetic perturbation which connects two neighbouring magnetic

surfaces is present, then there will be a consequent large

heat exchange between these equilibrium magnetic surfaces.

This kind of phenomena will be observed when magnetic islands

are formed due to tearing instabilities or when magnetic
3) 4)fields are braided. '

In view of high temperature existing in current tokamak

experiments, collisionless tearing instabilities are important.

Although tearing instabilities in the collisionless region

5) -9)have been studied extensively, no reliable quantitative

estimation for the associated electron heat transport is

available.

The purpose of this paper is to present a simulation

study on collisionless tearing instabilities and the
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consequent electron heat transport, using two-and-one-half

dimensional magneto-static particle simulation code.

It is shown that the induced drift tearing instability

saturates at a low amplitude and then turns into a nonlinear

pure tearing instability. The observed electron heat

conductivity increases in the linear phase in proportion to
4

w where w is a typical half width of the formed magnetic

island, and continue to increase as (dW/dt)W during the

nonlinear phase.

In Sec.2, a theoretical model is presented to aid in

understanding the simulation results. Quasi-linear and

nonlinear treatments are worked out in a heuristic way.

In Sec.3, the simulation model and the simulation results

are presented and discussed in the light of the theoretical

model of Sec.2. A discussions of the results and the

conclusions of this work are given in Sec.4.

2. Theoretical Model

We here present a theoretical model for the electron

heat transport caused by tearing instabilities. Our arguments

are based on a plasma slab with a sheared magnetic field,

! = V z + By(x)gy, |Bzl»|By| , (1)

where the shear field B (x) is produced by a sheet current

as shown in Fig.l. The electron temperature T (x) and

the current density J_,, (x) are assumed to vary only in

the x direction, and the electron density is taken uniform.

Namely the electron distribution in equilibrium is expressed

as,
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m 3/2 m _
fn = ( — ) exp[- — (v-v ,,(x)e ) ]. (2)

2TTT (X) 2T (X) ~ ° z
(X) 2T

e e

We are mainly interested in the electron dynamics under

the condition of 3 > m /m., and consider the perturbed

electric and magnetic fields in the form,

B = V x A,,e2 , and E,,^ = - \ £. A,. (3)

The scalar potential may be neglected for the present

qualitative discussions. The vector potential A,, is

determined by Ampere's law,

47rn.e
AA,, = ~ /dvv,,f, (4)

in which f is the perturbed electron distribution which obeys

the linearized Vlasov equation in the small Larmor radius

limit,

We seek a solution of the form A,, (r, t) = A,, (x)exp(ik y-

iwt). Solving Eq.(5) for f and substituting it into Eq. (4),

we obtain the eigen-mode equation as follows.
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c

2T, 2
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2z'(O] §A,, ,(6)
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where Z(c) is the plasma dispersion function, Z'(c;) =

dZ/dc, and the other symbols are ; t. = (w/k,,-v ,)/v , £. =
U G K

wA..ve, v e = (2Te/me)
 h, s z =

 v
0-./

v
e.

 w* T e= -(c/eB)dTe(x)/

dx, (i) = eB/m c, and X = (T /4Trnne
2) 2. Equation (6)

can be solved by a shooting method under the boundary

condition that A,,=0 at x=0 and x=L . Note that in our model

the plasma slab is bounded by the conducting walls located

at x=0 and x=L as shown in Fig.l.

Suppose that a singular surface (k,,=0) exists inside

the plasma slab. V7e divide it into the inner region including

the singular surface and the outer region. The width of

the inner region is characterized by two parameters; the
8)

tearing mode width X and the current channel width \Q .

The former is defined as '.he extent of the region inside

which E,,4=0, and is given be X =|w/k,,'v I, where v is the

Alfven velocity and kn'=dk,,/dx. On the other hand A is

defined as the spatial region in which electrons can

continuously accerelated by the parallel pertubation,
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A =|(j/k,,'v . Note that X <X for B > m /m. because that
a ' ' " e a w e 1
X /X = (in /m.B) . In the inner region, kinetic effects

(electron inertia) are important. On the right side of

Eq.(6), the first two terms which express kinetic effects

are important in the inier region, while the last term is

dominant in the outer region.

Figure 3(a) shows the dispersion relation obtained by

solving Eq.(6) by a shooting method. The physical parameters

used here are c/v =3.53, w /CJ ~1.5, L =64, k =TT/32, and

A =1.4. The current aid temperature profiles are J,,(x) =

-en.v exp[-(ln2)(x-L /2)/25], and T (x)=l-0.5T tanh[5(x-

L /2)/64] with T =1.2. As is seen in Fig.3 (a), the frequencyx s

is not so dependent on v,, which is about 0.2U* , while the

growth rate depends on v,. A remarkable feature is that a

boundary of the stability exists at finite v, ( 4= 0 ). For

the case of uniform temperature ( T = 0 ), it is shown

numerically that the boundary of stability lies at the

point v,= 0. Then the temperature gradient has a tendency

to stabilize the tearing instability.

In the following analysis we consider the case, in

which |B (k )I is constant in the inner region.

2-1. Electron Heat Conductivity in the Linear Phase

In the inner region, the magnetic shear in the y

direction is small, and a magnetic island will easily be

formed, when the small perturbed magnetic field B is

- 6 -



induced. The electrons inside the magnetic island execute

a bounce motion along the magnetic field lines. They,

however, do not go around the island within one growth time,

because the island bounce frequency is smaller than the

linear growth rate. We then calculate the electron heat

flux in the x direction along B by invoking the quasi-linear

equation,

9fn „ ~ . B*(k ) ^ -

where superscript * represnts the complex conjugate.

We introduce the effective temperature T (x) which is defined

as T = / dv(v-v)2 fQ with v = /dyvf-. Taking the appropriate

moment of Eq.(7), we find the heat transport equation becomes

8T
nTe + F^lf = & * A Te + Q'

where with C = w/k,,v ,

= -il { — - B*(k f
X y y k,,2 2

(9)

B ( k )E,,(k )
k 3B2 X y y k,,2
Y

F = -iZ {frpg E,,(k )E,,(k )—*- [ ; 2+ (I,3- ̂ )Z(?)] } , (10)

ky e
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2neB (k

In the above we have assumed v „<< v . As mentioned early in

this section, the boundary of the inner region is given by

c|=l. For estimation of K, F, and Q, we use the approximate

expansion in |;| of Z(?) in the outer region where |c|<l,

and the asymptotic expansion in the inner region where | ̂  | -* 1 •

We find the main contribution to them comes from the inner

region. Keeping only leading term, we obtain

, _ B*(k )B (k ) Y,
r / 3 2 x y x y k .

K * z ( ̂ nv ^ * — )

ky

4 n uce Sx ( ky ) Sx ( kv ) Yk wk
F - Z ( -^^ x ^ x y

 7 7 ) , (13)
ky ^ B wk + ^

2 2 V V V V YkQ - I (f m nu ^ x y X y 1 ) . (14)
ky

 3 e C e B 2 ky
2

Where u>, and y. are the linear eigen-frequency and growth

rate of the mode k . If we divide T into T x and T „ , we

obtain the heat transport equations for T ± and T „. Here

T _,_ and T „ are the components parallel and perpendicular

to the magnetic field lines, respectively. In this case

the heat conductivity K "' for nT „ and K *•' for nT ± have

the following relation in the inner region,

K = j<{")~ 2K(-L5 (15)
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In the system in which only one mode of k is unstable.

the relation W <* ls
x<

k > I ̂  holds.6) Then the electron

4 2
heat conductivity K grows in proportion to y .VI /('•*')<. +Yk

*
in the linear phase.

*This formula has a simple familiar form which can be written

down from the following elementary kinetic arguments :

the random x velocity is v S /B, the mean step size is

(v S / B ) T , where x is a correlation time and the associated
Q X C C

diffusion rate is (v S /B) x . Taking several modes into

account and the fact that the frequency is not zero gives

2 2 2 2 2
K - £ nv ( 8 (k ) /B )Y,/(W, +y, ) . We should note here

y

that in Eq.(12) y, is a growth rate and not a damping rate,

so application of the elementary kinetic picture is quationable.

However, the reconnection process and associated redistribution

of heat is a nonsteady transient process in any case and

can only be treated as heat conduction in some rough sense.

Since the growth can continue for at most a few growth times

the kinetic picture probably represents the process as

accurately as possible from a heat conduction point of view.

2-2- Electron Heat Conductivity in the Nonlinear Phase

In this section, we assume that only one magnetic island

is formed in the system, and consider one Fourier component

of k . In the nonlinear phase the bounce frequency of the

electron motion around the magnetic island, w,, becomes

larger than (co, +y. ) ' for the tearing mode. Consequently

the electron heat flux does not continue to transfer along
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the perturbed maqnotic field. We now estimate the heat

conductivity in a heuristic fashion.

We assume the half width of the magnetic island is

W(T) at the time T and the electron bounce frequency W , ( T ) .

Let us pay attention to a single magnetic field line lying

on the separatrix. For the electron heat flux on this field

line, the step size and the correlation time of heat are

thought to be W ( T ) and U),(T) . After a time interval ui. {T ) ' ,

the electron temperature on this field line will become

uniform. The contribution to the heat flux on this field

line at the time t may be estimated as,

3T
6q(t) = W ( T ) 2 W , ( T ) [6 (t-T)-e (t-T-oo~ )] -^

where 9 is the Heaviside step function. Averaging this

quantity over the extent of the magnetic island, the electron

heat flux can be estimated as,

q(t) - / ' o ( t ) d w 6 q ( t )

.. 1 dW 2 e
W f dt 3x ,

v/here W. is the saturated width of the magnetic island,

and <5(t) is the delta function. Then we have the electron

heat conductivity in the nonlinear phase which is averaged

over W_,
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-L —
wf dt

2

The above results show that < is proportional to W2 if

dW/dt=const. in the nonlinear phase.

3. Simulation Model and Results

Particle computer simulations were performed to

investigate the tearing instabilities and the consequent

heat transport in a low (3 collisionless plasma. A two-and-

12)one-half dimensional particle model was adopted. In the

magnetostatic model, the displacement current is ignored,

and hence high frequency modes due to radiation are elminated.

For low frequency modes in a low 3 plasma where tearing takes

place, the compressional component of the magnetic field

perturbation can be neglected.

The geometry used in the simulation is the same as that

shown in Fig.l. The system is periodic in the y direction,

and is bounded by two conducting walls located at x=0 and

x=L in the x direction. We assume that there is no spatial

variation in the z direction, but particle have three velocity

components (v , v , v ). The particles which hit the wall

are reflected according to the method designated (I) in

Ref. (13), which produces neither macroscopic plasma flows

nor density perturbations near the walls.

The initial current and temperature profiles used in
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2 2the simulations are J (x)=-en v exp [-(In2) (x-L /2) /a ] ,

and T .(x)=1-0.6tanh[5(x-L /2)/L ]. Here v, is the electroncf l xx a

drift velocity in the z direction. The initial density is

uniform in the system. The initial electron and ion temperature

profiles are taken to be the same. 128x128 electrons and

ions are followed on a 64x64 spatial grid system. Physical

parameters used are u /oo =1.5, c/v = 5, nn\
 2=7.8, m./m =

16, T /T.=l, a=5.3, and v =(T /m ) Vi .

3-1

We first present the results of the simulation excluding

longitudinal electric fields for the case of v,=0.7v .

This case is the one discussed in the previous theoretical

section. Furthermore with electrostatic effects suppressed

the effects on the heat transport of the tearing instability

can be separated from those due to convective motion associated

with electrostatic fields. This simulation is carried out

in such a way that the longitudinal electric field in the

equation of motion is neglected without further loss of

self-consistency. In this system the linear theory predicts

the mode k =ir/32 to be unstable.

Figure 2(a) shows the time evolution of the magnetic

field lines projected on the x-y plane. The magnetic shear

field B (x) reverses its direction across the singular

surface which lies on the line x=L /2. The formation of

the magnetic island is observed at u t=600. The island

drifts slowly in the direction of the electron diamagnetic
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drift until ui t = 1100. After to t = 1100 the island stops
pe pe ^

14)
drifting and turns into a nonlinear pure tearing instability.

The width of the magnetic island continues to. grow until

a) t=1700, at which point it saturates.

The time dependences of the phase and amplitude of the

perturbed vector potential A are presented in Fig.3(b) and

3(c), respectively. The vector potential is Fourier-analyzed

in the y direction and averaged over some range in the x

direction ;

r - x
zn 2ALy

k =2im/L

L /2+A
/ K d

Lx/2-A

L
x / y d

0
y Azexp(-ikyy) ,

We choose A=3 in Figs.3(b) and 3(c). In Fig.3(b) all modes

relax to the thermal level during early time (a) t=0 to 600) .

The n=l mode is unstable in this case, and after tu t=600

the mode grows above the thermal level, whereas the higher

n modes continue to fluctuate around the thermal level.

During w t=:600 to 1100 the n=l mode grows with the growth

rate of the linear theory as shown by the slope of the solid

line in Fig.3(b). This mode saturates at w t=1700.

The time variation of phase of the n=l mode is shown

in Fig.3(c). The phase varies rapidly with the frequency

about u,' during the period u _ t = 0 to 600. After w t^OO,

the mode has a frequency of about 0.2uv_ which agrees with

the eigen-frequency predicted by the linear theory. The
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frequency of this mode vanishes suddenly at to t~1100, and

after this time the frequency remains nearly zero.

In Fig.6(a) we plot the time evolution of the half

width of the magnetic island. The growth of the island is

almost proportional to time in the nonlinear phase. Figures

2(b) and 2(c) show a time sequence of isothermal lines for

the electron parallel and perpendicular internal energy,
2

respec t ive ly . Here nTlt , =<(v,, ,-v,, ,) >,v,, ,=<v11 ,>/n, and < >
i i i i i

represents the ensemble average over the particles around

each grid point in the simulation system. The internal energy

is higher in the region x > L /2 than in the x < L /2 in these

figures. The plateau region for the parallel internal energy

in Fig.2(b) is observed around the O-point of the magnetic

island at co t=600.The gradient of the parallel energy is

steep at the X-point. The plateau region spreads as the

magnetic island grows. The width of the plateau region is

not the same as that of the magnetic island but rather

smaller until to t=2200. This indicated the existence ofpe

the gradient of the internal energy along magnetic field

lines in the island, which is associated with the finite

rate at which heat can flow. At u t^2200 the width of the

plateau region is equal to that of the island, and the

internal energy becomes uniform in the island.

By contrast the plateau region for the perpendicular

energy can not be observed at all in the linear phase in

Fig.2(c). After u t=1100, the perpendicular energy

profile resembles that parallel to the field lines.
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To investigate the mechanism of the time variation of the

internal energy or the heat transport, we display in Fig.4

the time evolution of the zeroth and the fundamental mode of

the electron internal energy on each magnetic field line.

Each symbol in Fig.4(a) indicates the average electron internal

energy on each magnetic field line. From this figure we see

the overall internal energy is not changed so much before the

field lines reconnect. At the time the field lines reconnect

the internal energy becomes its averaged one on the two field

lines, (See, for example, solid circles at u t=900). Of

course this is the result of the averaging and not due to the

heat transport, since there is a large gradient of energy along

this field line. The internal energy on the field lines which

do not reconnect until the end is not changed much, but has

a tendency to approach the value on the singular surface;

this indicates the magnetic field line slips with respect to

the internal energy in the inner region.

We illustrate the amplitude of the fundamental mode of the

electron internal energy which is defined by A={l/L )|/dsnT „

exp(-i2irs/Lm) | in Fig.4(b). Here L is the length of the

magnetic field line, and the integration is carried out along

a magnetic field line. In the linear phase the reconnection

does not occur, but the amplitude grows, nevertheless. The

amplitude on the reconnected field line has a peak value at

its reconnected time, and after that time the amplitude decays.

These results indicate the heat conducts along this field line.
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Another remarkable feature which the heat conduction along the

field line shows is that there are second peaks due to the

amplitude oscillation of the internal energy at LO t=2000.

Let us now examine the heat transport associated with the

tearing instabilities more quantitatively. As seen from

Figs.2(b) and 2(c) a plateau region in the internal energy

is formed within the magnetic island, indicating that there

is anomalous electron heat transport across the singular surface.

Figure 5(a) shows the time variation of the electron internal

energy profile averaged in the y direction. The electron heat

conductivity K for this relaxation of the internal energy is

defined by

3T

3x

Where T. is the initial temperature. As mentioned in Sec.2

the electrci heat conductivity associated with the tearing

instability is localized within the inner region. We average
Lx/2+3

K over the inner region ( (1/6)fT /o _ K dx ). Figure 5(b)
Lx/Z~3

illustrates the time variation of K obtained by the above

average. K is normalized to the Bohm diffusion coefficient

nQD =n.T /(16m to ). K " and K*-1-' represent the heat

conductivity for (nT „) and (nT , ) , respectively. In the
6 Q

linear phase K " is a few times as large as K A , which agrees

with the prediction of the linear theory. Also in this phase

the heat conductivity grows exponentially with time.
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At ID t=1100 the growth of the heat conductivity ceases for a

while. In the nonlinear phase K, K and K x have almose

comparable values, and they increase linearly with time.

The heat conductivity has its maximum value at ou t~1700, and

after that time it decays.

As mentioned in Sec.2 the step size of heat is estimated

to be W in the nonlinear phase, which indicates the heat

conductivity should be discussed by the value averaged over

the saturated width of the magnetic island. Figure 6(b) shows

the dependence of the K averaged over the saturated magnetic
Lx/2+10

island width ( K = (i/20)/T ,, ,. K dx ). Open circles denote
Lx/->-10

the electron heat conductivity obtained by using Eq.(18).

Solid circles are obtained by the following method. The

relaxation of internal energy is assumed to be described by

a diffusion equation.

^_ nT = — K — T
8t n T 3x 3x 0 "

Supposing the heat flux is zero at the boundary wall x=L ,

K is obtained from Eq.(19) to be

Lx 8T0
K
 dx nT > / —-
x 9x

The derivative with respect to time is evaluated using a least

squares method at intervals of 200 co . Solid circles in
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Fig.6(b) show the heat conductivity obtained from Eq.(20),

which is also averaged over the saturated magnetic island

width. Of course it is not obvious that Eq..(19) holds in this

case. The term of heat flux, however, dominates other terms

in the equation of heat balance in this process, because

solid circles have values close to those of the open circles.
2

The linear phase corresponds to the region W £ 40 and the

nonlinear phase to the region W"' :> 40 in Fig.6(b) . Clearly

the electron heat conductivity is proportional to W in the

linear phase but to W in the nonlinear phase. The dependence

of the computed heat conductivity on the magnetic island width

is well explained by the theoretical model presented in Sec.2.

3-2.

In the case of the simulation including the longitudinal

electric fields there exists a large heat diffusion even for

a thermal plasma. This heat diffusion originates, for example,

from the coulomb collisions, the thermally excited high

frequency electrostatic waves , and convective cells. Thus

when these effects are included it becomes more difficult to

examine the heat diffusion due to the tearing instability.

It can, however, be shown that the electron heat transport

is enhanced mainly by the perturbed magnetic field. The

longitudinal electric fields are included in the equations

of motion by solving the Poisson equation. The tearing

instability in this case has a growth rate larger than that
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14)without longitudinal electric fields , and the width of the

magnetic island grows linearly with time. We have chosen the

same physical parameters as those without longitudinal electric

fields.

Figure 7 shows the time evolution of the electron heat

conductivity for the case of v,=0.7v . The heat conductivities

in Fig.7 are obtained from Eg.(20); we have averaged over the

saturated magnetic island width, as was done Uiere. Then the

heat conductivity includes effectively the viscosity term

and so on in the eguation of heat balance . Comparing this

heat conductivity with that obtained from Eq.(18) the difference

between these is smaller than twenty percents. In Fig.7 the

response of K " , K ••• and K to the tearing instability is

very similar.
2

The dependence of the electron heat conductivity on W is

shown in Fig.8(a). In the case of the simulation including

the longitudinal electric fields the heat conductivity seems

to be always proportional to W . Another feature for these

cases is that the heat conductivity approaches a finite value

in the limit of W=0, which is about 0.15n.D_,. This heat

conductivity is associated with thermal electrostatic

fluctuations because this level of heat conductivity exists

even in the simulation excluding the magnetic fluctuations.

This initial level of transport probably marks the early

transport proportional to W which is seen in the earlier

calculations without the electrostatic fields. The fact that

the initial transport is larger than that observed during the
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4
W phase of Fig.6(b) strongly indicates this.

2
Figure 8(b) shows the dependence of ( dK/dW ) on ( dW/dt )

which is observed in the above simulations. The solid line
o

has a slope d (K/II.DD) /dW =0.2dW/d(w t) . The observedU B pe

quantities denoted by solid circles agree well with the solid

line. Thus we conclude the electron heat conductivity associated
2

with the tearing instability has the relation K <* (dW/dt)W /W,

at least in the nonlinear phase.

4. Conclusions and Discussions

We have presented the behavior of the collisionless tearing

instabilities in a plasma with non-uniform temperature. The

anomalous electron heat transport associated with these modes

was investigated using a two-and-one-half dimensional magneto-

static particle simulation code. We derived the linear growth

rates and frequencies of the tearing instabilities numerically.

We found that the tearing instability has a tendency.to be

stabilized by a plasma temperature gradient. The tearing

instability appears to grow less strongly for a non-uniform

plasma temperature even when the system is unstable to tearing.

It is observed that the tearing instability propagates in the

direction of the electron diamagnetic drift with a frequency
*

of about u = 0.2u . This drift tearing instability saturates

at a low amplitude and turns into a nonlinear pure tearing

instability. In this nonlinear phase the width of the magnetic

island grows linearly with time.

We have demonstrated that the electron heat transport
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associated with the tearing instability is enhanced mainly

by the perturbed magnetic field in the temperature gradient

direction. The electron internal energy on a magnetic field

line is found to change suddenly the reconnection with another

field line takes place. Further amplitude oscillations of the

internal energy are observed within the magnetic island.

A plateau region for the electron internal energy is formed

inside the magnetic island. The electron heat conductivity

originating from the heat flux across the singular surface
4

is proportional to W in the linear phase, while it is

proportional to (dW/dt)W in the nonlinear phase. In particular

the electron heat conductivity for (nT „) has a value about a

few times as large as that for (nT ±) in the linear phase.

On the other hand both heat conductivity have comparable values

in the nonlinear phase. In the case of the simulation including
4

the longitudinal electric fields we fail to observe the W

dependence of the electron heat conductivity. The reason for

this is hypothesized to be the heat transport associated with

the tearing instability is hidden behind the large background

heat transport existing in the plasma due to the electrostatic

fluctuations.

We have not mentioned the ion heat transport so far. The

maximum value of the ion heat conductivity ( - 0.2nQDB ) was

observed to be at most one-fourth as large as that of

the electron heat conductivity although the ion heat flux was

also enhanced by the tearing instability. In this case the
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electron heat should transport keeping the charge neutrality.

We failed to observe the clear formation of the ambipolar

potential along the magnetic field lines. However, the

electron heat conductivity was observed to be suppressed by

the longitudinal electric fields, because the electron heat
2

conductivity had the relation K/U.D -0.2W dW/d(oi t) in the

simulation with electrostatic fields (see Fig.8) but

K/n.D =0.35W dW/d(io t) in the nonlinear phase of the

simulation without electrostatic fields (see Fig.6).
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Figure Caption

Fig.l. Initial temperature and current profiles shown in

the slab geometry bounded by conducting walls in the

x direction. The current flows in the z direction

producing a sheared magnetic field |B |<<|B_|.

Fig.2. Time variation of the magnetic field lines (a), and

the isotherms for nT „ (b) and nT x (c) projected

on the x-y plane.

Fig.3(a). Linear dispersion relation of the tearing instability

for the case k =TT/32. Open circles corresponds to the

parameters of the simulation.

Fig.3(b). Time evolution of phase of the perturbed vector

potential A (k =TT/32) . A is averaged over the widthz y z

6 around x=L /2. The slope of the solid line has

the frequency obtained from linear theory.

Fig.3(c). Time evolution of amplitude of A (k =mr/32). The slope

of the solid line corresponds to the linear growth rate.

Fig.4. Time variation of the average electron energy (nT „)

on a magnetic field line. The integration is along

a magnetic field line. Symbols of the same type

denote the quantity on the magnetic field lines

which have the same value of |A |.

4(a). Time variation of the average electron energy parallel

to the magnetic field line.

4(b). Time variation of the fundamental Fourier component of

the parallel electron energy along magnetic field lines.
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Fig.5(a). Time variation of the electron energy profiles

averaged in the y direction.

Fig.5(b). Time variation of the electron heat conductivity

which is normalized by n_D =n_T /(16m w ).

Fig.6(a). Time evolution of the half width of the magnetic

island.

Fig.6(b). The dependence of the electron heat conductivity on W.

Fig.7. Time variation of the electron heat conductivity.

Fig.8(a). The dependence of the electron heat conductivity on W.

Each symbol represents the results obtained from

the simulations for different parameter v,.

Fig.8(b). The dependence of A on B. A represents

d(10K/nnDn)/dW
2. B means dW/d(o> t).
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